BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    
 
 
griddap Subset tabledap Make A Graph wms files Accessible Title Summary ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_738772 https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_738772.graph https://erddap.bco-dmo.org/erddap/files/bcodmo_dataset_738772/ public Coccolithophore-associated organic biopolymers for fractionating particle-reactive radionuclides (234Th, 233Pa, 210Pb, 210Po, and 7Be) Laboratory incubation experiments using the coccolithophore Emiliania huxleyi were conducted in the presence of 234Th, 233Pa, 210Pb, 210Po, and 7Be to differentiate radionuclide uptake to the CaCO3 coccosphere from coccolithophore-associated biopolymers.\n\ncdm_data_type = Other\nVARIABLES:\nBiopolymer_Fraction (unitless)\nTh234_Activity (unitless)\nPa233_Activity (unitless)\nPb210_Activity (unitless)\nPo210_Activity (unitless)\nBe7_Activity (unitless)\nProtein_Amount (microMole Carbon (uM-C))\nTCHO_Amount (microMole Carbon (uM-C))\nURA_Amount (microMole Carbon (uM-C))\nProtein_C_TCHO_C (unitless)\nURA_pcnt_TCHO (unitless)\n https://erddap.bco-dmo.org/erddap/metadata/iso19115/xml/bcodmo_dataset_738772_iso19115.xml https://erddap.bco-dmo.org/erddap/info/bcodmo_dataset_738772/index.htmlTable https://www.bco-dmo.org/dataset/738772 (external link) https://erddap.bco-dmo.org/erddap/rss/bcodmo_dataset_738772.rss https://erddap.bco-dmo.org/erddap/subscriptions/add.html?datasetID=bcodmo_dataset_738772&showErrors=false&email= BCO-DMO bcodmo_dataset_738772
https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_764480 https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_764480.graph https://erddap.bco-dmo.org/erddap/files/bcodmo_dataset_764480/ public Partitioning of iron and plutonium in exopolymeric substances and intracellular biopolymers: a comparison study between the coccolithophore Emiliania huxleyi and the diatom Skeletonema costatum Iron (Fe), a micronutrient for algal growth, and plutonium (Pu), an anthropogenic radionuclide, share some common features. This includes similar oceanic distributions when different input modes are taken into account, as well as their chemical behavior, such as a high affinity to natural organic matter (NOM). The NOM produced by various phytoplankton communities can potentially influence Fe cycling in the ocean, and likely also influence the transport behavior of Pu. We conducted laboratory incubation experiments using the coccolithophore Emiliania huxleyi and the diatom Skeletonema costatum, in the presence of 59Fe and 238Pu as radiotracers, in order to differentiate Fe and Pu uptake by extracellular exopolymeric substances (EPS) and intracellular biopolymers. The Fe and Pu distributions in select organic compound classes including proteins, total carbohydrates (TCHO) and uronic acids (URA) produced by these two types of phytoplankton were compared. Our results indicated that most of the Fe and Pu (>95%) were found concurrently concentrated in E. huxleyi-derived non-attached EPS, while much less (<2%) was present in the intracellular fraction of E. huxleyi. By contrast, in the diatom S. costatum, both Fe and Pu distribution was EPS > intracellular biopolymers > outer cell covering (i.e., frustule). In fact, over 50% of Fe was concentrated in S. costatum-derived attached EPS and intracellular biopolymers. The diatom derived Fe-EPS complexes were more hydrophobic, with stronger tendency to aggregate in seawater. Fe binding to biopolymers in both E. huxleyi and S. costatum cultures was related to URA concentrations, but the overall distribution of URA between these two phytoplankton species was different. Our findings suggest that the presence of URA in S. costatum cellular surface (i.e., attached EPS) and its intracellular fraction could be an indicator for the Fe transport from the surrounding seawater to the diatom cells. However, for the coccolithophore E. huxleyi, Fe appeared not to be efficiently taken up during its growth. Instead, the more hydrophilic non-attached EPS (i.e., low protein/TCHO ratio) produced by E. huxleyi could have stabilized Fe in the colloidal form as Fe-EPS complexes. Similar partitioning behavior of Fe and Pu suggests that Pu isotopes can potentially serve as a tracer for the Fe biogeochemistry in the ocean.\n\ncdm_data_type = Other\nVARIABLES:\ntype (unitless)\nBiopolymer_fraction (unitless)\nCell_type (unitless)\n... (7 more variables)\n https://erddap.bco-dmo.org/erddap/metadata/iso19115/xml/bcodmo_dataset_764480_iso19115.xml https://erddap.bco-dmo.org/erddap/info/bcodmo_dataset_764480/index.htmlTable https://www.bco-dmo.org/dataset/764480 (external link) https://erddap.bco-dmo.org/erddap/rss/bcodmo_dataset_764480.rss https://erddap.bco-dmo.org/erddap/subscriptions/add.html?datasetID=bcodmo_dataset_764480&showErrors=false&email= BCO-DMO bcodmo_dataset_764480
https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_764860 https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_764860.graph https://erddap.bco-dmo.org/erddap/files/bcodmo_dataset_764860/ public Percent amount of organic fractions from diatoms that bind with radionuclides In order to investigate the importance of biogenic silica associated biopolymers on the scavenging of radionuclides, the diatom Phaeodactylum tricornutum was incubated together with the radionuclides 234Th, 233Pa, 210Pb, and 7Be during their growth phase. Normalized affinity coefficients were determined for the radionuclides bound with different organic compound classes (i.e., proteins, total carbohydrates, uronic acids) in extracellular (nonattached and attached exopolymeric substances), intracellular (ethylene diamine tetraacetic acid and sodium dodecyl sulfate extractable), and frustule embedded biopolymeric fractions (BF). Results indicated that radionuclides were mostly concentrated in frustule BF. Among three measured organic components, Uronic acids showed the strongest affinities to all tested radionuclides. Confirmed by spectrophotometry and two-dimensional heteronuclear single quantum coherence-nuclear magnetic resonance analyses, the frustule BF were mainly composed of carboxyl-rich, aliphatic-phosphoproteins, which were likely responsible for the strong binding of many of the radionuclides. Results from this study provide evidence for selective absorption of radionuclides with different kinds of diatom-associated biopolymers acting in concert rather than as a single compound. This clearly indicates the importance of these diatom-related biopolymers, especially frustule biopolymers, in the scavenging and fractionation of radionuclides used as particle tracers in the ocean.\n\ncdm_data_type = Other\nVARIABLES:\nsubstance (unitless)\nProtein (unitless (percent))\nTCHO (unitless (percent))\nURA (unitless (percent))\n https://erddap.bco-dmo.org/erddap/metadata/iso19115/xml/bcodmo_dataset_764860_iso19115.xml https://erddap.bco-dmo.org/erddap/info/bcodmo_dataset_764860/index.htmlTable https://www.bco-dmo.org/dataset/764860 (external link) https://erddap.bco-dmo.org/erddap/rss/bcodmo_dataset_764860.rss https://erddap.bco-dmo.org/erddap/subscriptions/add.html?datasetID=bcodmo_dataset_764860&showErrors=false&email= BCO-DMO bcodmo_dataset_764860

 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact