![]() |
BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
griddap | Subset | tabledap | Make A Graph | wms | files | Accessible | Title | Summary | FGDC | ISO 19115 | Info | Background Info | RSS | Institution | Dataset ID | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_814713 | https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_814713.graph | https://erddap.bco-dmo.org/erddap/files/bcodmo_dataset_814713/ | public | [Sulfonates in plankton cultures] - Intracellular sulfonate metabolites measured in a variety of eukaryotic and prokaryotic phytoplankton and heterotrophic bacteria using liquid chromatography-mass spectrometry-based metabolomics (OCE-PRF Track 1 (Broadening Participation): Cryptic Sulfonate Cycling between Marine Phytoplankton and Heterotrophic Bacterioplankton) | Intracellular sulfonate metabolites were measured in a variety of eukaryotic and prokaryotic phytoplankton and heterotrophic bacteria using liquid chromatography-mass spectrometry-based metabolomics. These data have been published in Durham et al. (2019). Raw data are available at Metabolomics Workbench under Project ID PR000797.\n\ncdm_data_type = Other\nVARIABLES:\nOrganism (unitless)\nreplicate (unitless)\ncells_filtered (unitless)\nDHPS (amol per cell)\ncysteic_acid (amol per cell)\nsulfolactate (amol per cell)\nisethionic_acid (amol per cell)\ntaurine (amol per cell)\n | https://erddap.bco-dmo.org/erddap/info/bcodmo_dataset_814713/index.htmlTable | https://www.bco-dmo.org/dataset/814713![]() | https://erddap.bco-dmo.org/erddap/rss/bcodmo_dataset_814713.rss | https://erddap.bco-dmo.org/erddap/subscriptions/add.html?datasetID=bcodmo_dataset_814713&showErrors=false&email= | BCO-DMO | bcodmo_dataset_814713 | |||||
log in | [Thalassiosira pseudonana CCMP1335 endometabolite uptake by Ruegeria pomeroyi DSS-3] - Thalassiosira pseudonana CCMP1335 endometabolite uptake by Ruegeria pomeroyi DSS-3 (Effects of Climate Change Variables on Microbial Autotroph-Heterotroph Carbon Flux) | The ocean's temperature increase has fundamental implications for physiological rates and processes of marine microbes. In this study, a marine diatom Thalassiosira pseudonana CCMP1335 was acclimated for three months at temperatures below (14°C), equal to (20°C), and above (28°C). Heterotrophic bacterium Ruegeria pomeroyi DSS-3 was inoculated into cultures, and transporter expression was compared between temperatures. R. pomeroyi transporter expression leveraged as a biosensor of available diatom exometabolites indicated temperature-related substitution of diatom osmolytes dimethylsulfoniopropionate (DMSP), dihydroxypropanesulfonate (DHPS), and homarine (dominating carbon transfer at lower temperatures) with glycine betaine and choline (dominating at higher temperatures). T. pseudonana endometabolome pools and biosynthetic pathway expression indicated increased availability of amino acids and glycerol-3-phosphate at higher temperatures. Overall trends across datasets supported a greater importance of organic sulfur compounds in diatom-bacterial metabolite transfer at lower temperatures and greater importance of organic nitrogen compounds at higher temperatures.\n\ncdm_data_type = Other\nVARIABLES:\nExperiment (unitless)\nSample_ID (unitless)\nMetabolomics_Workbench_Project_ID (unitless)\nMetabolomics_Workbench_Study_ID (unitless)\nMetabolomics_Workbench_Sample_ID (unitless)\nNumber (unitless)\nTemperature (degrees Celsius (°C))\nReplicate (unitless)\nCulture (unitless)\nJGI_Sample_ID (unitless)\nTime_Point_h (hours (h))\nBacteria_presence (unitless)\nGlycine_Betaine (NMR peak intensity per biovolume)\nProline (NMR peak intensity per biovolume)\nDHPS (NMR peak intensity per biovolume)\n... (13 more variables)\n | BCO-DMO | bcodmo_dataset_928203_v1 |