![]() |
BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
griddap | Subset | tabledap | Make A Graph | wms | files | Accessible | Title | Summary | FGDC | ISO 19115 | Info | Background Info | RSS | Institution | Dataset ID | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
log in | [Manually annotated reef halos from 6 study areas] - Manually annotated reef halos based on sattelite imagery from 6 study areas as training and test data for a deep learning model (CAREER: Decoding seascape-scale vegetation patterns on coral reefs to understand ecosystem health: Integrating research and education from organismal to planetary scales) | Reef halos are rings of bare sand that surround coral reef patches. Halo formation is likely to be the indirectly result of interactions between relatively healthy predator and herbivore populations. To reduce the risk of predation, herbivores preferentially graze close to the safety of the reef, potentially affecting the presence and size of the halo. Reef halos are readily visible in remotely sensed imagery, and monitoring their presence and changes in size may therefore offer clues as to how predator and herbivore populations are faring. However, manually identifying and measuring halos is slow and limits the spatial and temporal scope of studies. There are currently no existing tools to automatically identify single reef halos and measure their size to speed up their identification and improve our ability to quantify their variability over space and time. \n\nHere we present a set of convolutional neural networks aimed at identifying and measuring reef halos from very high-resolution satellite imagery (i.e., ∼0.6 m spatial resolution). We show that deep learning algorithms can successfully detect and measure reef halos with a high degree of accuracy (F1 = 0.824), thereby enabling faster, more accurate spatio-temporal monitoring of halo size. This tool will aid in the global study of reef halos, and potentially coral reef ecosystem monitoring, by facilitating our discovery of the ecological dynamics underlying reef halo presence and variability.\n\ncdm_data_type = Other\nVARIABLES:\nAOI (unitless)\nObject_Id (unitless)\nSkySate_image_ID (unitless)\nClassname (unitless)\nlatitude (Mean_latitude, degrees_north)\nlongitude (Mean_longitude, degrees_east)\nSubset (unitless)\n | BCO-DMO | bcodmo_dataset_932211_v1 |