![]() |
BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
griddap | Subset | tabledap | Make A Graph | wms | files | Accessible | Title | Summary | FGDC | ISO 19115 | Info | Background Info | RSS | Institution | Dataset ID | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
log in | [Microorganisms associated with pyrosomes] - High-throughput sequencing of the 16S rRNA gene, microscopy, and flow cytometry of pyrosome-associated microorganisms compared to seawater sampled during a Pyrosoma atlanticum bloom in the Northern California Current System in July 2018. (Collaborative Research: Comparative feeding by gelatinous grazers on microbial prey) | Pyrosomes are widely distributed pelagic tunicates that have the potential to reshape marine food webs when they bloom. However, their grazing preferences and interactions with the background microbial community are poorly understood. The diversity, relative abundance, and taxonomy of pyrosome-associated microorganisms were compared to seawater during a Pyrosoma atlanticum bloom in the Northern California Current System using high-throughput sequencing of the 16S rRNA gene, microscopy, and flow cytometry.\n\ncdm_data_type = Other\nVARIABLES:\nbioproject_accession (unitless)\nbiosample_accession (unitless)\nsample_name (unitless)\nsra_sample_accession (unitless)\nsample_accession_title (unitless)\norganism_name (unitless)\norganism_taxonomy_id (unitless)\norganism_taxonomy_name (unitless)\nkeywords (unitless)\nbiosample_package (unitless)\ncollection_date (unitless)\nenv_broad_scale (unitless)\nenv_local_scale (unitless)\nenv_medium (unitless)\ngeo_loc_name (unitless)\nhost (unitless)\nlatitude (Sampling_lat, degrees_north)\nlongitude (Sampling_lon, degrees_east)\ndepth (m)\nhost_length (centimeter (cm))\nsource_material_id (unitless)\nstatus (unitless)\n... (20 more variables)\n | BCO-DMO | bcodmo_dataset_926093_v1 | ||||||||||||
log in | [Northern California Current Microorganisms] - 16S rRNA gene of microorganisms sampled along the Newport Hydrographic (NH) and Trinidad Head (TR) lines, in OR and CA in 2018 and 2019 (Collaborative Research: Comparative feeding by gelatinous grazers on microbial prey) | The Northern California Current ecosystem is a productive system which supports major fisheries. To determine how the microbial community responds to variable upwelling, we examined the 16S rRNA gene of microorganisms from two size fractions, 0.2-1.6µm and greater than 1.6µm along the Newport Hydrographic (NH) and Trinidad Head (TR) lines, in OR and CA.\n\ncdm_data_type = Other\nVARIABLES:\nbioproject_accession (unitless)\nbiosample_accession (unitless)\nmessage (unitless)\nsample_name (unitless)\norganism (unitless)\ncollection_date (unitless)\ndepth (m)\nenv_broad_scale (unitless)\nenv_local_scale (unitless)\nenv_medium (unitless)\ngeo_loc_name (unitless)\nlatitude (Sampling_lat, degrees_north)\nlongitude (Sampling_lon, degrees_east)\nsize_frac (unitless)\nsra_run_accession (unitless)\nsra_study_accession (unitless)\nobject_status (unitless)\nlibrary_ID (unitless)\ntitle (unitless)\nlibrary_strategy (unitless)\nlibrary_source (unitless)\nlibrary_selection (unitless)\nlibrary_layout (unitless)\nplatform (unitless)\n... (5 more variables)\n | BCO-DMO | bcodmo_dataset_926850_v1 | ||||||||||||
https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_924886_v1 | https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_924886_v1.graph | https://erddap.bco-dmo.org/erddap/files/bcodmo_dataset_924886_v1/ | public | [RADseq data from Atlantic silversides used for linkage and QTL mapping] - RADseq data from Atlantic silversides used for linkage and QTL mapping. (Collaborative research: The genomic underpinnings of local adaptation despite gene flow along a coastal environmental cline) | ddRADseq data from 568 Atlantic silversides (Menidia menidia) that are either F1 or F2 offspring to wild-caught parents from Georgia and New York used in a controlled breeding experiment. The data were used to build linkage maps for each of the separate populations and their inter-population cross, and to perform quantitative trait locus mapping.\n\ncdm_data_type = Other\nVARIABLES:\nbioproject_accession (units)\nbiosample_accession (units)\ntaxonomic_name (units)\nmother_f0_sampling_location (units)\nlat_mother (degrees_north)\nlon_mother (degrees_east)\nfather_f0_sampling_location (units)\nlat_father (degrees_north)\nlon_father (degrees_east)\nSRA_study_accession (units)\nSRA_experiment_accession (units)\nSRA_run_accession (units)\nlibrary_ID (units)\ntitle (units)\nlibrary_strategy (units)\nlibrary_source (units)\nlibrary_selection (units)\nlibrary_layout (units)\nplatform (units)\ninstrument_model (units)\ndesign_description (units)\nfiletype (units)\nsample_name (units)\nfilename (units)\n | https://erddap.bco-dmo.org/erddap/info/bcodmo_dataset_924886_v1/index.htmlTable | https://www.bco-dmo.org/dataset/924886![]() | https://erddap.bco-dmo.org/erddap/rss/bcodmo_dataset_924886_v1.rss | https://erddap.bco-dmo.org/erddap/subscriptions/add.html?datasetID=bcodmo_dataset_924886_v1&showErrors=false&email= | BCO-DMO | bcodmo_dataset_924886_v1 | |||||
log in | [Salp and pteropod associated microorganisms] - Salp and pteropod associated microorganisms from the Western Edge of the Gulf Stream sampled in September 2019. (Collaborative Research: Comparative feeding by gelatinous grazers on microbial prey) | Microbial mortality impacts the structure of food webs, carbon flow, and the interactions that create dynamic patterns of abundance across gradients in space and time in diverse ecosystems. In the oceans, estimates of microbial mortality by viruses, protists, and small zooplankton do not account fully for observations of loss, suggesting the existence of underappreciated mortality sources. We examined how ubiquitous mucous mesh feeders (i.e. gelatinous zooplankton) could contribute to microbial mortality in the open ocean. We coupled capture of live animals by blue-water diving to sequence-based approaches to measure the enrichment and selectivity of feeding by two coexisting mucous grazer taxa (pteropods and salps) on numerically dominant marine prokaryotes. We show that mucous mesh grazers consume a variety of marine prokaryotes and select between coexisting lineages and similar cell sizes. We show that Prochlorococcus may evade filtration more than other cells and that planktonic archaea are consumed by macrozooplanktonic grazers. Discovery of these feeding relationships identifies a new source of mortality for Earth's dominant marine microbes and alters our understanding of how top-down processes shape microbial community and function.\n\ncdm_data_type = Other\nVARIABLES:\nbioproject_accession (unitless)\nbiosample_accession (unitless)\nmessage (unitless)\nsample_name (unitless)\nsample_title (unitless)\norganism (unitless)\ncollection_date (unitless)\ndepth_f (Depth, feet)\nenv_broad_scale (unitless)\nenv_local_scale (unitless)\nenv_medium (unitless)\ngeo_loc_name (unitless)\nlatitude (Sampling_lat, degrees_north)\nlongitude (Sampling_lon, degrees_east)\n... (15 more variables)\n | BCO-DMO | bcodmo_dataset_926841_v1 |