BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    
 
 
Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL access_formats String .htmlTable,.csv,.json,.mat,.nc,.tsv
attribute NC_GLOBAL acquisition_description String Growth of the diatom  \nThalassiosira wessiflogii (CCMP 1051) was obtained from the National Center\nfor Culture of Marine Algae and Microbiota (NCMA). The diatom was grown in\nartificial seawater (Berges et al. 2001) in nitrogen-limited 1000 ml semi-\ncontinuous cultures at a sequence of dilution rates. The macronutrient\nconcentrations in the artificial seawater recipe were modified from Berges et\nal. (2001) to affect nitrogen limitation; concentrations of nitrogen,\nphosphorus and silicon were 60 \\u00b5M (as NaNO3), 100 \\u00b5M (NaH2PO4), and\n100 \\u00b5M (Na2SiO3), respectively. Culture temperature was maintained at 20\n\\u00b1 0.1 \\u00b0C throughout the experiment. Photon flux density on the\nsurface of the culture bottles was 150 \\u00b5mol m-2 s-1. The cultures were\nstirred with 2.5 cm long stir bars using magnetic stirrers at 120 revolutions\nper minute. The cultures were grown at a sequence of dilution rates (0.3, 0.5,\n0.7, 0.9 and 0.3 day-1) affected by daily dilution at 10:00 am every day. To\ninduce a dilution rate of 0.3 day-1, 0.3 of the culture volume (300 ml) was\nremoved and replaced with 300 ml of fresh medium to maintain a constant total\nculture volume (1000 ml).\n \nMeasures of phytoplankton abundance and biomass  \n Counts of 400 cells from each replicate culture were made by light\nmicroscopy using a hemocytometer (Fuchs-Rosenthal ruling, Hauser Scientific)\n(Guillard and Sieracki 2005) from samples preserved in Lugol\\u2019s iodine\n(Parsons et al. 1984). Cell volume was determined using live cells (Menden-\nDeuer and Lessard 2000). The volume of 100 diatoms from each replicate culture\nwas determined by measuring cell length (pervalver length) and width (valver\nlength) at 400x magnification using a light microscope (Axioplan 2, Carl Zeiss\nMicroImaging). Cell volume was calculated based on the assumption that T.\nwessiflogii is a cylinder.\n \nChlorophyll a concentrations in the cultures was determined by fluorescence\n(Arar and Collins 1997). Chlorophyll a concentration 90% acetone extractions\nfrom biomass retained on GF/C (Whatman) were measured using a Turner Designs\n700 fluorometer, which was calibrated using chlorophyll a standards (Sigma)\n(Arar and Collins 1997). The extract was diluted with 90% acetone if the chl.\na concentration were too high.\n \nThe carbon and nitrogen content of particulate organic matter in the cultures\nwas determined by elemental analysis using a Carlo Erba NA1500 Elemental\nAnalyzer. Standards were acetanilide, methionine, graphite (USGS 24, USGS 40,\nand USGS 41) (Verardo et al. 1990).\\u00a0\n \nBacteria abundance  \n Bacteria (400 cells) were counted using an epifluorescence microscope\n(Axioplan 2, Carl Zeiss MicroImaging) after staining with\n4'6-diamidino-2-phenylindole dihydrochloride (DAPI) (Porter and Feig 1980) at\na final concentration of 0.25 \\u00b5g ml-1.\n \nCell permeability  \n Uptake and staining with the membrane-impermeable SYTOX Green (Invitrogen)\nwas used to determine what proportion of the diatom population had permeable\ncell membranes (Veldhuis et al. 2001, Franklin et al. 2012). Four hundred\ncells were examined using an epifluorescence microscope and the number of\ncells that stained with SYTOX Green was enumerated.\n \nTotal carbohydrate  \n Total carbohydrate concentrations were determined in unfiltered liquid\nsamples from the cultures using the phenol-sulfuric acid (PSA) method (Dubois\net al. 1956) calibrated with d-glucose. The concentration of total\ncarbohydrate was expressed as glucose equivalents.\n \nTEP staining and analysis  \n Transparent exopolymer particles (TEP) were sampled according to Alldredge\net al. (1993) and TEP abundance was enumerated by image analysis (Logan et al.\n1994, Engel 2009). Ten photomicrographs were taken of each slide and the area\nof 100 TEP particles from each replicate culture was determined after manually\ndrawing around each particle using Axio Vision 4.8 (Carl Zeiss MicroImaging )\nimage analysis software.\\u00a0\n \nParticle size distribution and aggregation  \n The particle size distribution (PSD) and volume concentration of particles\nin the T. weissiflogii cultures was measured using laser scattering following\nthe method of Rzadkowolski and Thornton (2012) using a Laser In Situ\nScattering and Transmissometry instrument (LISST-100X, Type C; Sequoia\nScientific). Sample (150 ml) from each replicate culture was placed into a\nchamber attached to the LISST and the PSD was measured 100 times at a rate of\n1 Hz. The PSD of the culture was blank corrected by subtracting the PSD of 0.2\n\\u00b5m filtered artificial seawater.\n \nReferences cited  \n Alldredge, A. L., Passow, U. & Logan B. E. 1993. The abundance and\nsignificance of a class of large, transparent organic particles in the ocean.\nDeep-Sea Res. Oceanogr., I. 40: 1131-1140.\ndoi:[10.1016/0967-0637(93)90129-Q](\\\\\"https://dx.doi.org/10.1016/0967-0637\\(93\\)90129-Q\\\\\")\n \nArar, E. J. & Collins, G. B. 1997. Method 445.0. In Vitro Determination of\nChlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence\nU.S. Environmental Protection Agency, Cincinnati, Ohio.\n \nBerges, J. A., Franklin D. J. & Harrison, P. J. 2001. Evolution of an\nartificial seawater medium: Improvements in enriched seawater, artificial\nwater over the last two decades. J. Phycol. 37:1138-1145.\ndoi:[10.1046/j.1529-8817.2001.01052.x](\\\\\"https://dx.doi.org/10.1046/j.1529-8817.2001.01052.x\\\\\")\n \nDubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956.\nColorimetric method for determination of sugars and related substances. Anal.\nChem. 28: 350\\u2013356.\ndoi:[10.1021/ac60111a017](\\\\\"https://dx.doi.org/10.1021/ac60111a017\\\\\")\n \nFranklin, D. J., Airs, R. L., Fernandes, M., Bell, T. G., Bongaerts, R. J.,\nBerges, J. A. & Malin, G. 2012. Identification of senescence and death in\nEmiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll\nalterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol.\nOceanogr. 57: 305\\u2013317. doi:10.4319/lo.2012.57.1.0305\n \nGuillard, R. R. L. & Sieracki, M. S. 2005. Counting cells in cultures with the\nlight microscope. In Andersen R. A. [Ed.] Algal Culturing Techniques. Elsevier\nAcademic Press, Burlington, MA, pp. 239-252.\n \nLogan, B. E., Grossart, H. P. & Simon, M. 1994. Direct observation of\nphytoplankton, TEP and aggregates on polycarbonate filters using brightfield\nmicroscopy. J. Plankton Res.16:\n1811-1815.doi:[10.1093/plankt/16.12.1811](\\\\\"https://dx.doi.org/10.1093/plankt/16.12.1811\\\\\")\n \nMenden-Deuer S. & Lessard, E. J. 2000. Carbon to volume relationships for\ndinoflagellates, diatoms, and other protists plankton. Limnol. Oceanogr. 45:\n569- 579.\ndoi:[10.4319/lo.2000.45.3.0569](\\\\\"https://dx.doi.org/10.4319/lo.2000.45.3.0569\\\\\")\n \nParsons, T. R., Maita, Y. & Lalli, C. M. 1984. A Manual of Chemical and\nBiological Methods for Seawater Analysis. Pergamon Press, Oxford, UK.\n \nPassow, U. & Alldredge, A. L. 1995. A dye-binding assay for the\nspectrophotometric measurement of transparent exopolymer particles (TEP).\nLimnol. Oceanogr. 40: 1326-1335.\ndoi:[10.4319/lo.1995.40.7.1326](\\\\\"https://dx.doi.org/10.4319/lo.1995.40.7.1326\\\\\")\n \nPorter, K. G. & Feig, Y. S. 1980. The use of DAPI for identifying and counting\naquatic microflora. Limnol. Oceanogr. 25:943\\u2013948.\ndoi:[10.4319/lo.1980.25.5.0943](\\\\\"https://dx.doi.org/10.4319/lo.1980.25.5.0943\\\\\")\n \nRzadkowlski, C. E. & Thornton, D. C. O. 2012. Using laser scattering to\nidentify diatoms and conduct aggregation experiments. Eur. J. Phycol.47:30-41.\ndoi:[10.1080/09670262.2011.646314](\\\\\"https://dx.doi.org/10.1080/09670262.2011.646314\\\\\")\n \nVeldhuis, M. J. W., Kraay, G. W. & Timmermans, K. R. 2001. Cell death in\nphytoplankton: correlation between changes in membrane permeability,\nphotosynthetic activity, pigmentation and growth. Eur. J. Phycol. 36:\n167\\u2013177.\ndoi:[10.1080/09670260110001735318](\\\\\"https://dx.doi.org/10.1080/09670260110001735318\\\\\")\n \nVerardo, D. J., Froelich, P. N. & McIntyre, A. 1990. Determination of organic\ncarbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer.\nDeep-Sea Res.A 37:157-165.\ndoi:[10.1016/0198-0149(90)90034-S](\\\\\"https://dx.doi.org/10.1016/0198-0149\\(90\\)90034-S\\\\\")
attribute NC_GLOBAL awards_0_award_nid String 55158
attribute NC_GLOBAL awards_0_award_number String OCE-0726369
attribute NC_GLOBAL awards_0_data_url String http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0726369 (external link)
attribute NC_GLOBAL awards_0_funder_name String NSF Division of Ocean Sciences
attribute NC_GLOBAL awards_0_funding_acronym String NSF OCE
attribute NC_GLOBAL awards_0_funding_source_nid String 355
attribute NC_GLOBAL awards_0_program_manager String David L. Garrison
attribute NC_GLOBAL awards_0_program_manager_nid String 50534
attribute NC_GLOBAL cdm_data_type String Other
attribute NC_GLOBAL comment String Thalassiosira wessiflogii growth rate and TEP \n PI: Daniel C.O. Thornton (Texas A&M) \n Version: 07 April 2014
attribute NC_GLOBAL Conventions String COARDS, CF-1.6, ACDD-1.3
attribute NC_GLOBAL creator_email String info at bco-dmo.org
attribute NC_GLOBAL creator_name String BCO-DMO
attribute NC_GLOBAL creator_type String institution
attribute NC_GLOBAL creator_url String https://www.bco-dmo.org/ (external link)
attribute NC_GLOBAL data_source String extract_data_as_tsv version 2.3  19 Dec 2019
attribute NC_GLOBAL date_created String 2014-04-07T16:01:42Z
attribute NC_GLOBAL date_modified String 2019-11-21T17:48:58Z
attribute NC_GLOBAL defaultDataQuery String &time<now
attribute NC_GLOBAL doi String 10.1575/1912/bco-dmo.506135.1
attribute NC_GLOBAL infoUrl String https://www.bco-dmo.org/dataset/506135 (external link)
attribute NC_GLOBAL institution String BCO-DMO
attribute NC_GLOBAL instruments_0_acronym String TD-700
attribute NC_GLOBAL instruments_0_dataset_instrument_description String Chlorophyll a concentration 90% acetone extractions from biomass retained on GF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was calibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997).
attribute NC_GLOBAL instruments_0_dataset_instrument_nid String 506238
attribute NC_GLOBAL instruments_0_description String The TD-700 Laboratory Fluorometer is a benchtop fluorometer designed to detect fluorescence over the UV to red range. The instrument can measure concentrations of a variety of compounds, including chlorophyll-a and fluorescent dyes, and is thus suitable for a range of applications, including chlorophyll, water quality monitoring and fluorescent tracer studies. Data can be output as concentrations or raw fluorescence measurements.
attribute NC_GLOBAL instruments_0_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L22/current/TOOL0510/ (external link)
attribute NC_GLOBAL instruments_0_instrument_name String Turner Designs 700 Laboratory Fluorometer
attribute NC_GLOBAL instruments_0_instrument_nid String 694
attribute NC_GLOBAL instruments_0_supplied_name String Turner Designs 700 Fluorometer
attribute NC_GLOBAL instruments_1_dataset_instrument_description String Bacterial abunance and cell permeability were determined using an epifluorescence microscope (Axioplan 2, Carl Zeiss MicroImaging).
attribute NC_GLOBAL instruments_1_dataset_instrument_nid String 506241
attribute NC_GLOBAL instruments_1_description String Instruments that generate enlarged images of samples using the phenomena of fluorescence and phosphorescence instead of, or in addition to, reflection and absorption of visible light. Includes conventional and inverted instruments.
attribute NC_GLOBAL instruments_1_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB06/ (external link)
attribute NC_GLOBAL instruments_1_instrument_name String Microscope-Fluorescence
attribute NC_GLOBAL instruments_1_instrument_nid String 695
attribute NC_GLOBAL instruments_1_supplied_name String Epifluorescence Microscope
attribute NC_GLOBAL instruments_2_acronym String Hemocytometer
attribute NC_GLOBAL instruments_2_dataset_instrument_description String Counts of 400 cells from each replicate culture were made by light microscopy using a hemocytometer (Fuchs-Rosenthal ruling, Hauser Scientific).
attribute NC_GLOBAL instruments_2_dataset_instrument_nid String 506236
attribute NC_GLOBAL instruments_2_description String A hemocytometer is a small glass chamber, resembling a thick microscope slide, used for determining the number of cells per unit volume of a suspension. Originally used for performing blood cell counts, a hemocytometer can be used to count a variety of cell types in the laboratory. Also spelled as \"haemocytometer\". Description from:\nhttp://hlsweb.dmu.ac.uk/ahs/elearning/RITA/Haem1/Haem1.html.
attribute NC_GLOBAL instruments_2_instrument_name String Hemocytometer
attribute NC_GLOBAL instruments_2_instrument_nid String 704
attribute NC_GLOBAL instruments_2_supplied_name String Hemocytometer
attribute NC_GLOBAL instruments_3_dataset_instrument_description String The volume of 100 diatoms from each replicate culture was determined by measuring cell length (pervalver length) and width (valver length) at 400x magnification using a light microscope (Axioplan 2, Carl Zeiss MicroImaging).
attribute NC_GLOBAL instruments_3_dataset_instrument_nid String 506237
attribute NC_GLOBAL instruments_3_description String Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a \"light microscope\".
attribute NC_GLOBAL instruments_3_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ (external link)
attribute NC_GLOBAL instruments_3_instrument_name String Microscope-Optical
attribute NC_GLOBAL instruments_3_instrument_nid String 708
attribute NC_GLOBAL instruments_3_supplied_name String Light microscope
attribute NC_GLOBAL instruments_4_acronym String Carlo-Erba NA-1500
attribute NC_GLOBAL instruments_4_dataset_instrument_description String The carbon and nitrogen content of particulate organic matter in the cultures was determined by elemental analysis using a Carlo Erba NA1500 Elemental Analyzer.
attribute NC_GLOBAL instruments_4_dataset_instrument_nid String 506240
attribute NC_GLOBAL instruments_4_description String A laboratory instrument that simultaneously determines total nitrogen and total carbon from a wide range of organic and inorganic sediment samples. The sample is completely and instantaneously oxidised by flash combustion, which converts all organic and inorganic substances into combustion products. The resulting combustion gases pass through a reduction furnace and are swept into the chromatographic column by the carrier gas which is helium. The gases are separated in the column and detected by the thermal conductivity detector which gives an output signal proportional to the concentration of the individual components of the mixture. The instrument was originally manufactured by Carlo-Erba, which has since been replaced by Thermo Scientific (part of Thermo Fisher Scientific). This model is no longer in production.
attribute NC_GLOBAL instruments_4_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L22/current/TOOL0470/ (external link)
attribute NC_GLOBAL instruments_4_instrument_name String Carlo-Erba NA-1500 Elemental Analyzer
attribute NC_GLOBAL instruments_4_instrument_nid String 506239
attribute NC_GLOBAL instruments_4_supplied_name String Carlo Erba NA1500 Elemental Analyzer
attribute NC_GLOBAL instruments_5_acronym String Sequoia LISST
attribute NC_GLOBAL instruments_5_dataset_instrument_description String The particle size distribution (PSD) and volume concentration of particles in the T. weissiflogii cultures was measured using laser scattering following the method of Rzadkowolski and Thornton (2012) using a Laser In Situ Scattering and Transmissometry instrument (LISST-100X, Type C; Sequoia Scientific).
attribute NC_GLOBAL instruments_5_dataset_instrument_nid String 506244
attribute NC_GLOBAL instruments_5_description String A self-contained unit which measures the scattering of LASER light at a number of angles. This primary measurement is mathematically inverted to give a grain size distribution, and also scaled to obtain the volume scattering function. The size distribution is presented as concentration in each of the grain-size class bins. Optical transmission, water depth and temperature are recorded as supporting measurements.\n\nThe Sequoia LISST 100-X series instruments are available in two range sizes: 1.25-250 microns (Type B) and 2.5-500 microns (Type C).
attribute NC_GLOBAL instruments_5_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L22/current/TOOL0044/ (external link)
attribute NC_GLOBAL instruments_5_instrument_name String Sequoia Scientific Laser In-Situ Sediment Size Transmissometer
attribute NC_GLOBAL instruments_5_instrument_nid String 506243
attribute NC_GLOBAL instruments_5_supplied_name String LISST-100X Type C Sequoia Scientific
attribute NC_GLOBAL keywords String abundance, agg, agg_vol_conc, agg_vol_conc_n, agg_vol_conc_sd, area, bact, bact_per_diatom, bacteria, bco, bco-dmo, biological, C_to_N, carb, cell, cell_abundance, cell_vol_mean, cell_vol_n, cell_vol_sd, cells, chemical, chemistry, chla, chla_per_cell, chla_per_cell_vol, chlorophyll, chlorophyll-a, conc, concentration, concentration_of_chlorophyll_in_sea_water, culture, data, dataset, day, diatom, dilution, dilution_rate, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, erddap, management, mean, ocean, oceanography, oceans, office, pcnt, per, preliminary, prod, rate, science, sea, seawater, size, stained, stained_cells, stained_cells_pcnt, tep, TEP_mean_size, TEP_n, TEP_prod_rate, TEP_sd, tot, tot_carb, tot_carb_per_cell, tot_carb_per_cell_vol, tot_TEP_area, vol, vol_conc, vol_conc_n, vol_conc_sd, water
attribute NC_GLOBAL keywords_vocabulary String GCMD Science Keywords
attribute NC_GLOBAL license String https://www.bco-dmo.org/dataset/506135/license (external link)
attribute NC_GLOBAL metadata_source String https://www.bco-dmo.org/api/dataset/506135 (external link)
attribute NC_GLOBAL param_mapping String {'506135': {}}
attribute NC_GLOBAL parameter_source String https://www.bco-dmo.org/mapserver/dataset/506135/parameters (external link)
attribute NC_GLOBAL people_0_affiliation String Texas A&M University
attribute NC_GLOBAL people_0_affiliation_acronym String TAMU
attribute NC_GLOBAL people_0_person_name String Daniel C.O. Thornton
attribute NC_GLOBAL people_0_person_nid String 51644
attribute NC_GLOBAL people_0_role String Principal Investigator
attribute NC_GLOBAL people_0_role_type String originator
attribute NC_GLOBAL people_1_affiliation String Woods Hole Oceanographic Institution
attribute NC_GLOBAL people_1_affiliation_acronym String WHOI BCO-DMO
attribute NC_GLOBAL people_1_person_name String Shannon Rauch
attribute NC_GLOBAL people_1_person_nid String 51498
attribute NC_GLOBAL people_1_role String BCO-DMO Data Manager
attribute NC_GLOBAL people_1_role_type String related
attribute NC_GLOBAL project String Diatom EPS Production
attribute NC_GLOBAL projects_0_acronym String Diatom EPS Production
attribute NC_GLOBAL projects_0_description String Description from NSF Propsoal:\nIt is necessary to determine the fate of organic matter in the ocean to understand marine food webs, biogeochemical cycles, and climate change. Diatoms fix approximately a quarter of the net global primary production each year, and a significant proportion of this production is excreted as extracellular polymeric substances (EPS). EPS have a profound impact on pelagic ecosystems by affecting the formation of aggregates. Diatoms and other particulate organic carbon (POC) sink rapidly as aggregates, affecting the biological carbon pump, which plays a pivotal role in the sequestration of carbon in the ocean. The proposed research will test the central hypothesis: Temperature increase affects diatom release of EPS, which act as a glue, increasing aggregation. Previous work by the investigator showed that increased temperatures affected the aggregation of Skeletonema costatum. Four specific hypotheses will be tested:\nH1: Diatoms produce more EPS with increasing temperature.\nH2: Diatoms produce more transparent exopolymer particles (TEP) with increasing temperature.\nH3: The quantity or composition of cell-surface carbohydrates in diatoms changes with temperature.\nH4: Aggregation of diatom cultures and natural plankton increases with temperature.\nLaboratory experiments (years 1 - 2) will be conducted with three model diatom species grown at controlled growth rates and defined limitation (nitrogen or light) in continuous culture. Culture temperature will be stepped up or down in small increments to determine the effect of the temperature change on EPS production, aggregation, and partitioning of carbon in intra- and extracellular pools. Similar experiments in year 3 will be carried out using natural plankton populations from a coastal site where diatoms contribute a significant proportion to the biomass.\nThe proposed research will increase our understanding of the ecology and physiology of one of the dominant groups of primary producers on Earth. EPS are a central aspect of diatom biology, though the physiology, function and broader ecosystem impacts of EPS production remain unknown. This research will determine how temperature, light limitation, and nutrient limitation affect the partitioning of production between dissolved, gel, and particulate phases in the ocean. Measurements of plankton stickiness (alpha) under different conditions will be important to model aggregation processes in the ocean as alpha is an important (and variable) term in coagulation models. Determining how carbon is cycled between the ocean, atmosphere and lithosphere is key to understanding climate change on both geological and human time scales. This is a major societal issue as atmospheric CO2 concentrations are steadily increasing, correlating with a 0.6 C rise in global average temperature during the last century. This research will address potential feedbacks between warming of the surface ocean, diatom ecophysiology and the biological carbon pump.\nRelated Publications:\nRzadkowolski, Charles E. and Thornton, Daniel C. O. (2012) Using laser scattering to identify diatoms and conduct aggregation experiments. Eur. J. Phycol., 47(1): 30-41. DOI: 10.1080/09670262.2011.646314\nThornton, Daniel C. O. (2009) Effect of Low pH on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri). Research Letters in Ecology, vol. 2009, Article ID 105901, 4 pages. DOI: 10.1155/2009/105901\nThornton, D.C.O. (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology 49: 20-46. DOI: 10.1080/09670262.2013.875596\nThornton, D.C.O., Visser, L.A. (2009) Measurement of acid polysaccharides (APS) associated with microphytobenthos in salt marsh sediments. Aquat Microb Ecol 54:185-198. DOI: 10.3354/ame01265
attribute NC_GLOBAL projects_0_end_date String 2012-08
attribute NC_GLOBAL projects_0_geolocation String O&M Building, Texas A&M University, College Station, TX 77840
attribute NC_GLOBAL projects_0_name String Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms
attribute NC_GLOBAL projects_0_project_nid String 2255
attribute NC_GLOBAL projects_0_start_date String 2007-09
attribute NC_GLOBAL publisher_name String Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
attribute NC_GLOBAL publisher_type String institution
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL standard_name_vocabulary String CF Standard Name Table v55
attribute NC_GLOBAL subsetVariables String cell_vol_n,TEP_n,vol_conc_n,agg_vol_conc_n
attribute NC_GLOBAL summary String Data from laboratory experiment on growth rate and transparent exopolymer particles (TEP) in the diatom Thalassiosira wessiflogii (CCMP 1051) in a semi-continuous culture (four replicate cultures).
attribute NC_GLOBAL title String [Thalassiosira wessiflogii growth rate and TEP] - Results from growth rate experiment with the diatom Thalassiosira wessiflogii in semi-continuous culture; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms)
attribute NC_GLOBAL version String 1
attribute NC_GLOBAL xml_source String osprey2erddap.update_xml() v1.3
variable day byte
attribute day _FillValue byte 127
attribute day actual_range byte 15, 123
attribute day bcodmo_name String unknown
attribute day description String Day of the experiment.
attribute day long_name String Day
attribute day units String dimensionless
variable dilution_rate String
attribute dilution_rate bcodmo_name String unknown
attribute dilution_rate description String Dilution rate.
attribute dilution_rate long_name String Dilution Rate
attribute dilution_rate units String per day (day-1)
variable culture String
attribute culture bcodmo_name String replicate
attribute culture description String Identifier of the culture replicate.
attribute culture long_name String Culture
attribute culture units String dimensionless
variable cell_abundance int
attribute cell_abundance _FillValue int 2147483647
attribute cell_abundance actual_range int 20100, 146000
attribute cell_abundance bcodmo_name String diatom
attribute cell_abundance description String Cell count. Counts of 400 cells were made by transmitted light microscopy using a hemacytometer (Fuchs-Rosenthal ruling Hauser Scientific) (Guillard & Sieracki 2005).
attribute cell_abundance long_name String Cell Abundance
attribute cell_abundance units String cells per milliliter
variable cell_vol_mean short
attribute cell_vol_mean _FillValue short 32767
attribute cell_vol_mean actual_range short 388, 1348
attribute cell_vol_mean bcodmo_name String unknown
attribute cell_vol_mean description String Mean cell volume estimated assuming T. weissflogii (CCMP 1051) was a cyclinder using the method of Menden-Deuer & Lessard (2000).
attribute cell_vol_mean long_name String Cell Vol Mean
attribute cell_vol_mean units String cubic micrometers (um^3)
variable cell_vol_sd short
attribute cell_vol_sd _FillValue short 32767
attribute cell_vol_sd actual_range short 81, 1176
attribute cell_vol_sd bcodmo_name String standard deviation
attribute cell_vol_sd colorBarMaximum double 50.0
attribute cell_vol_sd colorBarMinimum double 0.0
attribute cell_vol_sd description String Standard deviation of cell_vol_mean.
attribute cell_vol_sd long_name String Cell Vol Sd
attribute cell_vol_sd units String cubic micrometers (um^3)
variable cell_vol_n byte
attribute cell_vol_n _FillValue byte 127
attribute cell_vol_n actual_range byte 25, 25
attribute cell_vol_n bcodmo_name String number
attribute cell_vol_n description String n (number of cells) used in determination of cell_vol_mean.
attribute cell_vol_n long_name String Cell Vol N
attribute cell_vol_n units String dimensionless
variable chla float
attribute chla _FillValue float NaN
attribute chla actual_range float 12.0, 126.6
attribute chla bcodmo_name String chlorophyll a
attribute chla colorBarMaximum double 30.0
attribute chla colorBarMinimum double 0.03
attribute chla colorBarScale String Log
attribute chla description String Concentration of chlorophyll a measured by fluorescence (Arar & Collins 1997; Method 445.0. EPA).
attribute chla long_name String Concentration Of Chlorophyll In Sea Water
attribute chla nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/ (external link)
attribute chla units String micrograms per liter (ug L-1)
variable chla_per_cell float
attribute chla_per_cell _FillValue float NaN
attribute chla_per_cell actual_range float 0.51, 1.89
attribute chla_per_cell bcodmo_name String unknown
attribute chla_per_cell colorBarMaximum double 30.0
attribute chla_per_cell colorBarMinimum double 0.03
attribute chla_per_cell colorBarScale String Log
attribute chla_per_cell description String Concentration of chlorophyll a per cell.
attribute chla_per_cell long_name String Concentration Of Chlorophyll In Sea Water
attribute chla_per_cell units String picograms per cell (pg cell-1)
variable chla_per_cell_vol float
attribute chla_per_cell_vol _FillValue float NaN
attribute chla_per_cell_vol actual_range float 0.5, 2.65
attribute chla_per_cell_vol bcodmo_name String unknown
attribute chla_per_cell_vol colorBarMaximum double 30.0
attribute chla_per_cell_vol colorBarMinimum double 0.03
attribute chla_per_cell_vol colorBarScale String Log
attribute chla_per_cell_vol description String Concentration of chlorophyll a per cell volume.
attribute chla_per_cell_vol long_name String Concentration Of Chlorophyll In Sea Water
attribute chla_per_cell_vol units String femtograms per cubic micrometer (fg um-3)
variable tot_carb float
attribute tot_carb _FillValue float NaN
attribute tot_carb actual_range float 2.47, 13.83
attribute tot_carb bcodmo_name String unknown
attribute tot_carb description String Total carbohydrate concentration measured using the PSA method (Dubois et al. 1956).
attribute tot_carb long_name String Tot Carb
attribute tot_carb units String micrograms per milliliter (ug mL-1)
variable tot_carb_per_cell short
attribute tot_carb_per_cell _FillValue short 32767
attribute tot_carb_per_cell actual_range short 49, 197
attribute tot_carb_per_cell bcodmo_name String unknown
attribute tot_carb_per_cell description String Total carbohydrate concentration per cell.
attribute tot_carb_per_cell long_name String Tot Carb Per Cell
attribute tot_carb_per_cell units String picograms per cell (pg cell-1)
variable tot_carb_per_cell_vol short
attribute tot_carb_per_cell_vol _FillValue short 32767
attribute tot_carb_per_cell_vol actual_range short 57, 237
attribute tot_carb_per_cell_vol bcodmo_name String unknown
attribute tot_carb_per_cell_vol description String Total carbohydrate concentration per cell volume.
attribute tot_carb_per_cell_vol long_name String Tot Carb Per Cell Vol
attribute tot_carb_per_cell_vol units String femtograms per cubic micrometer (fg um-3)
variable TEP int
attribute TEP _FillValue int 2147483647
attribute TEP actual_range int 152800, 504800
attribute TEP bcodmo_name String unknown
attribute TEP description String Transparent exopolymer particles (TEP) retained on 0.4 polycarbonate filters and stained with Alcian blue (Alldredge et al. 1993).
attribute TEP long_name String TEP
attribute TEP units String TEP per milliliter (TEP mL-1)
variable TEP_mean_size short
attribute TEP_mean_size _FillValue short 32767
attribute TEP_mean_size actual_range short 701, 2465
attribute TEP_mean_size bcodmo_name String unknown
attribute TEP_mean_size description String Mean size of Transparent exopolymer particles (TEP).
attribute TEP_mean_size long_name String TEP Mean Size
attribute TEP_mean_size units String square micrometers (um^2)
variable TEP_sd short
attribute TEP_sd _FillValue short 32767
attribute TEP_sd actual_range short 286, 1443
attribute TEP_sd bcodmo_name String standard deviation
attribute TEP_sd colorBarMaximum double 50.0
attribute TEP_sd colorBarMinimum double 0.0
attribute TEP_sd description String Standard deviation of TEP_mean_size.
attribute TEP_sd long_name String TEP Sd
attribute TEP_sd units String square micrometers (um^2)
variable TEP_n byte
attribute TEP_n _FillValue byte 127
attribute TEP_n actual_range byte 25, 25
attribute TEP_n bcodmo_name String number
attribute TEP_n description String n used in determination of TEP_mean_size.
attribute TEP_n long_name String TEP N
attribute TEP_n units String dimensionless
variable tot_TEP_area short
attribute tot_TEP_area _FillValue short 32767
attribute tot_TEP_area actual_range short 231, 604
attribute tot_TEP_area bcodmo_name String unknown
attribute tot_TEP_area description String Total TEP area.
attribute tot_TEP_area long_name String Tot TEP Area
attribute tot_TEP_area units String square millimeters per milliliter (mm^2 mL-1)
variable TEP_prod_rate short
attribute TEP_prod_rate _FillValue short 32767
attribute TEP_prod_rate actual_range short 64, 330
attribute TEP_prod_rate bcodmo_name String unknown
attribute TEP_prod_rate description String TEP production rate.
attribute TEP_prod_rate long_name String TEP Prod Rate
attribute TEP_prod_rate units String square millimeters per milliliter per day  (mm^2 mL-1 day-1)
variable vol_conc short
attribute vol_conc _FillValue short 32767
attribute vol_conc actual_range short 49, 393
attribute vol_conc bcodmo_name String unknown
attribute vol_conc description String Particulate volume concentration. Volume concentration and aggegation were measured using Laser in situ sacattering and transmissometry (LISST) (Rzadkowolski & Thornton 2012).
attribute vol_conc long_name String Vol Conc
attribute vol_conc units String microliters per liter (uL L-1)
variable vol_conc_sd short
attribute vol_conc_sd _FillValue short 32767
attribute vol_conc_sd actual_range short 3, 193
attribute vol_conc_sd bcodmo_name String standard deviation
attribute vol_conc_sd colorBarMaximum double 50.0
attribute vol_conc_sd colorBarMinimum double 0.0
attribute vol_conc_sd description String Standard deviation of vol_conc.
attribute vol_conc_sd long_name String Vol Conc Sd
attribute vol_conc_sd units String microliters per liter (uL L-1)
variable vol_conc_n byte
attribute vol_conc_n _FillValue byte 127
attribute vol_conc_n actual_range byte 100, 100
attribute vol_conc_n bcodmo_name String number
attribute vol_conc_n description String n used in determination of vol_conc.
attribute vol_conc_n long_name String Vol Conc N
attribute vol_conc_n units String dimensionless
variable agg_vol_conc short
attribute agg_vol_conc _FillValue short 32767
attribute agg_vol_conc actual_range short 15, 225
attribute agg_vol_conc bcodmo_name String unknown
attribute agg_vol_conc description String Aggregated volume concentration (particles > 63 um ESD). Particulate volume concentration and aggegation were measured using Laser in situ sacattering and transmissometry (LISST) (Rzadkowolski & Thornton 2012).
attribute agg_vol_conc long_name String Agg Vol Conc
attribute agg_vol_conc units String microliters per liter (uL L-1)
variable agg_vol_conc_sd byte
attribute agg_vol_conc_sd _FillValue byte 127
attribute agg_vol_conc_sd actual_range byte 3, 48
attribute agg_vol_conc_sd bcodmo_name String standard deviation
attribute agg_vol_conc_sd colorBarMaximum double 50.0
attribute agg_vol_conc_sd colorBarMinimum double 0.0
attribute agg_vol_conc_sd description String Standard deviation of agg_vol_conc.
attribute agg_vol_conc_sd long_name String Agg Vol Conc Sd
attribute agg_vol_conc_sd units String microliters per liter (uL L-1)
variable agg_vol_conc_n byte
attribute agg_vol_conc_n _FillValue byte 127
attribute agg_vol_conc_n actual_range byte 100, 100
attribute agg_vol_conc_n bcodmo_name String number
attribute agg_vol_conc_n description String n used in determination of agg_vol_conc.
attribute agg_vol_conc_n long_name String Agg Vol Conc N
attribute agg_vol_conc_n units String dimensionless
variable stained_cells short
attribute stained_cells _FillValue short 32767
attribute stained_cells actual_range short 64, 4660
attribute stained_cells bcodmo_name String unknown
attribute stained_cells description String Number of SYTOX Green stained cells. Cell permeability was determined by SYTOX Green staining (Veldhuis et al. 1997). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated.
attribute stained_cells long_name String Stained Cells
attribute stained_cells units String cells per milliliter (cells mL-1)
variable stained_cells_pcnt float
attribute stained_cells_pcnt _FillValue float NaN
attribute stained_cells_pcnt actual_range float 0.2, 3.6
attribute stained_cells_pcnt bcodmo_name String unknown
attribute stained_cells_pcnt description String % of SYTOX Green stained cells. Cell permeability was determined by SYTOX Green staining (Veldhuis et al. 1997). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated.
attribute stained_cells_pcnt long_name String Stained Cells Pcnt
attribute stained_cells_pcnt units String percent (%)
variable bacteria int
attribute bacteria _FillValue int 2147483647
attribute bacteria actual_range int 9284, 2668932
attribute bacteria bcodmo_name String bact_abundance
attribute bacteria description String Bacteria abundance determined by DAPI staining and counts using an epifluorescence microscope (Porter & Feig 1980).
attribute bacteria long_name String Bacteria
attribute bacteria nerc_identifier String https://vocab.nerc.ac.uk/collection/P02/current/BNTX (external link)
attribute bacteria units String cells per milliliter (cells mL-1)
variable bact_per_diatom float
attribute bact_per_diatom _FillValue float NaN
attribute bact_per_diatom actual_range float 0.3, 21.1
attribute bact_per_diatom bcodmo_name String unknown
attribute bact_per_diatom description String Bacteria abundance per diatom.
attribute bact_per_diatom long_name String Bact Per Diatom
attribute bact_per_diatom units String dimensionless
variable C_to_N float
attribute C_to_N _FillValue float NaN
attribute C_to_N actual_range float 8.1, 18.8
attribute C_to_N bcodmo_name String C_to_N
attribute C_to_N description String Ratio of carbon to nitrogen. C:N ratio was measured using a Carlo Erba NA1500 Elemental Analyzer. Standards were acetanilide, methionine, graphite (USGS 24, USGS 40, and USGS 41) (Verardo, Froelich, & McIntyre 1990).
attribute C_to_N long_name String C To N
attribute C_to_N units String dimensionless

 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact