BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | access_formats | String | .htmlTable,.csv,.json,.mat,.nc,.tsv |
attribute | NC_GLOBAL | acquisition_description | String | Growth of the phytoplankton \n The diatom Thalassiosira wessiflogii (CCMP 1051) and the cyanobacterium\nSynechococcus elongates_cf (CCMP 1379) were obtained from the National Center\nfor Culture of Marine Algae and Microbiota (NCMA). Replicated (n = 3) Batch\ncultures were grown in artificial seawater (Berges et al. 2001) containing\nnitrogen, phosphorus and silicon at 400 \\u00b5M (as NaNO3), 25 \\u00b5M\n(NaH2PO4), and 400 \\u00b5M (Na2SiO3), respectively. Culture temperatures were\nmaintained at 20 \\u00b1 1 \\u00b0C. Photon flux density on the surface of the\nculture bottles was 40 to 45 \\u00b5mol m-2 s-1 on a 14 hour light: 10 hour\ndark cycle. During exponential growth, each culture was split into three\ntreatments in which oxidative stress was induced by the addition of hydrogen\nperoxide at final concentrations of 0 (control), 10 and 100 \\u00b5M H2O2. The\ntreatments were sampled once a day over the next three days.\n \nMeasures of phytoplankton abundance and biomass \n Counts of 400 cells from each culture were made using hemocytometers\n(Guillard and Sieracki 2005) from samples preserved in Lugol\\u2019s iodine\n(Parsons et al. 1984) using a light microscope (Axioplan 2, Carl Zeiss\nMicroImaging). Turbidity of the cultures, used as an indicator of growth, was\nmeasured by absorbance at 750 nm in a 1 cm path cuvette using a UV-Mini 1240\nspectrophotometer (Shimadzu Corporation).\n \nChlorophyll a concentration 90% acetone extractions from biomass retained on\nGF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was\ncalibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997). The\nextract was diluted with 90% acetone if the chl a concentration were too high.\n \nCell permeability \n Uptake and staining with the membrane-impermeable SYTOX Green (Invitrogen)\nwas used to determine what proportion of the diatom population had permeable\ncell membranes (Veldhuis et al. 2001, Franklin et al. 2012). Four hundred\ncells were examined using an epifluorescence microscope (Axioplan 2, Carl\nZeiss MicroImaging) and the number of cells that stained with SYTOX Green was\nenumerated.\n \nTEP staining and analysis \n Transparent exopolymer particles (TEP) were sampled according to Alldredge\net al. (1993) and TEP abundance was enumerated by image analysis (Logan et al.\n1994, Engel 2009). Ten photomicrographs were taken of each slide using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Images were analyzed using\nImageJ software (National Institutes of Health) based on the method of Engel\n(2009). Thresholding during image processing was done using the triangle\nmethod (Zack et al. 1977).\n \nCSP staining and analysis \n Coomassie staining particles (CSP) were sampled according to Long and Azam\net al. (1996) and CSP abundance was enumerated by image analysis (Logan et al.\n1994, Engel 2009). Ten photomicrographs were taken of each slide using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Images were analyzed using\nImageJ software (National Institutes of Health) based on the method of Engel\n(2009). Thresholding during image processing was done using the triangle\nmethod (Zack et al. 1977).\n \nQuantum yield of photosystem II \n The quantum yield of photosystem II was used as an indicator of\nphytoplankton health and measured using the saturating pulse method (Genty et\nal. 1989) using a pulse amplitude modulated fluorometer (PAM-210, Heinz Walz\nGmbH) folowing a protocol based on Marwood et al. (1999).\n \nCaspase-like activity \n Caspase-like activity was measured based on the method of Bouchard & Purdie\n(2011). Phytoplankton were collected by centrifugation, then lysed in a\nbuffer, and the caspase-3 like activity was measured in the extracted proteins\nusing a Enzcheck Caspase-3 Assay Kit #1 (Invitrogen inc.). The fluorescent\nproduct was measured by fluorescence using a microplate reader (SPECTRAmax\nGeminiEM, Molecular Devices).\n \nReferences cited \n Alldredge, A. L., Passow, U. & Logan B. E. 1993. The abundance and\nsignificance of a class of large, transparent organic particles in the ocean.\nDeep-Sea Res. Oceanogr., I. 40: 1131-1140.\ndoi:[10.1016/0967-0637(93)90129-Q](\\\\\"https://dx.doi.org/10.1016/0967-0637%2893%2990129-Q\\\\\")\n \nArar, E. J. & Collins, G. B. 1997. Method 445.0. In Vitro Determination of\nChlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence\nU.S. Environmental Protection Agency, Cincinnati, Ohio.\n \nBerges, J. A., Franklin D. J. & Harrison, P. J. 2001. Evolution of an\nartificial seawater medium: Improvements in enriched seawater, artificial\nwater over the last two decades. J. Phycol. 37:1138-1145.\ndoi:[10.1046/j.1529-8817.2001.01052.x](\\\\\"https://dx.doi.org/10.1046/j.1529-8817.2001.01052.x\\\\\")\n \nBouchard, J. N., Purdie, D. A. 2011. Effect of elevated temperature, darkness,\nand hydrogen peroxide treatment on oxidative stress and cell death in the\nbloom-forming toxic cyanobacterium Microcystis aeruginosa. J. Phycol., 47(6),\n1316-1325.\ndoi:[10.1111/j.1529-8817.2011.01074.x](\\\\\"https://dx.doi.org/10.1111/j.1529-8817.2011.01074.x\\\\\")\n \nEngel, A. 2009. Determination of Marine Gel Particles. In Wurl, O. [Ed.]\nPractical Guidelines for the Analysis of Seawater. CRC Press, Taylor & Francis\nGroup, Boca Raton, Florida, pp.125-142.\n \nFranklin, D. J., Airs, R. L., Fernandes, M., Bell, T. G., Bongaerts, R. J.,\nBerges, J. A. & Malin, G. 2012. Identification of senescence and death in\nEmiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll\nalterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol.\nOceanogr. 57: 305\\u2013317. doi:10.4319/lo.2012.57.1.0305\n \nGenty, B., Briantais, J. M., Baker N. R. 1989. The relationship between the\nquantum yield of photosynthetic electron-transport and quenching of\nchlorophyll fluorescence, Biochimica et Biophysica Acta, 990(1), 87-92.\ndoi:[10.1016/S0304-4165(89)80016-9](\\\\\"https://dx.doi.org/10.1016/S0304-4165\\(89\\)80016-9\\\\\")\n \nGuillard, R. R. L. & Sieracki, M. S. 2005. Counting cells in cultures with the\nlight microscope. In Andersen R. A. [Ed.] Algal Culturing Techniques. Elsevier\nAcademic Press, Burlington, MA, pp. 239-252.\n \nLogan, B. E., Grossart, H. P. & Simon, M. 1994. Direct observation of\nphytoplankton, TEP and aggregates on polycarbonate filters using brightfield\nmicroscopy. J. Plankton Res.16:\n1811-1815.doi:[10.1093/plankt/16.12.1811](\\\\\"https://dx.doi.org/10.1093/plankt/16.12.1811\\\\\")\n \nMarwood, C. A., Smith, R. E. H., Soloman, K. R., Charlton, M. N., Greenberg,\nB. M. 1999. Intact and photomodified polycyclic aromatic hydrocarbons inhibit\nphotosynthesis in natural assemblages of Lake Erie phytoplankton exposed to\nsolar radiation. Ecotox Environ Safe 44:322-327.\ndoi:[10.1006/eesa.1999.1840](\\\\\"https://dx.doi.org/10.1006/eesa.1999.1840\\\\\")\n \nParsons, T. R., Maita, Y. & Lalli, C. M. 1984. A Manual of Chemical and\nBiological Methods for Seawater Analysis. Pergamon Press, Oxford, UK.\n \nPassow, U. & Alldredge, A. L. 1995. A dye-binding assay for the\nspectrophotometric measurement of transparent exopolymer particles (TEP).\nLimnol. Oceanogr. 40: 1326-1335.\ndoi:[10.4319/lo.1995.40.7.1326](\\\\\"https://dx.doi.org/10.4319/lo.1995.40.7.1326\\\\\")\n \nVeldhuis, M. J. W., Kraay, G. W. & Timmermans, K. R. 2001. Cell death in\nphytoplankton: correlation between changes in membrane permeability,\nphotosynthetic activity, pigmentation and growth. Eur. J. Phycol. 36:\n167\\u2013177.\ndoi:[10.1080/09670260110001735318](\\\\\"https://dx.doi.org/10.1080/09670260110001735318\\\\\")\n \nZack, G. W., Rogers, W.E., Latt S. A. 1977. Automatic-measurement of sister\nchromatid exchange frequency, J. Histochem. Cytochem., 25(7), 741-753.\ndoi:[10.1177/25.7.70454](\\\\\"https://dx.doi.org/10.1177/25.7.70454\\\\\") |
attribute | NC_GLOBAL | awards_0_award_nid | String | 55158 |
attribute | NC_GLOBAL | awards_0_award_number | String | OCE-0726369 |
attribute | NC_GLOBAL | awards_0_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0726369 |
attribute | NC_GLOBAL | awards_0_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_0_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_0_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_0_program_manager | String | David L. Garrison |
attribute | NC_GLOBAL | awards_0_program_manager_nid | String | 50534 |
attribute | NC_GLOBAL | cdm_data_type | String | Other |
attribute | NC_GLOBAL | comment | String | TEP production under oxidative stress \n PI: Daniel C.O. Thornton (Texas A&M) \n Version: 15 April 2014 |
attribute | NC_GLOBAL | Conventions | String | COARDS, CF-1.6, ACDD-1.3 |
attribute | NC_GLOBAL | creator_email | String | info at bco-dmo.org |
attribute | NC_GLOBAL | creator_name | String | BCO-DMO |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | creator_url | String | https://www.bco-dmo.org/ |
attribute | NC_GLOBAL | data_source | String | extract_data_as_tsv version 2.3 19 Dec 2019 |
attribute | NC_GLOBAL | date_created | String | 2014-04-15T14:57:24Z |
attribute | NC_GLOBAL | date_modified | String | 2019-11-21T17:52:15Z |
attribute | NC_GLOBAL | defaultDataQuery | String | &time<now |
attribute | NC_GLOBAL | doi | String | 10.1575/1912/bco-dmo.511217.1 |
attribute | NC_GLOBAL | infoUrl | String | https://www.bco-dmo.org/dataset/511217 |
attribute | NC_GLOBAL | institution | String | BCO-DMO |
attribute | NC_GLOBAL | instruments_0_acronym | String | Fluorometer |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_description | String | The quantum yield of photosystem II was measured using the saturating pulse method (Genty et al. 1989) using a pulse amplitude modulated fluorometer (PAM-210, Heinz Walz GmbH). |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_nid | String | 511359 |
attribute | NC_GLOBAL | instruments_0_description | String | A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ. |
attribute | NC_GLOBAL | instruments_0_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/113/ |
attribute | NC_GLOBAL | instruments_0_instrument_name | String | Fluorometer |
attribute | NC_GLOBAL | instruments_0_instrument_nid | String | 484 |
attribute | NC_GLOBAL | instruments_0_supplied_name | String | Pulse Amplitude Modulated Fluorometer |
attribute | NC_GLOBAL | instruments_1_acronym | String | UV Spectrophotometer-Shimadzu |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_description | String | Turbidity of the cultures was measured by absorbance at 750 nm in a 1 cm path cuvette using a UV-Mini 1240 Spectrophotometer (Shimadzu Corporation). |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_nid | String | 511356 |
attribute | NC_GLOBAL | instruments_1_description | String | The Shimadzu UV Spectrophotometer is manufactured by Shimadzu Scientific Instruments (ssi.shimadzu.com). Shimadzu manufacturers several models of spectrophotometer; refer to dataset for make/model information. |
attribute | NC_GLOBAL | instruments_1_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB20/ |
attribute | NC_GLOBAL | instruments_1_instrument_name | String | UV Spectrophotometer-Shimadzu |
attribute | NC_GLOBAL | instruments_1_instrument_nid | String | 595 |
attribute | NC_GLOBAL | instruments_1_supplied_name | String | UV-Mini 1240 Spectrophotometer |
attribute | NC_GLOBAL | instruments_2_acronym | String | TD-700 |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_description | String | Chlorophyll a concentration 90% acetone extractions from biomass retained on GF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was calibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997). |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_nid | String | 511357 |
attribute | NC_GLOBAL | instruments_2_description | String | The TD-700 Laboratory Fluorometer is a benchtop fluorometer designed to detect fluorescence over the UV to red range. The instrument can measure concentrations of a variety of compounds, including chlorophyll-a and fluorescent dyes, and is thus suitable for a range of applications, including chlorophyll, water quality monitoring and fluorescent tracer studies. Data can be output as concentrations or raw fluorescence measurements. |
attribute | NC_GLOBAL | instruments_2_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L22/current/TOOL0510/ |
attribute | NC_GLOBAL | instruments_2_instrument_name | String | Turner Designs 700 Laboratory Fluorometer |
attribute | NC_GLOBAL | instruments_2_instrument_nid | String | 694 |
attribute | NC_GLOBAL | instruments_2_supplied_name | String | Turner Designs 700 Fluorometer |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_description | String | Cell permeability was determined using an epifluorescence microscope (Axioplan 2, Carl Zeiss MicroImaging). |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_nid | String | 511358 |
attribute | NC_GLOBAL | instruments_3_description | String | Instruments that generate enlarged images of samples using the phenomena of fluorescence and phosphorescence instead of, or in addition to, reflection and absorption of visible light. Includes conventional and inverted instruments. |
attribute | NC_GLOBAL | instruments_3_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB06/ |
attribute | NC_GLOBAL | instruments_3_instrument_name | String | Microscope-Fluorescence |
attribute | NC_GLOBAL | instruments_3_instrument_nid | String | 695 |
attribute | NC_GLOBAL | instruments_3_supplied_name | String | Epifluorescence Microscope |
attribute | NC_GLOBAL | instruments_4_acronym | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_description | String | Counts of 400 cells from each culture were made using hemocytometers (Guillard and Sieracki 2005) from samples preserved in Lugol’s iodine (Parsons et al. 1984) using a light microscope. |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_nid | String | 511354 |
attribute | NC_GLOBAL | instruments_4_description | String | A hemocytometer is a small glass chamber, resembling a thick microscope slide, used for determining the number of cells per unit volume of a suspension. Originally used for performing blood cell counts, a hemocytometer can be used to count a variety of cell types in the laboratory. Also spelled as \"haemocytometer\". Description from:\nhttp://hlsweb.dmu.ac.uk/ahs/elearning/RITA/Haem1/Haem1.html. |
attribute | NC_GLOBAL | instruments_4_instrument_name | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_4_instrument_nid | String | 704 |
attribute | NC_GLOBAL | instruments_4_supplied_name | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_5_dataset_instrument_description | String | Counts of 400 cells from each culture were made using hemocytometers (Guillard and Sieracki 2005) from samples preserved in Lugol’s iodine (Parsons et al. 1984) using a light microscope (Axioplan 2, Carl Zeiss MicroImaging). A light microscope (Axioplan 2, Carl Zeiss MicroImaging) was also used to enumerate TEP and CSP by image analysis. |
attribute | NC_GLOBAL | instruments_5_dataset_instrument_nid | String | 511355 |
attribute | NC_GLOBAL | instruments_5_description | String | Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a \"light microscope\". |
attribute | NC_GLOBAL | instruments_5_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ |
attribute | NC_GLOBAL | instruments_5_instrument_name | String | Microscope-Optical |
attribute | NC_GLOBAL | instruments_5_instrument_nid | String | 708 |
attribute | NC_GLOBAL | instruments_5_supplied_name | String | Light Microscope |
attribute | NC_GLOBAL | keywords | String | abund, activity, bco, bco-dmo, biological, caspase, caspase_like_activity, cell, cell_conc, cells, chemical, chemistry, chla, chlorophyll, chlorophyll-a, conc, concentration, concentration_of_chlorophyll_in_sea_water, csp, CSP_abund, CSP_conc, CSP_per_chla, data, dataset, day, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, erddap, H2O2, like, management, O2, ocean, oceanography, oceans, office, oxygen, pcnt, preliminary, psii, science, sea, seawater, species, stained, stained_cells_pcnt, tep, TEP_abund, TEP_conc, TEP_per_chla, turbidity, water |
attribute | NC_GLOBAL | keywords_vocabulary | String | GCMD Science Keywords |
attribute | NC_GLOBAL | license | String | https://www.bco-dmo.org/dataset/511217/license |
attribute | NC_GLOBAL | metadata_source | String | https://www.bco-dmo.org/api/dataset/511217 |
attribute | NC_GLOBAL | param_mapping | String | {'511217': {}} |
attribute | NC_GLOBAL | parameter_source | String | https://www.bco-dmo.org/mapserver/dataset/511217/parameters |
attribute | NC_GLOBAL | people_0_affiliation | String | Texas A&M University |
attribute | NC_GLOBAL | people_0_affiliation_acronym | String | TAMU |
attribute | NC_GLOBAL | people_0_person_name | String | Daniel C.O. Thornton |
attribute | NC_GLOBAL | people_0_person_nid | String | 51644 |
attribute | NC_GLOBAL | people_0_role | String | Principal Investigator |
attribute | NC_GLOBAL | people_0_role_type | String | originator |
attribute | NC_GLOBAL | people_1_affiliation | String | Woods Hole Oceanographic Institution |
attribute | NC_GLOBAL | people_1_affiliation_acronym | String | WHOI BCO-DMO |
attribute | NC_GLOBAL | people_1_person_name | String | Shannon Rauch |
attribute | NC_GLOBAL | people_1_person_nid | String | 51498 |
attribute | NC_GLOBAL | people_1_role | String | BCO-DMO Data Manager |
attribute | NC_GLOBAL | people_1_role_type | String | related |
attribute | NC_GLOBAL | project | String | Diatom EPS Production |
attribute | NC_GLOBAL | projects_0_acronym | String | Diatom EPS Production |
attribute | NC_GLOBAL | projects_0_description | String | Description from NSF Propsoal:\nIt is necessary to determine the fate of organic matter in the ocean to understand marine food webs, biogeochemical cycles, and climate change. Diatoms fix approximately a quarter of the net global primary production each year, and a significant proportion of this production is excreted as extracellular polymeric substances (EPS). EPS have a profound impact on pelagic ecosystems by affecting the formation of aggregates. Diatoms and other particulate organic carbon (POC) sink rapidly as aggregates, affecting the biological carbon pump, which plays a pivotal role in the sequestration of carbon in the ocean. The proposed research will test the central hypothesis: Temperature increase affects diatom release of EPS, which act as a glue, increasing aggregation. Previous work by the investigator showed that increased temperatures affected the aggregation of Skeletonema costatum. Four specific hypotheses will be tested:\nH1: Diatoms produce more EPS with increasing temperature.\nH2: Diatoms produce more transparent exopolymer particles (TEP) with increasing temperature.\nH3: The quantity or composition of cell-surface carbohydrates in diatoms changes with temperature.\nH4: Aggregation of diatom cultures and natural plankton increases with temperature.\nLaboratory experiments (years 1 - 2) will be conducted with three model diatom species grown at controlled growth rates and defined limitation (nitrogen or light) in continuous culture. Culture temperature will be stepped up or down in small increments to determine the effect of the temperature change on EPS production, aggregation, and partitioning of carbon in intra- and extracellular pools. Similar experiments in year 3 will be carried out using natural plankton populations from a coastal site where diatoms contribute a significant proportion to the biomass.\nThe proposed research will increase our understanding of the ecology and physiology of one of the dominant groups of primary producers on Earth. EPS are a central aspect of diatom biology, though the physiology, function and broader ecosystem impacts of EPS production remain unknown. This research will determine how temperature, light limitation, and nutrient limitation affect the partitioning of production between dissolved, gel, and particulate phases in the ocean. Measurements of plankton stickiness (alpha) under different conditions will be important to model aggregation processes in the ocean as alpha is an important (and variable) term in coagulation models. Determining how carbon is cycled between the ocean, atmosphere and lithosphere is key to understanding climate change on both geological and human time scales. This is a major societal issue as atmospheric CO2 concentrations are steadily increasing, correlating with a 0.6 C rise in global average temperature during the last century. This research will address potential feedbacks between warming of the surface ocean, diatom ecophysiology and the biological carbon pump.\nRelated Publications:\nRzadkowolski, Charles E. and Thornton, Daniel C. O. (2012) Using laser scattering to identify diatoms and conduct aggregation experiments. Eur. J. Phycol., 47(1): 30-41. DOI: 10.1080/09670262.2011.646314\nThornton, Daniel C. O. (2009) Effect of Low pH on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri). Research Letters in Ecology, vol. 2009, Article ID 105901, 4 pages. DOI: 10.1155/2009/105901\nThornton, D.C.O. (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology 49: 20-46. DOI: 10.1080/09670262.2013.875596\nThornton, D.C.O., Visser, L.A. (2009) Measurement of acid polysaccharides (APS) associated with microphytobenthos in salt marsh sediments. Aquat Microb Ecol 54:185-198. DOI: 10.3354/ame01265 |
attribute | NC_GLOBAL | projects_0_end_date | String | 2012-08 |
attribute | NC_GLOBAL | projects_0_geolocation | String | O&M Building, Texas A&M University, College Station, TX 77840 |
attribute | NC_GLOBAL | projects_0_name | String | Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms |
attribute | NC_GLOBAL | projects_0_project_nid | String | 2255 |
attribute | NC_GLOBAL | projects_0_start_date | String | 2007-09 |
attribute | NC_GLOBAL | publisher_name | String | Biological and Chemical Oceanographic Data Management Office (BCO-DMO) |
attribute | NC_GLOBAL | publisher_type | String | institution |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v55 |
attribute | NC_GLOBAL | summary | String | Data from laboratory experiment on exopolymer production by the diatom Thalassiosira wessiflogii (CCMP 1051) and the cyanobacterium Synechococcus elongates_cf (CCMP 1379) under conditions of oxidative stress. |
attribute | NC_GLOBAL | title | String | [oxidative stress TEP] - Experimental results: Exopolymer production by phytoplankton under oxidative stress; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms) |
attribute | NC_GLOBAL | version | String | 1 |
attribute | NC_GLOBAL | xml_source | String | osprey2erddap.update_xml() v1.3 |
variable | species | String | ||
attribute | species | bcodmo_name | String | species |
attribute | species | description | String | Species name. |
attribute | species | long_name | String | Species |
attribute | species | units | String | dimensionless |
variable | day | byte | ||
attribute | day | _FillValue | byte | 127 |
attribute | day | actual_range | byte | 0, 3 |
attribute | day | bcodmo_name | String | day |
attribute | day | description | String | Day of the experiment. |
attribute | day | long_name | String | Day |
attribute | day | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/DAYXXXXX/ |
attribute | day | units | String | dimensionless |
variable | H2O2 | byte | ||
attribute | H2O2 | _FillValue | byte | 127 |
attribute | H2O2 | actual_range | byte | 0, 100 |
attribute | H2O2 | bcodmo_name | String | Hydrogen Peroxide |
attribute | H2O2 | description | String | Hydrogen peroxide concentration. |
attribute | H2O2 | long_name | String | H2 O2 |
attribute | H2O2 | units | String | micromolar (uM) |
variable | turbidity | float | ||
attribute | turbidity | _FillValue | float | NaN |
attribute | turbidity | actual_range | float | 0.0302, 0.1368 |
attribute | turbidity | bcodmo_name | String | turbidity |
attribute | turbidity | description | String | Turbidity of the cultures measured by absorbance at 750 nm in a 1 cm path cuvette using a spectrophotometer. |
attribute | turbidity | long_name | String | Turbidity |
attribute | turbidity | units | String | NTU |
variable | cell_conc | int | ||
attribute | cell_conc | _FillValue | int | 2147483647 |
attribute | cell_conc | actual_range | int | 68800, 7510000 |
attribute | cell_conc | bcodmo_name | String | unknown |
attribute | cell_conc | description | String | Cell concentration. Counts of 400 cells were made by transmitted light microscopy using a hemacytometer (Fuchs-Rosenthal ruling Hauser Scientific) (Guillard & Sieracki 2005). |
attribute | cell_conc | long_name | String | Cell Conc |
attribute | cell_conc | units | String | cells per milliliter (cells mL-1) |
variable | chla | float | ||
attribute | chla | _FillValue | float | NaN |
attribute | chla | actual_range | float | 144.0, 491.67 |
attribute | chla | bcodmo_name | String | chlorophyll a |
attribute | chla | colorBarMaximum | double | 30.0 |
attribute | chla | colorBarMinimum | double | 0.03 |
attribute | chla | colorBarScale | String | Log |
attribute | chla | description | String | Chlorophyll a measured by fluorescence (Arar & Collins 1997; Method 445.0. EPA). |
attribute | chla | long_name | String | Concentration Of Chlorophyll In Sea Water |
attribute | chla | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/ |
attribute | chla | units | String | micrograms per liter (ug L-1) |
variable | PSII | float | ||
attribute | PSII | _FillValue | float | NaN |
attribute | PSII | actual_range | float | 0.2, 0.7 |
attribute | PSII | bcodmo_name | String | unknown |
attribute | PSII | description | String | Quantum yield of photosystem II measured after Marwood et al. (1999) using pulse amplitude modulated chlorophyll fluorometer. |
attribute | PSII | long_name | String | PSII |
attribute | PSII | units | String | quantum yield of photosystem II |
variable | caspase_like_activity | float | ||
attribute | caspase_like_activity | _FillValue | float | NaN |
attribute | caspase_like_activity | actual_range | float | 79.445, 1787.544 |
attribute | caspase_like_activity | bcodmo_name | String | unknown |
attribute | caspase_like_activity | description | String | Caspase-like activity was measured after Bouchard & Purdie (2011). |
attribute | caspase_like_activity | long_name | String | Caspase Like Activity |
attribute | caspase_like_activity | units | String | relative fluorescence units per milligrams protein per hour (RFU mg protein-1 h-1) |
variable | stained_cells_pcnt | float | ||
attribute | stained_cells_pcnt | _FillValue | float | NaN |
attribute | stained_cells_pcnt | actual_range | float | 1.0, 80.25 |
attribute | stained_cells_pcnt | bcodmo_name | String | unknown |
attribute | stained_cells_pcnt | description | String | % of SYTOX Green stained cells. Uptake and staining with the membrane-impermeable SYTOX Green (Invitrogen) was used to determine what proportion of the diatom population had permeable cell membranes (Veldhuis et al. 2001; Franklin et al. 2012). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated. |
attribute | stained_cells_pcnt | long_name | String | Stained Cells Pcnt |
attribute | stained_cells_pcnt | units | String | percent (%) |
variable | TEP_conc | int | ||
attribute | TEP_conc | _FillValue | int | 2147483647 |
attribute | TEP_conc | actual_range | int | 124295402, 769625835 |
attribute | TEP_conc | bcodmo_name | String | unknown |
attribute | TEP_conc | description | String | Transparent exopolymer particles (TEP) concentration. TEP retained on 0.4 polycarbonate filters and stained with Alcian blue (Alldredge et al. 1993). |
attribute | TEP_conc | long_name | String | TEP Conc |
attribute | TEP_conc | units | String | micrometers TEP per milliliter (um2 mL-1) |
variable | TEP_abund | int | ||
attribute | TEP_abund | _FillValue | int | 2147483647 |
attribute | TEP_abund | actual_range | int | 485361, 1827594 |
attribute | TEP_abund | bcodmo_name | String | unknown |
attribute | TEP_abund | description | String | Transparent exopolymer particles (TEP) abundance. TEP retained on 0.4 polycarbonate filters and stained with Alcian blue (Alldredge et al. 1993). |
attribute | TEP_abund | long_name | String | TEP Abund |
attribute | TEP_abund | units | String | TEP per milliliter (mL-1) |
variable | TEP_per_chla | float | ||
attribute | TEP_per_chla | _FillValue | float | NaN |
attribute | TEP_per_chla | actual_range | float | 4.85361E-7, 2.39 |
attribute | TEP_per_chla | bcodmo_name | String | unknown |
attribute | TEP_per_chla | colorBarMaximum | double | 30.0 |
attribute | TEP_per_chla | colorBarMinimum | double | 0.03 |
attribute | TEP_per_chla | colorBarScale | String | Log |
attribute | TEP_per_chla | description | String | Transparent exopolymer particles (TEP) per chlorophyll a. |
attribute | TEP_per_chla | long_name | String | Concentration Of Chlorophyll In Sea Water |
attribute | TEP_per_chla | units | String | square millimeters of TEP per nanogram of chla (mm2 (ng chl. a)-1) |
variable | CSP_conc | double | ||
attribute | CSP_conc | _FillValue | double | NaN |
attribute | CSP_conc | actual_range | double | 3717141.325, 3.728874422E8 |
attribute | CSP_conc | bcodmo_name | String | unknown |
attribute | CSP_conc | description | String | Coomassie staining particles (CSP) concentration. CSP retained on 0.4 polycarbonate filters and stained with Coomassie briliant blue blue (Long & Azam 1996). |
attribute | CSP_conc | long_name | String | CSP Conc |
attribute | CSP_conc | units | String | micrometers CSP per milliliter (um2 mL-1) |
variable | CSP_abund | int | ||
attribute | CSP_abund | _FillValue | int | 2147483647 |
attribute | CSP_abund | actual_range | int | 44941, 826912 |
attribute | CSP_abund | bcodmo_name | String | unknown |
attribute | CSP_abund | description | String | Coomassie staining particles (CSP) abundance. CSP retained on 0.4 polycarbonate filters and stained with Coomassie briliant blue blue (Long & Azam 1996). |
attribute | CSP_abund | long_name | String | CSP Abund |
attribute | CSP_abund | units | String | CSP per milliliter (mL-1) |
variable | CSP_per_chla | float | ||
attribute | CSP_per_chla | _FillValue | float | NaN |
attribute | CSP_per_chla | actual_range | float | 0.0156, 1.045 |
attribute | CSP_per_chla | bcodmo_name | String | unknown |
attribute | CSP_per_chla | colorBarMaximum | double | 30.0 |
attribute | CSP_per_chla | colorBarMinimum | double | 0.03 |
attribute | CSP_per_chla | colorBarScale | String | Log |
attribute | CSP_per_chla | description | String | Coomassie staining particles (CSP) per chlorophyll a. |
attribute | CSP_per_chla | long_name | String | Concentration Of Chlorophyll In Sea Water |
attribute | CSP_per_chla | units | String | square millimeters of CSP per nanogram of chlorophyll a (mm2 (ng chl. a)-1) |