BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    
 
 
Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL access_formats String .htmlTable,.csv,.json,.mat,.nc,.tsv
attribute NC_GLOBAL acquisition_description String Growth of the phytoplankton  \n The diatom Thalassiosira wessiflogii (CCMP 1051) and the cyanobacterium\nSynechococcus elongates_cf (CCMP 1379) were obtained from the National Center\nfor Culture of Marine Algae and Microbiota (NCMA). Replicated (n = 3) Batch\ncultures were grown in artificial seawater (Berges et al. 2001) containing\nnitrogen, phosphorus and silicon at 400 \\u00b5M (as NaNO3), 25 \\u00b5M\n(NaH2PO4), and 400 \\u00b5M (Na2SiO3), respectively. Culture temperatures were\nmaintained at 20 \\u00b1 1 \\u00b0C. Photon flux density on the surface of the\nculture bottles was 40 to 45 \\u00b5mol m-2 s-1 on a 14 hour light: 10 hour\ndark cycle. During exponential growth, each culture was split into three\ntreatments in which oxidative stress was induced by the addition of hydrogen\nperoxide at final concentrations of 0 (control), 10 and 100 \\u00b5M H2O2. The\ntreatments were sampled once a day over the next three days.\n \nMeasures of phytoplankton abundance and biomass  \n Counts of 400 cells from each culture were made using hemocytometers\n(Guillard and Sieracki 2005) from samples preserved in Lugol\\u2019s iodine\n(Parsons et al. 1984) using a light microscope (Axioplan 2, Carl Zeiss\nMicroImaging). Turbidity of the cultures, used as an indicator of growth, was\nmeasured by absorbance at 750 nm in a 1 cm path cuvette using a UV-Mini 1240\nspectrophotometer (Shimadzu Corporation).\n \nChlorophyll a concentration 90% acetone extractions from biomass retained on\nGF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was\ncalibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997). The\nextract was diluted with 90% acetone if the chl a concentration were too high.\n \nCell permeability  \n Uptake and staining with the membrane-impermeable SYTOX Green (Invitrogen)\nwas used to determine what proportion of the diatom population had permeable\ncell membranes (Veldhuis et al. 2001, Franklin et al. 2012). Four hundred\ncells were examined using an epifluorescence microscope (Axioplan 2, Carl\nZeiss MicroImaging) and the number of cells that stained with SYTOX Green was\nenumerated.\n \nTEP staining and analysis  \n Transparent exopolymer particles (TEP) were sampled according to Alldredge\net al. (1993) and TEP abundance was enumerated by image analysis (Logan et al.\n1994, Engel 2009). Ten photomicrographs were taken of each slide using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Images were analyzed using\nImageJ software (National Institutes of Health) based on the method of Engel\n(2009). Thresholding during image processing was done using the triangle\nmethod (Zack et al. 1977).\n \nCSP staining and analysis  \n Coomassie staining particles (CSP) were sampled according to Long and Azam\net al. (1996) and CSP abundance was enumerated by image analysis (Logan et al.\n1994, Engel 2009). Ten photomicrographs were taken of each slide using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Images were analyzed using\nImageJ software (National Institutes of Health) based on the method of Engel\n(2009). Thresholding during image processing was done using the triangle\nmethod (Zack et al. 1977).\n \nQuantum yield of photosystem II  \n The quantum yield of photosystem II was used as an indicator of\nphytoplankton health and measured using the saturating pulse method (Genty et\nal. 1989) using a pulse amplitude modulated fluorometer (PAM-210, Heinz Walz\nGmbH) folowing a protocol based on Marwood et al. (1999).\n \nCaspase-like activity  \n Caspase-like activity was measured based on the method of Bouchard & Purdie\n(2011). Phytoplankton were collected by centrifugation, then lysed in a\nbuffer, and the caspase-3 like activity was measured in the extracted proteins\nusing a Enzcheck Caspase-3 Assay Kit #1 (Invitrogen inc.). The fluorescent\nproduct was measured by fluorescence using a microplate reader (SPECTRAmax\nGeminiEM, Molecular Devices).\n \nReferences cited  \n Alldredge, A. L., Passow, U. & Logan B. E. 1993. The abundance and\nsignificance of a class of large, transparent organic particles in the ocean.\nDeep-Sea Res. Oceanogr., I. 40: 1131-1140.\ndoi:[10.1016/0967-0637(93)90129-Q](\\\\\"https://dx.doi.org/10.1016/0967-0637%2893%2990129-Q\\\\\")\n \nArar, E. J. & Collins, G. B. 1997. Method 445.0. In Vitro Determination of\nChlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence\nU.S. Environmental Protection Agency, Cincinnati, Ohio.\n \nBerges, J. A., Franklin D. J. & Harrison, P. J. 2001. Evolution of an\nartificial seawater medium: Improvements in enriched seawater, artificial\nwater over the last two decades. J. Phycol. 37:1138-1145.\ndoi:[10.1046/j.1529-8817.2001.01052.x](\\\\\"https://dx.doi.org/10.1046/j.1529-8817.2001.01052.x\\\\\")\n \nBouchard, J. N., Purdie, D. A. 2011. Effect of elevated temperature, darkness,\nand hydrogen peroxide treatment on oxidative stress and cell death in the\nbloom-forming toxic cyanobacterium Microcystis aeruginosa. J. Phycol., 47(6),\n1316-1325.\ndoi:[10.1111/j.1529-8817.2011.01074.x](\\\\\"https://dx.doi.org/10.1111/j.1529-8817.2011.01074.x\\\\\")\n \nEngel, A. 2009. Determination of Marine Gel Particles. In Wurl, O. [Ed.]\nPractical Guidelines for the Analysis of Seawater. CRC Press, Taylor & Francis\nGroup, Boca Raton, Florida, pp.125-142.\n \nFranklin, D. J., Airs, R. L., Fernandes, M., Bell, T. G., Bongaerts, R. J.,\nBerges, J. A. & Malin, G. 2012. Identification of senescence and death in\nEmiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll\nalterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol.\nOceanogr. 57: 305\\u2013317. doi:10.4319/lo.2012.57.1.0305\n \nGenty, B., Briantais, J. M., Baker N. R. 1989. The relationship between the\nquantum yield of photosynthetic electron-transport and quenching of\nchlorophyll fluorescence, Biochimica et Biophysica Acta, 990(1), 87-92.\ndoi:[10.1016/S0304-4165(89)80016-9](\\\\\"https://dx.doi.org/10.1016/S0304-4165\\(89\\)80016-9\\\\\")\n \nGuillard, R. R. L. & Sieracki, M. S. 2005. Counting cells in cultures with the\nlight microscope. In Andersen R. A. [Ed.] Algal Culturing Techniques. Elsevier\nAcademic Press, Burlington, MA, pp. 239-252.\n \nLogan, B. E., Grossart, H. P. & Simon, M. 1994. Direct observation of\nphytoplankton, TEP and aggregates on polycarbonate filters using brightfield\nmicroscopy. J. Plankton Res.16:\n1811-1815.doi:[10.1093/plankt/16.12.1811](\\\\\"https://dx.doi.org/10.1093/plankt/16.12.1811\\\\\")\n \nMarwood, C. A., Smith, R. E. H., Soloman, K. R., Charlton, M. N., Greenberg,\nB. M. 1999. Intact and photomodified polycyclic aromatic hydrocarbons inhibit\nphotosynthesis in natural assemblages of Lake Erie phytoplankton exposed to\nsolar radiation. Ecotox Environ Safe 44:322-327.\ndoi:[10.1006/eesa.1999.1840](\\\\\"https://dx.doi.org/10.1006/eesa.1999.1840\\\\\")\n \nParsons, T. R., Maita, Y. & Lalli, C. M. 1984. A Manual of Chemical and\nBiological Methods for Seawater Analysis. Pergamon Press, Oxford, UK.\n \nPassow, U. & Alldredge, A. L. 1995. A dye-binding assay for the\nspectrophotometric measurement of transparent exopolymer particles (TEP).\nLimnol. Oceanogr. 40: 1326-1335.\ndoi:[10.4319/lo.1995.40.7.1326](\\\\\"https://dx.doi.org/10.4319/lo.1995.40.7.1326\\\\\")\n \nVeldhuis, M. J. W., Kraay, G. W. & Timmermans, K. R. 2001. Cell death in\nphytoplankton: correlation between changes in membrane permeability,\nphotosynthetic activity, pigmentation and growth. Eur. J. Phycol. 36:\n167\\u2013177.\ndoi:[10.1080/09670260110001735318](\\\\\"https://dx.doi.org/10.1080/09670260110001735318\\\\\")\n \nZack, G. W., Rogers, W.E., Latt S. A. 1977. Automatic-measurement of sister\nchromatid exchange frequency, J. Histochem. Cytochem., 25(7), 741-753.\ndoi:[10.1177/25.7.70454](\\\\\"https://dx.doi.org/10.1177/25.7.70454\\\\\")
attribute NC_GLOBAL awards_0_award_nid String 55158
attribute NC_GLOBAL awards_0_award_number String OCE-0726369
attribute NC_GLOBAL awards_0_data_url String http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0726369 (external link)
attribute NC_GLOBAL awards_0_funder_name String NSF Division of Ocean Sciences
attribute NC_GLOBAL awards_0_funding_acronym String NSF OCE
attribute NC_GLOBAL awards_0_funding_source_nid String 355
attribute NC_GLOBAL awards_0_program_manager String David L. Garrison
attribute NC_GLOBAL awards_0_program_manager_nid String 50534
attribute NC_GLOBAL cdm_data_type String Other
attribute NC_GLOBAL comment String TEP production under oxidative stress \n PI: Daniel C.O. Thornton (Texas A&M) \n Version: 15 April 2014
attribute NC_GLOBAL Conventions String COARDS, CF-1.6, ACDD-1.3
attribute NC_GLOBAL creator_email String info at bco-dmo.org
attribute NC_GLOBAL creator_name String BCO-DMO
attribute NC_GLOBAL creator_type String institution
attribute NC_GLOBAL creator_url String https://www.bco-dmo.org/ (external link)
attribute NC_GLOBAL data_source String extract_data_as_tsv version 2.3  19 Dec 2019
attribute NC_GLOBAL date_created String 2014-04-15T14:57:24Z
attribute NC_GLOBAL date_modified String 2019-11-21T17:52:15Z
attribute NC_GLOBAL defaultDataQuery String &time<now
attribute NC_GLOBAL doi String 10.1575/1912/bco-dmo.511217.1
attribute NC_GLOBAL infoUrl String https://www.bco-dmo.org/dataset/511217 (external link)
attribute NC_GLOBAL institution String BCO-DMO
attribute NC_GLOBAL instruments_0_acronym String Fluorometer
attribute NC_GLOBAL instruments_0_dataset_instrument_description String The quantum yield of photosystem II was measured using the saturating pulse method (Genty et al. 1989) using a pulse amplitude modulated fluorometer (PAM-210, Heinz Walz GmbH).
attribute NC_GLOBAL instruments_0_dataset_instrument_nid String 511359
attribute NC_GLOBAL instruments_0_description String A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ.
attribute NC_GLOBAL instruments_0_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/113/ (external link)
attribute NC_GLOBAL instruments_0_instrument_name String Fluorometer
attribute NC_GLOBAL instruments_0_instrument_nid String 484
attribute NC_GLOBAL instruments_0_supplied_name String Pulse Amplitude Modulated Fluorometer
attribute NC_GLOBAL instruments_1_acronym String UV Spectrophotometer-Shimadzu
attribute NC_GLOBAL instruments_1_dataset_instrument_description String Turbidity of the cultures was measured by absorbance at 750 nm in a 1 cm path cuvette using a UV-Mini 1240 Spectrophotometer (Shimadzu Corporation).
attribute NC_GLOBAL instruments_1_dataset_instrument_nid String 511356
attribute NC_GLOBAL instruments_1_description String The Shimadzu UV Spectrophotometer is manufactured by Shimadzu Scientific Instruments (ssi.shimadzu.com). Shimadzu manufacturers several models of spectrophotometer; refer to dataset for make/model information.
attribute NC_GLOBAL instruments_1_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB20/ (external link)
attribute NC_GLOBAL instruments_1_instrument_name String UV Spectrophotometer-Shimadzu
attribute NC_GLOBAL instruments_1_instrument_nid String 595
attribute NC_GLOBAL instruments_1_supplied_name String UV-Mini 1240 Spectrophotometer
attribute NC_GLOBAL instruments_2_acronym String TD-700
attribute NC_GLOBAL instruments_2_dataset_instrument_description String Chlorophyll a concentration 90% acetone extractions from biomass retained on GF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was calibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997).
attribute NC_GLOBAL instruments_2_dataset_instrument_nid String 511357
attribute NC_GLOBAL instruments_2_description String The TD-700 Laboratory Fluorometer is a benchtop fluorometer designed to detect fluorescence over the UV to red range. The instrument can measure concentrations of a variety of compounds, including chlorophyll-a and fluorescent dyes, and is thus suitable for a range of applications, including chlorophyll, water quality monitoring and fluorescent tracer studies. Data can be output as concentrations or raw fluorescence measurements.
attribute NC_GLOBAL instruments_2_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L22/current/TOOL0510/ (external link)
attribute NC_GLOBAL instruments_2_instrument_name String Turner Designs 700 Laboratory Fluorometer
attribute NC_GLOBAL instruments_2_instrument_nid String 694
attribute NC_GLOBAL instruments_2_supplied_name String Turner Designs 700 Fluorometer
attribute NC_GLOBAL instruments_3_dataset_instrument_description String Cell permeability was determined using an epifluorescence microscope (Axioplan 2, Carl Zeiss MicroImaging).
attribute NC_GLOBAL instruments_3_dataset_instrument_nid String 511358
attribute NC_GLOBAL instruments_3_description String Instruments that generate enlarged images of samples using the phenomena of fluorescence and phosphorescence instead of, or in addition to, reflection and absorption of visible light. Includes conventional and inverted instruments.
attribute NC_GLOBAL instruments_3_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB06/ (external link)
attribute NC_GLOBAL instruments_3_instrument_name String Microscope-Fluorescence
attribute NC_GLOBAL instruments_3_instrument_nid String 695
attribute NC_GLOBAL instruments_3_supplied_name String Epifluorescence Microscope
attribute NC_GLOBAL instruments_4_acronym String Hemocytometer
attribute NC_GLOBAL instruments_4_dataset_instrument_description String Counts of 400 cells from each culture were made using hemocytometers (Guillard and Sieracki 2005) from samples preserved in Lugol’s iodine (Parsons et al. 1984) using a light microscope.
attribute NC_GLOBAL instruments_4_dataset_instrument_nid String 511354
attribute NC_GLOBAL instruments_4_description String A hemocytometer is a small glass chamber, resembling a thick microscope slide, used for determining the number of cells per unit volume of a suspension. Originally used for performing blood cell counts, a hemocytometer can be used to count a variety of cell types in the laboratory. Also spelled as \"haemocytometer\". Description from:\nhttp://hlsweb.dmu.ac.uk/ahs/elearning/RITA/Haem1/Haem1.html.
attribute NC_GLOBAL instruments_4_instrument_name String Hemocytometer
attribute NC_GLOBAL instruments_4_instrument_nid String 704
attribute NC_GLOBAL instruments_4_supplied_name String Hemocytometer
attribute NC_GLOBAL instruments_5_dataset_instrument_description String Counts of 400 cells from each culture were made using hemocytometers (Guillard and Sieracki 2005) from samples preserved in Lugol’s iodine (Parsons et al. 1984) using a light microscope (Axioplan 2, Carl Zeiss MicroImaging). A light microscope (Axioplan 2, Carl Zeiss MicroImaging) was also used to enumerate TEP and CSP by image analysis.
attribute NC_GLOBAL instruments_5_dataset_instrument_nid String 511355
attribute NC_GLOBAL instruments_5_description String Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a \"light microscope\".
attribute NC_GLOBAL instruments_5_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ (external link)
attribute NC_GLOBAL instruments_5_instrument_name String Microscope-Optical
attribute NC_GLOBAL instruments_5_instrument_nid String 708
attribute NC_GLOBAL instruments_5_supplied_name String Light Microscope
attribute NC_GLOBAL keywords String abund, activity, bco, bco-dmo, biological, caspase, caspase_like_activity, cell, cell_conc, cells, chemical, chemistry, chla, chlorophyll, chlorophyll-a, conc, concentration, concentration_of_chlorophyll_in_sea_water, csp, CSP_abund, CSP_conc, CSP_per_chla, data, dataset, day, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, erddap, H2O2, like, management, O2, ocean, oceanography, oceans, office, oxygen, pcnt, preliminary, psii, science, sea, seawater, species, stained, stained_cells_pcnt, tep, TEP_abund, TEP_conc, TEP_per_chla, turbidity, water
attribute NC_GLOBAL keywords_vocabulary String GCMD Science Keywords
attribute NC_GLOBAL license String https://www.bco-dmo.org/dataset/511217/license (external link)
attribute NC_GLOBAL metadata_source String https://www.bco-dmo.org/api/dataset/511217 (external link)
attribute NC_GLOBAL param_mapping String {'511217': {}}
attribute NC_GLOBAL parameter_source String https://www.bco-dmo.org/mapserver/dataset/511217/parameters (external link)
attribute NC_GLOBAL people_0_affiliation String Texas A&M University
attribute NC_GLOBAL people_0_affiliation_acronym String TAMU
attribute NC_GLOBAL people_0_person_name String Daniel C.O. Thornton
attribute NC_GLOBAL people_0_person_nid String 51644
attribute NC_GLOBAL people_0_role String Principal Investigator
attribute NC_GLOBAL people_0_role_type String originator
attribute NC_GLOBAL people_1_affiliation String Woods Hole Oceanographic Institution
attribute NC_GLOBAL people_1_affiliation_acronym String WHOI BCO-DMO
attribute NC_GLOBAL people_1_person_name String Shannon Rauch
attribute NC_GLOBAL people_1_person_nid String 51498
attribute NC_GLOBAL people_1_role String BCO-DMO Data Manager
attribute NC_GLOBAL people_1_role_type String related
attribute NC_GLOBAL project String Diatom EPS Production
attribute NC_GLOBAL projects_0_acronym String Diatom EPS Production
attribute NC_GLOBAL projects_0_description String Description from NSF Propsoal:\nIt is necessary to determine the fate of organic matter in the ocean to understand marine food webs, biogeochemical cycles, and climate change. Diatoms fix approximately a quarter of the net global primary production each year, and a significant proportion of this production is excreted as extracellular polymeric substances (EPS). EPS have a profound impact on pelagic ecosystems by affecting the formation of aggregates. Diatoms and other particulate organic carbon (POC) sink rapidly as aggregates, affecting the biological carbon pump, which plays a pivotal role in the sequestration of carbon in the ocean. The proposed research will test the central hypothesis: Temperature increase affects diatom release of EPS, which act as a glue, increasing aggregation. Previous work by the investigator showed that increased temperatures affected the aggregation of Skeletonema costatum. Four specific hypotheses will be tested:\nH1: Diatoms produce more EPS with increasing temperature.\nH2: Diatoms produce more transparent exopolymer particles (TEP) with increasing temperature.\nH3: The quantity or composition of cell-surface carbohydrates in diatoms changes with temperature.\nH4: Aggregation of diatom cultures and natural plankton increases with temperature.\nLaboratory experiments (years 1 - 2) will be conducted with three model diatom species grown at controlled growth rates and defined limitation (nitrogen or light) in continuous culture. Culture temperature will be stepped up or down in small increments to determine the effect of the temperature change on EPS production, aggregation, and partitioning of carbon in intra- and extracellular pools. Similar experiments in year 3 will be carried out using natural plankton populations from a coastal site where diatoms contribute a significant proportion to the biomass.\nThe proposed research will increase our understanding of the ecology and physiology of one of the dominant groups of primary producers on Earth. EPS are a central aspect of diatom biology, though the physiology, function and broader ecosystem impacts of EPS production remain unknown. This research will determine how temperature, light limitation, and nutrient limitation affect the partitioning of production between dissolved, gel, and particulate phases in the ocean. Measurements of plankton stickiness (alpha) under different conditions will be important to model aggregation processes in the ocean as alpha is an important (and variable) term in coagulation models. Determining how carbon is cycled between the ocean, atmosphere and lithosphere is key to understanding climate change on both geological and human time scales. This is a major societal issue as atmospheric CO2 concentrations are steadily increasing, correlating with a 0.6 C rise in global average temperature during the last century. This research will address potential feedbacks between warming of the surface ocean, diatom ecophysiology and the biological carbon pump.\nRelated Publications:\nRzadkowolski, Charles E. and Thornton, Daniel C. O. (2012) Using laser scattering to identify diatoms and conduct aggregation experiments. Eur. J. Phycol., 47(1): 30-41. DOI: 10.1080/09670262.2011.646314\nThornton, Daniel C. O. (2009) Effect of Low pH on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri). Research Letters in Ecology, vol. 2009, Article ID 105901, 4 pages. DOI: 10.1155/2009/105901\nThornton, D.C.O. (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology 49: 20-46. DOI: 10.1080/09670262.2013.875596\nThornton, D.C.O., Visser, L.A. (2009) Measurement of acid polysaccharides (APS) associated with microphytobenthos in salt marsh sediments. Aquat Microb Ecol 54:185-198. DOI: 10.3354/ame01265
attribute NC_GLOBAL projects_0_end_date String 2012-08
attribute NC_GLOBAL projects_0_geolocation String O&M Building, Texas A&M University, College Station, TX 77840
attribute NC_GLOBAL projects_0_name String Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms
attribute NC_GLOBAL projects_0_project_nid String 2255
attribute NC_GLOBAL projects_0_start_date String 2007-09
attribute NC_GLOBAL publisher_name String Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
attribute NC_GLOBAL publisher_type String institution
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL standard_name_vocabulary String CF Standard Name Table v55
attribute NC_GLOBAL summary String Data from laboratory experiment on exopolymer production by the diatom Thalassiosira wessiflogii (CCMP 1051) and the cyanobacterium Synechococcus elongates_cf (CCMP 1379) under conditions of oxidative stress.
attribute NC_GLOBAL title String [oxidative stress TEP] - Experimental results: Exopolymer production by phytoplankton under oxidative stress; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms)
attribute NC_GLOBAL version String 1
attribute NC_GLOBAL xml_source String osprey2erddap.update_xml() v1.3
variable species String
attribute species bcodmo_name String species
attribute species description String Species name.
attribute species long_name String Species
attribute species units String dimensionless
variable day byte
attribute day _FillValue byte 127
attribute day actual_range byte 0, 3
attribute day bcodmo_name String day
attribute day description String Day of the experiment.
attribute day long_name String Day
attribute day nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/DAYXXXXX/ (external link)
attribute day units String dimensionless
variable H2O2 byte
attribute H2O2 _FillValue byte 127
attribute H2O2 actual_range byte 0, 100
attribute H2O2 bcodmo_name String Hydrogen Peroxide
attribute H2O2 description String Hydrogen peroxide concentration.
attribute H2O2 long_name String H2 O2
attribute H2O2 units String micromolar (uM)
variable turbidity float
attribute turbidity _FillValue float NaN
attribute turbidity actual_range float 0.0302, 0.1368
attribute turbidity bcodmo_name String turbidity
attribute turbidity description String Turbidity of the cultures measured by absorbance at 750 nm in a 1 cm path cuvette using a spectrophotometer.
attribute turbidity long_name String Turbidity
attribute turbidity units String NTU
variable cell_conc int
attribute cell_conc _FillValue int 2147483647
attribute cell_conc actual_range int 68800, 7510000
attribute cell_conc bcodmo_name String unknown
attribute cell_conc description String Cell concentration. Counts of 400 cells were made by transmitted light microscopy using a hemacytometer (Fuchs-Rosenthal ruling Hauser Scientific) (Guillard & Sieracki 2005).
attribute cell_conc long_name String Cell Conc
attribute cell_conc units String cells per milliliter (cells mL-1)
variable chla float
attribute chla _FillValue float NaN
attribute chla actual_range float 144.0, 491.67
attribute chla bcodmo_name String chlorophyll a
attribute chla colorBarMaximum double 30.0
attribute chla colorBarMinimum double 0.03
attribute chla colorBarScale String Log
attribute chla description String Chlorophyll a measured by fluorescence (Arar & Collins 1997; Method 445.0. EPA).
attribute chla long_name String Concentration Of Chlorophyll In Sea Water
attribute chla nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/ (external link)
attribute chla units String micrograms per liter (ug L-1)
variable PSII float
attribute PSII _FillValue float NaN
attribute PSII actual_range float 0.2, 0.7
attribute PSII bcodmo_name String unknown
attribute PSII description String Quantum yield of photosystem II measured after Marwood et al. (1999) using pulse amplitude modulated chlorophyll fluorometer.
attribute PSII long_name String PSII
attribute PSII units String quantum yield of photosystem II
variable caspase_like_activity float
attribute caspase_like_activity _FillValue float NaN
attribute caspase_like_activity actual_range float 79.445, 1787.544
attribute caspase_like_activity bcodmo_name String unknown
attribute caspase_like_activity description String Caspase-like activity was measured after Bouchard & Purdie (2011).
attribute caspase_like_activity long_name String Caspase Like Activity
attribute caspase_like_activity units String relative fluorescence units per milligrams protein per hour (RFU mg protein-1 h-1)
variable stained_cells_pcnt float
attribute stained_cells_pcnt _FillValue float NaN
attribute stained_cells_pcnt actual_range float 1.0, 80.25
attribute stained_cells_pcnt bcodmo_name String unknown
attribute stained_cells_pcnt description String % of SYTOX Green stained cells. Uptake and staining with the membrane-impermeable SYTOX Green (Invitrogen) was used to determine what proportion of the diatom population had permeable cell membranes (Veldhuis et al. 2001; Franklin et al. 2012). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated.
attribute stained_cells_pcnt long_name String Stained Cells Pcnt
attribute stained_cells_pcnt units String percent (%)
variable TEP_conc int
attribute TEP_conc _FillValue int 2147483647
attribute TEP_conc actual_range int 124295402, 769625835
attribute TEP_conc bcodmo_name String unknown
attribute TEP_conc description String Transparent exopolymer particles (TEP) concentration. TEP retained on 0.4 polycarbonate filters and stained with Alcian blue (Alldredge et al. 1993).
attribute TEP_conc long_name String TEP Conc
attribute TEP_conc units String micrometers TEP per milliliter (um2 mL-1)
variable TEP_abund int
attribute TEP_abund _FillValue int 2147483647
attribute TEP_abund actual_range int 485361, 1827594
attribute TEP_abund bcodmo_name String unknown
attribute TEP_abund description String Transparent exopolymer particles (TEP) abundance. TEP retained on 0.4 polycarbonate filters and stained with Alcian blue (Alldredge et al. 1993).
attribute TEP_abund long_name String TEP Abund
attribute TEP_abund units String TEP per milliliter (mL-1)
variable TEP_per_chla float
attribute TEP_per_chla _FillValue float NaN
attribute TEP_per_chla actual_range float 4.85361E-7, 2.39
attribute TEP_per_chla bcodmo_name String unknown
attribute TEP_per_chla colorBarMaximum double 30.0
attribute TEP_per_chla colorBarMinimum double 0.03
attribute TEP_per_chla colorBarScale String Log
attribute TEP_per_chla description String Transparent exopolymer particles (TEP) per chlorophyll a.
attribute TEP_per_chla long_name String Concentration Of Chlorophyll In Sea Water
attribute TEP_per_chla units String square millimeters of TEP per nanogram of chla (mm2 (ng chl. a)-1)
variable CSP_conc double
attribute CSP_conc _FillValue double NaN
attribute CSP_conc actual_range double 3717141.325, 3.728874422E8
attribute CSP_conc bcodmo_name String unknown
attribute CSP_conc description String Coomassie staining particles (CSP) concentration. CSP retained on 0.4 polycarbonate filters and stained with Coomassie briliant blue blue (Long & Azam 1996).
attribute CSP_conc long_name String CSP Conc
attribute CSP_conc units String micrometers CSP per milliliter (um2 mL-1)
variable CSP_abund int
attribute CSP_abund _FillValue int 2147483647
attribute CSP_abund actual_range int 44941, 826912
attribute CSP_abund bcodmo_name String unknown
attribute CSP_abund description String Coomassie staining particles (CSP) abundance. CSP retained on 0.4 polycarbonate filters and stained with Coomassie briliant blue blue (Long & Azam 1996).
attribute CSP_abund long_name String CSP Abund
attribute CSP_abund units String CSP per milliliter (mL-1)
variable CSP_per_chla float
attribute CSP_per_chla _FillValue float NaN
attribute CSP_per_chla actual_range float 0.0156, 1.045
attribute CSP_per_chla bcodmo_name String unknown
attribute CSP_per_chla colorBarMaximum double 30.0
attribute CSP_per_chla colorBarMinimum double 0.03
attribute CSP_per_chla colorBarScale String Log
attribute CSP_per_chla description String Coomassie staining particles (CSP) per chlorophyll a.
attribute CSP_per_chla long_name String Concentration Of Chlorophyll In Sea Water
attribute CSP_per_chla units String square millimeters of CSP per nanogram of chlorophyll a (mm2 (ng chl. a)-1)

 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact