BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    
 
 
Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL access_formats String .htmlTable,.csv,.json,.mat,.nc,.tsv
attribute NC_GLOBAL acquisition_description String Growth of the diatoms  \n The diatoms Thalassiosira weissflogii (CCMP 1051), Skeletonema marinoi (CCMP\n1332), and Cylindrotheca closterium (CCMP 339) were grown in artificial\nseawater (Berges et al. 2001) in batch culture at 20 \\u00b0C with 100\n\\u00b5M\\u00a0 NaNO3, 200 \\u00b5M of NaH2PO4\\u00b7H2O, and 200 \\u00b5M of\nNa2SiO3\\u00b79H2O. Illumination was on a 14 h:10 h light:dark cycle at a\nphoton flux density of 160 \\u00b5mol m-2 s-1. There were three replicate\ncultures. Cultures were sampled during both the growth and death of the\ncultures over several weeks.\n \nMeasures of diatom abundance and biomass  \n Counts of 400 cells from each culture were made using a hemacytometer\n(Fuchs-Rosenthal ruling, Hauser Scientific) (Guillard and Sieracki 2005) from\nsamples preserved in Lugol\\u2019s iodine (Parsons et al. 1984) using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Turbidity of the cultures,\nused as an indicator of growth, was measured by absorbance at 750 nm in a 1 cm\npath cuvette using a UV-Mini 1240 spectrophotometer (Shimadzu Corporation).\n \nCell volume was determined using live cells (Menden-Deuer and Lessard 2000).\nThe volume of 25 diatoms from each replicate culture was determined by\nmeasuring cell length (pervalver length) and width (valver length) at 400x\nmagnification using a light microscope (Axioplan 2, Carl Zeiss MicroImaging).\nCell volume was calculated based on the assumption that both T. wessiflogii\nand S. marinoi were cylinders. The volume of Cylindrotheca closterium was\nestimated assuming that its shape was equivalent to two cones.\n \nChlorophyll a concentration 90% acetone extractions from biomass retained on\nGF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was\ncalibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997). The\nextract was diluted with 90% acetone if the chl a concentration were too high.\n \nBacteria abundance  \n Bacteria (400 cells) were counted using an epifluorescence microscope\n(Axioplan 2, Carl Zeiss MicroImaging) after staining with\n4'6-diamidino-2-phenylindole dihydrochloride (DAPI) (Porter and Feig 1980) at\na final concentration of 0.25 \\u00b5g ml-1.\n \nCarbohydrate analysis  \n Two spectrophotometric methods were used to measure carbohydrates, the\nphenol sulfuric acid (PSA) method (Dubois et al. 1956) and the 2, 4,\n6-tripyridyl-s-triazine (TPTZ) method (Myklestad et al. 1997). The color\nproduced by both methods was measured in 1 cm path length cuvette using UV-\nMini 1240 spectrophotometer (Shimadzu Corporation). Both methods were\ncalibrated using D-glucose and the results are expressed as D-glucose\nequivalents. Different fractions of carbohydrate were extracted from the\ncultures using methods described in Underwood et al. (1995) and Underwood et\nal. (2004): total, colloidal, exopolymers (EPS), intracellular carbohydrate\n(hot water (HW) extraction), cell-wall associated carbohydrates (hot\nbicarbonate (HB) extraction), and residual. These carbohydrate fractions were\nmeasured using the PSA method. The TPTZ method was used to measure the\nintracellular and extracellular monosaccharide pools and the intracellular and\nextracellular polysaccharide pools after acid hydrolysis of the sample.\n \nCell permeability  \n Uptake and staining with the membrane-impermeable SYTOX Green (Invitrogen)\nwas used to determine what proportion of the diatom population had permeable\ncell membranes (Veldhuis et al. 2001, Franklin et al. 2012). Four hundred\ncells were examined using an epifluorescence microscope (Axioplan 2, Carl\nZeiss MicroImaging) and the number of cells that stained with SYTOX Green was\nenumerated.\n \nTEP staining and analysis  \n Transparent exopolymer particles (TEP) were sampled according to Alldredge\net al. (1993) and TEP abundance was enumerated by image analysis (Logan et al.\n1994, Engel 2009). Ten photomicrographs were taken of each slide using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Images were analyzed using\nImageJ software (National Institutes of Health) based on the method of Engel\n(2009). Thresholding during image processing was done using the triangle\nmethod (Zack et al. 1977).\n \nCSP staining and analysis  \n Coomassie staining particles (CSP) were sampled according to Long and Azam\net al. (1996) and CSP abundance was enumerated by image analysis (Logan et al.\n1994, Engel 2009). Ten photomicrographs were taken of each slide using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Images were analyzed using\nImageJ software (National Institutes of Health) based on the method of Engel\n(2009). Thresholding during image processing was done using the triangle\nmethod (Zack et al. 1977).\n \nReferences cited  \n Alldredge, A. L., Passow, U. & Logan B. E. 1993. The abundance and\nsignificance of a class of large, transparent organic particles in the ocean.\nDeep-Sea Res. Oceanogr., I. 40: 1131-1140.\ndoi:[10.1016/0967-0637(93)90129-Q](\\\\\"https://dx.doi.org/10.1016/0967-0637%2893%2990129-Q\\\\\")\n \nArar, E. J. & Collins, G. B. 1997. Method 445.0. In Vitro Determination of\nChlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence\nU.S. Environmental Protection Agency, Cincinnati, Ohio.\n \nBerges, J. A., Franklin D. J. & Harrison, P. J. 2001. Evolution of an\nartificial seawater medium: Improvements in enriched seawater, artificial\nwater over the last two decades. J. Phycol. 37:1138-1145.\ndoi:[10.1046/j.1529-8817.2001.01052.x](\\\\\"https://dx.doi.org/10.1046/j.1529-8817.2001.01052.x\\\\\")\n \nDubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956.\nColorimetric method for determination of sugars and related substances. Anal.\nChem. 28: 350\\u2013356.\ndoi:[10.1021/ac60111a017](\\\\\"https://dx.doi.org/10.1021/ac60111a017\\\\\")\n \nEngel, A. 2009. Determination of Marine Gel Particles. In Wurl, O. [Ed.]\nPractical Guidelines for the Analysis of Seawater. CRC Press, Taylor & Francis\nGroup, Boca Raton, Florida, pp.125-142.\n \nFranklin, D. J., Airs, R. L., Fernandes, M., Bell, T. G., Bongaerts, R. J.,\nBerges, J. A. & Malin, G. 2012. Identification of senescence and death in\nEmiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll\nalterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol.\nOceanogr. 57: 305\\u2013317. doi:10.4319/lo.2012.57.1.0305\n \nGuillard, R. R. L. & Sieracki, M. S. 2005. Counting cells in cultures with the\nlight microscope. In Andersen R. A. [Ed.] Algal Culturing Techniques. Elsevier\nAcademic Press, Burlington, MA, pp. 239-252.\n \nLogan, B. E., Grossart, H. P. & Simon, M. 1994. Direct observation of\nphytoplankton, TEP and aggregates on polycarbonate filters using brightfield\nmicroscopy. J. Plankton Res.16:\n1811-1815.doi:[10.1093/plankt/16.12.1811](\\\\\"https://dx.doi.org/10.1093/plankt/16.12.1811\\\\\")\n \nMenden-Deuer S. & Lessard, E. J. 2000. Carbon to volume relationships for\ndinoflagellates, diatoms, and other protists plankton. Limnol. Oceanogr. 45:\n569- 579.\ndoi:[10.4319/lo.2000.45.3.0569](\\\\\"https://dx.doi.org/10.4319/lo.2000.45.3.0569\\\\\")\n \nMyklestad, S. M., Skanoy, E., Hestmann S. 1997. A sensitive and rapid method\nfor analysis of dissolved mono- and polysaccharides in seawater. Marine\nChemistry 56: 279-286.\ndoi:[10.1016/S0304-4203(96)00074-6](\\\\\"https://dx.doi.org/10.1016/S0304-4203\\(96\\)00074-6\\\\\")\n \nParsons, T. R., Maita, Y. & Lalli, C. M. 1984. A Manual of Chemical and\nBiological Methods for Seawater Analysis. Pergamon Press, Oxford, UK.\n \nPassow, U. & Alldredge, A. L. 1995. A dye-binding assay for the\nspectrophotometric measurement of transparent exopolymer particles (TEP).\nLimnol. Oceanogr. 40: 1326-1335.\ndoi:[10.4319/lo.1995.40.7.1326](\\\\\"https://dx.doi.org/10.4319/lo.1995.40.7.1326\\\\\")\n \nPorter, K. G. & Feig, Y. S. 1980. The use of DAPI for identifying and counting\naquatic microflora. Limnol. Oceanogr. 25:943\\u2013948.\ndoi:[10.4319/lo.1980.25.5.0943](\\\\\"https://dx.doi.org/10.4319/lo.1980.25.5.0943\\\\\")\n \nUnderwood, G. J. C., Paterson D. M., Parkes R. J. 1995. The measurement of\nmicrobial carbohydrate exopolymers from intertidal sediments. Limnol.\nOceanogr. 40: 1243-1253.\ndoi:[10.4319/lo.1995.40.7.1243](\\\\\"https://dx.doi.org/10.4319/lo.1995.40.7.1243\\\\\")\n \nUnderwood, G. J. C., Boulcott, M., Raines, C. A., Waldron K. 2004.\nEnvironmental effects on exopolymer production by marine benthic diatoms:\nDynamics, changes in composition, and pathways of production. J. Phycol. 40:\n293-304.\ndoi:[10.1111/j.1529-8817.2004.03076.x](\\\\\"https://dx.doi.org/10.1111/j.1529-8817.2004.03076.x\\\\\")\n \nVeldhuis, M. J. W., Kraay, G. W. & Timmermans, K. R. 2001. Cell death in\nphytoplankton: correlation between changes in membrane permeability,\nphotosynthetic activity, pigmentation and growth. Eur. J. Phycol. 36:\n167\\u2013177.\ndoi:[10.1080/09670260110001735318](\\\\\"https://dx.doi.org/10.1080/09670260110001735318\\\\\")\n \nZack, G. W., Rogers, W.E., Latt S. A. 1977. Automatic-measurement of sister\nchromatid exchange frequency, J. Histochem. Cytochem., 25(7), 741-753.\ndoi:[10.1177/25.7.70454](\\\\\"https://dx.doi.org/10.1177/25.7.70454\\\\\")
attribute NC_GLOBAL awards_0_award_nid String 55158
attribute NC_GLOBAL awards_0_award_number String OCE-0726369
attribute NC_GLOBAL awards_0_data_url String http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0726369 (external link)
attribute NC_GLOBAL awards_0_funder_name String NSF Division of Ocean Sciences
attribute NC_GLOBAL awards_0_funding_acronym String NSF OCE
attribute NC_GLOBAL awards_0_funding_source_nid String 355
attribute NC_GLOBAL awards_0_program_manager String David L. Garrison
attribute NC_GLOBAL awards_0_program_manager_nid String 50534
attribute NC_GLOBAL cdm_data_type String Other
attribute NC_GLOBAL comment String Growth phase exopolymer and carbohydrate production by diatoms \n PI: Daniel C.O. Thornton (Texas A&M) \n Version: 16 April 2014
attribute NC_GLOBAL Conventions String COARDS, CF-1.6, ACDD-1.3
attribute NC_GLOBAL creator_email String info at bco-dmo.org
attribute NC_GLOBAL creator_name String BCO-DMO
attribute NC_GLOBAL creator_type String institution
attribute NC_GLOBAL creator_url String https://www.bco-dmo.org/ (external link)
attribute NC_GLOBAL data_source String extract_data_as_tsv version 2.3  19 Dec 2019
attribute NC_GLOBAL date_created String 2014-04-16T15:19:09Z
attribute NC_GLOBAL date_modified String 2019-11-21T18:09:10Z
attribute NC_GLOBAL defaultDataQuery String &time<now
attribute NC_GLOBAL doi String 10.1575/1912/bco-dmo.511526.1
attribute NC_GLOBAL infoUrl String https://www.bco-dmo.org/dataset/511526 (external link)
attribute NC_GLOBAL institution String BCO-DMO
attribute NC_GLOBAL instruments_0_acronym String UV Spectrophotometer-Shimadzu
attribute NC_GLOBAL instruments_0_dataset_instrument_description String Turbidity of the cultures was measured by absorbance at 750 nm in a 1 cm path cuvette using a UV-Mini 1240 spectrophotometer (Shimadzu Corporation). Two spectrophotometric methods were used to measure carbohydrates, the phenol sulfuric acid (PSA) method (Dubois et al. 1956) and the 2, 4, 6-tripyridyl-s-triazine (TPTZ) method (Myklestad et al. 1997). The color produced by both methods was measured in 1 cm path length cuvette using UV-Mini 1240 spectrophotometer (Shimadzu Corporation).
attribute NC_GLOBAL instruments_0_dataset_instrument_nid String 511581
attribute NC_GLOBAL instruments_0_description String The Shimadzu UV Spectrophotometer is manufactured by Shimadzu Scientific Instruments (ssi.shimadzu.com). Shimadzu manufacturers several models of spectrophotometer; refer to dataset for make/model information.
attribute NC_GLOBAL instruments_0_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB20/ (external link)
attribute NC_GLOBAL instruments_0_instrument_name String UV Spectrophotometer-Shimadzu
attribute NC_GLOBAL instruments_0_instrument_nid String 595
attribute NC_GLOBAL instruments_0_supplied_name String UV-Mini 1240 Spectrophotometer
attribute NC_GLOBAL instruments_1_acronym String TD-700
attribute NC_GLOBAL instruments_1_dataset_instrument_description String Chlorophyll a concentration 90% acetone extractions from biomass retained on GF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was calibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997).
attribute NC_GLOBAL instruments_1_dataset_instrument_nid String 511582
attribute NC_GLOBAL instruments_1_description String The TD-700 Laboratory Fluorometer is a benchtop fluorometer designed to detect fluorescence over the UV to red range. The instrument can measure concentrations of a variety of compounds, including chlorophyll-a and fluorescent dyes, and is thus suitable for a range of applications, including chlorophyll, water quality monitoring and fluorescent tracer studies. Data can be output as concentrations or raw fluorescence measurements.
attribute NC_GLOBAL instruments_1_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L22/current/TOOL0510/ (external link)
attribute NC_GLOBAL instruments_1_instrument_name String Turner Designs 700 Laboratory Fluorometer
attribute NC_GLOBAL instruments_1_instrument_nid String 694
attribute NC_GLOBAL instruments_1_supplied_name String Turner Designs 700 Fluorometer
attribute NC_GLOBAL instruments_2_dataset_instrument_description String Bacteria were counted and cell permeability was determined using an epifluorescence microscope (Axioplan 2, Carl Zeiss MicroImaging).
attribute NC_GLOBAL instruments_2_dataset_instrument_nid String 511583
attribute NC_GLOBAL instruments_2_description String Instruments that generate enlarged images of samples using the phenomena of fluorescence and phosphorescence instead of, or in addition to, reflection and absorption of visible light. Includes conventional and inverted instruments.
attribute NC_GLOBAL instruments_2_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB06/ (external link)
attribute NC_GLOBAL instruments_2_instrument_name String Microscope-Fluorescence
attribute NC_GLOBAL instruments_2_instrument_nid String 695
attribute NC_GLOBAL instruments_2_supplied_name String Epifluorescence Microscope
attribute NC_GLOBAL instruments_3_acronym String Hemocytometer
attribute NC_GLOBAL instruments_3_dataset_instrument_description String Counts of 400 cells from each culture were made using a hemocytometer (Fuchs-Rosenthal ruling, Hauser Scientific) (Guillard and Sieracki 2005) from samples preserved in Lugol’s iodine (Parsons et al. 1984) using a light microscope.
attribute NC_GLOBAL instruments_3_dataset_instrument_nid String 511579
attribute NC_GLOBAL instruments_3_description String A hemocytometer is a small glass chamber, resembling a thick microscope slide, used for determining the number of cells per unit volume of a suspension. Originally used for performing blood cell counts, a hemocytometer can be used to count a variety of cell types in the laboratory. Also spelled as \"haemocytometer\". Description from:\nhttp://hlsweb.dmu.ac.uk/ahs/elearning/RITA/Haem1/Haem1.html.
attribute NC_GLOBAL instruments_3_instrument_name String Hemocytometer
attribute NC_GLOBAL instruments_3_instrument_nid String 704
attribute NC_GLOBAL instruments_3_supplied_name String Hemocytometer
attribute NC_GLOBAL instruments_4_dataset_instrument_description String Counts of 400 cells from each culture were made using a hemacytometer (Fuchs-Rosenthal ruling, Hauser Scientific) (Guillard and Sieracki 2005) from samples preserved in Lugol’s iodine (Parsons et al. 1984) using a light microscope (Axioplan 2, Carl Zeiss MicroImaging). A light microscope was also used to determine cell volume and to enumerate TEP and CSP by image analysis.
attribute NC_GLOBAL instruments_4_dataset_instrument_nid String 511580
attribute NC_GLOBAL instruments_4_description String Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a \"light microscope\".
attribute NC_GLOBAL instruments_4_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ (external link)
attribute NC_GLOBAL instruments_4_instrument_name String Microscope-Optical
attribute NC_GLOBAL instruments_4_instrument_nid String 708
attribute NC_GLOBAL instruments_4_supplied_name String Light Microscope
attribute NC_GLOBAL keywords String abundance, area, bact, bact_per_diatom, bacteria, bco, bco-dmo, biological, carb, cell, cell_abundance, cell_vol_mean, cells, chemical, chemistry, chla, chla_per_cell, chla_per_cell_vol, chlorophyll, chlorophyll-a, collodial, collodial_per_cell, colloidal, colloidal_carb, colloidal_per_cell_vol, conc, concentration, concentration_of_chlorophyll_in_sea_water, csp, CSP_conc_mean, CSP_mean_size, culture, data, dataset, day, diatom, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, eps, EPS_carb, EPS_carb_per_cell, EPS_carb_per_cell_vol, erddap, extracell, growth, growth_phase, HB_carb, HB_carb_per_cell, HB_carb_per_cell_vol, HW_carb, HW_carb_per_cell, HW_carb_per_cell_vol, intracell, management, mean, mono, ocean, oceanography, oceans, office, pcnt, per, phase, polysacc, preliminary, residual, residual_carb, residual_carb_per_cell, residual_carb_per_cell_vol, science, sea, seawater, size, species, stained, stained_cells_pcnt, tep, TEP_conc_mean, TEP_mean_size, tot, tot_carb, tot_carb_per_cell, tot_carb_per_cell_vol, tot_CSP_area, tot_TEP_area, tptz, TPTZ_extracell_mono, TPTZ_extracell_polysacc, TPTZ_intracell_mono, TPTZ_intracell_polysacc, vol, water
attribute NC_GLOBAL keywords_vocabulary String GCMD Science Keywords
attribute NC_GLOBAL license String https://www.bco-dmo.org/dataset/511526/license (external link)
attribute NC_GLOBAL metadata_source String https://www.bco-dmo.org/api/dataset/511526 (external link)
attribute NC_GLOBAL param_mapping String {'511526': {}}
attribute NC_GLOBAL parameter_source String https://www.bco-dmo.org/mapserver/dataset/511526/parameters (external link)
attribute NC_GLOBAL people_0_affiliation String Texas A&M University
attribute NC_GLOBAL people_0_affiliation_acronym String TAMU
attribute NC_GLOBAL people_0_person_name String Daniel C.O. Thornton
attribute NC_GLOBAL people_0_person_nid String 51644
attribute NC_GLOBAL people_0_role String Principal Investigator
attribute NC_GLOBAL people_0_role_type String originator
attribute NC_GLOBAL people_1_affiliation String Woods Hole Oceanographic Institution
attribute NC_GLOBAL people_1_affiliation_acronym String WHOI BCO-DMO
attribute NC_GLOBAL people_1_person_name String Shannon Rauch
attribute NC_GLOBAL people_1_person_nid String 51498
attribute NC_GLOBAL people_1_role String BCO-DMO Data Manager
attribute NC_GLOBAL people_1_role_type String related
attribute NC_GLOBAL project String Diatom EPS Production
attribute NC_GLOBAL projects_0_acronym String Diatom EPS Production
attribute NC_GLOBAL projects_0_description String Description from NSF Propsoal:\nIt is necessary to determine the fate of organic matter in the ocean to understand marine food webs, biogeochemical cycles, and climate change. Diatoms fix approximately a quarter of the net global primary production each year, and a significant proportion of this production is excreted as extracellular polymeric substances (EPS). EPS have a profound impact on pelagic ecosystems by affecting the formation of aggregates. Diatoms and other particulate organic carbon (POC) sink rapidly as aggregates, affecting the biological carbon pump, which plays a pivotal role in the sequestration of carbon in the ocean. The proposed research will test the central hypothesis: Temperature increase affects diatom release of EPS, which act as a glue, increasing aggregation. Previous work by the investigator showed that increased temperatures affected the aggregation of Skeletonema costatum. Four specific hypotheses will be tested:\nH1: Diatoms produce more EPS with increasing temperature.\nH2: Diatoms produce more transparent exopolymer particles (TEP) with increasing temperature.\nH3: The quantity or composition of cell-surface carbohydrates in diatoms changes with temperature.\nH4: Aggregation of diatom cultures and natural plankton increases with temperature.\nLaboratory experiments (years 1 - 2) will be conducted with three model diatom species grown at controlled growth rates and defined limitation (nitrogen or light) in continuous culture. Culture temperature will be stepped up or down in small increments to determine the effect of the temperature change on EPS production, aggregation, and partitioning of carbon in intra- and extracellular pools. Similar experiments in year 3 will be carried out using natural plankton populations from a coastal site where diatoms contribute a significant proportion to the biomass.\nThe proposed research will increase our understanding of the ecology and physiology of one of the dominant groups of primary producers on Earth. EPS are a central aspect of diatom biology, though the physiology, function and broader ecosystem impacts of EPS production remain unknown. This research will determine how temperature, light limitation, and nutrient limitation affect the partitioning of production between dissolved, gel, and particulate phases in the ocean. Measurements of plankton stickiness (alpha) under different conditions will be important to model aggregation processes in the ocean as alpha is an important (and variable) term in coagulation models. Determining how carbon is cycled between the ocean, atmosphere and lithosphere is key to understanding climate change on both geological and human time scales. This is a major societal issue as atmospheric CO2 concentrations are steadily increasing, correlating with a 0.6 C rise in global average temperature during the last century. This research will address potential feedbacks between warming of the surface ocean, diatom ecophysiology and the biological carbon pump.\nRelated Publications:\nRzadkowolski, Charles E. and Thornton, Daniel C. O. (2012) Using laser scattering to identify diatoms and conduct aggregation experiments. Eur. J. Phycol., 47(1): 30-41. DOI: 10.1080/09670262.2011.646314\nThornton, Daniel C. O. (2009) Effect of Low pH on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri). Research Letters in Ecology, vol. 2009, Article ID 105901, 4 pages. DOI: 10.1155/2009/105901\nThornton, D.C.O. (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology 49: 20-46. DOI: 10.1080/09670262.2013.875596\nThornton, D.C.O., Visser, L.A. (2009) Measurement of acid polysaccharides (APS) associated with microphytobenthos in salt marsh sediments. Aquat Microb Ecol 54:185-198. DOI: 10.3354/ame01265
attribute NC_GLOBAL projects_0_end_date String 2012-08
attribute NC_GLOBAL projects_0_geolocation String O&M Building, Texas A&M University, College Station, TX 77840
attribute NC_GLOBAL projects_0_name String Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms
attribute NC_GLOBAL projects_0_project_nid String 2255
attribute NC_GLOBAL projects_0_start_date String 2007-09
attribute NC_GLOBAL publisher_name String Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
attribute NC_GLOBAL publisher_type String institution
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL standard_name_vocabulary String CF Standard Name Table v55
attribute NC_GLOBAL summary String Data from laboratory experiment on exopolymer and carbohydrate production by\nthe diatoms Thalassiosira weissflogii (CCMP 1051), Skeletonema marinoi (CCMP\n1332), and Cylindrotheca closterium (CCMP 339) during the growth to death\nphases of the cultures.\n \nRelated references:  \n Chen, J. 2014. Factors affecting carbohydrate production and the formation\nof transparent exopolymer particles (TEP) by diatoms. Ph.D. dissertation,\nTexas A&M University, College Station, TX.
attribute NC_GLOBAL title String [growth phase exopolymers] - Experimental results: Exopolymer and carbohydrate production by diatoms with growth; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms)
attribute NC_GLOBAL version String 1
attribute NC_GLOBAL xml_source String osprey2erddap.update_xml() v1.3
variable species String
attribute species bcodmo_name String species
attribute species description String Species name.
attribute species long_name String Species
attribute species units String dimensionless
variable growth_phase String
attribute growth_phase bcodmo_name String unknown
attribute growth_phase description String Growth phase of the diatom (exponential, stationary, declining, death).
attribute growth_phase long_name String Growth Phase
attribute growth_phase units String dimensionless
variable day byte
attribute day _FillValue byte 127
attribute day actual_range byte 6, 43
attribute day bcodmo_name String unknown
attribute day description String Day of the experiment.
attribute day long_name String Day
attribute day units String dimensionless
variable culture byte
attribute culture _FillValue byte 127
attribute culture actual_range byte 1, 3
attribute culture bcodmo_name String replicate
attribute culture description String Identifier of the culture replicate.
attribute culture long_name String Culture
attribute culture units String dimensionless
variable cell_abundance float
attribute cell_abundance _FillValue float NaN
attribute cell_abundance actual_range float 22700.0, 560970.0
attribute cell_abundance bcodmo_name String diatom
attribute cell_abundance description String Cell count. Counts of 400 cells were made by transmitted light microscopy using a hemacytometer (Fuchs-Rosenthal ruling Hauser Scientific) (Guillard & Sieracki 2005).
attribute cell_abundance long_name String Cell Abundance
attribute cell_abundance units String cells per milliliter (mL-1)
variable cell_vol_mean float
attribute cell_vol_mean _FillValue float NaN
attribute cell_vol_mean actual_range float 21.73, 567.15
attribute cell_vol_mean bcodmo_name String unknown
attribute cell_vol_mean description String Mean cell volume calculated assuming that both T. wessiflogii and S. marinoi were cylinders. The volume of Cylindrotheca closterium was estimated assuming that its shape was equivalent to two cones.
attribute cell_vol_mean long_name String Cell Vol Mean
attribute cell_vol_mean units String cubic micrometers (um^3)
variable chla float
attribute chla _FillValue float NaN
attribute chla actual_range float 0.02, 366.79
attribute chla bcodmo_name String chlorophyll a
attribute chla colorBarMaximum double 30.0
attribute chla colorBarMinimum double 0.03
attribute chla colorBarScale String Log
attribute chla description String Concentration of chlorophyll a measured by fluorescence (Arar & Collins 1997; Method 445.0. EPA).
attribute chla long_name String Concentration Of Chlorophyll In Sea Water
attribute chla nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/ (external link)
attribute chla units String micrograms per liter (ug L-1)
variable chla_per_cell float
attribute chla_per_cell _FillValue float NaN
attribute chla_per_cell actual_range float 0.0, 5.14
attribute chla_per_cell bcodmo_name String unknown
attribute chla_per_cell colorBarMaximum double 30.0
attribute chla_per_cell colorBarMinimum double 0.03
attribute chla_per_cell colorBarScale String Log
attribute chla_per_cell description String Concentration of chlorophyll a per cell.
attribute chla_per_cell long_name String Concentration Of Chlorophyll In Sea Water
attribute chla_per_cell units String picograms per cell (pg cell-1)
variable chla_per_cell_vol float
attribute chla_per_cell_vol _FillValue float NaN
attribute chla_per_cell_vol actual_range float 0.0, 94.0
attribute chla_per_cell_vol bcodmo_name String unknown
attribute chla_per_cell_vol colorBarMaximum double 30.0
attribute chla_per_cell_vol colorBarMinimum double 0.03
attribute chla_per_cell_vol colorBarScale String Log
attribute chla_per_cell_vol description String Concentration of chlorophyll a per cell volume.
attribute chla_per_cell_vol long_name String Concentration Of Chlorophyll In Sea Water
attribute chla_per_cell_vol units String femtograms per cubic micrometer (fg um-3)
variable tot_carb float
attribute tot_carb _FillValue float NaN
attribute tot_carb actual_range float 1.95, 52.48
attribute tot_carb bcodmo_name String unknown
attribute tot_carb description String Total carbohydrate concentration measured using the PSA method (Dubois et al. 1956).
attribute tot_carb long_name String Tot Carb
attribute tot_carb units String micrograms per milliliter (ug mL-1)
variable tot_carb_per_cell float
attribute tot_carb_per_cell _FillValue float NaN
attribute tot_carb_per_cell actual_range float 8.52, 496.09
attribute tot_carb_per_cell bcodmo_name String unknown
attribute tot_carb_per_cell description String Total carbohydrate concentration per cell.
attribute tot_carb_per_cell long_name String Tot Carb Per Cell
attribute tot_carb_per_cell units String picograms per cell (pg cell-1)
variable tot_carb_per_cell_vol float
attribute tot_carb_per_cell_vol _FillValue float NaN
attribute tot_carb_per_cell_vol actual_range float 62.44, 16122.66
attribute tot_carb_per_cell_vol bcodmo_name String unknown
attribute tot_carb_per_cell_vol description String Total carbohydrate concentration per cell volume.
attribute tot_carb_per_cell_vol long_name String Tot Carb Per Cell Vol
attribute tot_carb_per_cell_vol units String femtograms per cubic micrometer (fg um-3)
variable colloidal_carb double
attribute colloidal_carb _FillValue double NaN
attribute colloidal_carb actual_range double 0.01, 26.31
attribute colloidal_carb bcodmo_name String unknown
attribute colloidal_carb description String Colloidal carbohydrate concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The colloidal carbohydrate fractions were measured using the PSA method (Dubois et al. 1956).
attribute colloidal_carb long_name String Colloidal Carb
attribute colloidal_carb units String micrograms per milliliter (ug mL-1)
variable collodial_per_cell float
attribute collodial_per_cell _FillValue float NaN
attribute collodial_per_cell actual_range float 0.05, 684.56
attribute collodial_per_cell bcodmo_name String unknown
attribute collodial_per_cell description String Colloidal carbohydrate concentration per cell.
attribute collodial_per_cell long_name String Collodial Per Cell
attribute collodial_per_cell units String picograms per cell (pg cell-1)
variable colloidal_per_cell_vol float
attribute colloidal_per_cell_vol _FillValue float NaN
attribute colloidal_per_cell_vol actual_range float 0.2, 18219.25
attribute colloidal_per_cell_vol bcodmo_name String unknown
attribute colloidal_per_cell_vol description String Colloidal carbohydrate concentration per cell volume.
attribute colloidal_per_cell_vol long_name String Colloidal Per Cell Vol
attribute colloidal_per_cell_vol units String femtograms per cubic micrometer (fg um-3)
variable EPS_carb float
attribute EPS_carb _FillValue float NaN
attribute EPS_carb actual_range float 0.17, 4.14
attribute EPS_carb bcodmo_name String unknown
attribute EPS_carb description String Exopolymer (EPS) carbohydrate concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The EPS carbohydrate fractions were measured using the PSA method (Dubois et al. 1956).
attribute EPS_carb long_name String EPS Carb
attribute EPS_carb units String micrograms per milliliter (ug mL-1)
variable EPS_carb_per_cell float
attribute EPS_carb_per_cell _FillValue float NaN
attribute EPS_carb_per_cell actual_range float 0.61, 49.57
attribute EPS_carb_per_cell bcodmo_name String unknown
attribute EPS_carb_per_cell description String Exopolymer (EPS) carbohydrate concentration per cell.
attribute EPS_carb_per_cell long_name String EPS Carb Per Cell
attribute EPS_carb_per_cell units String picograms per cell (pg cell-1)
variable EPS_carb_per_cell_vol float
attribute EPS_carb_per_cell_vol _FillValue float NaN
attribute EPS_carb_per_cell_vol actual_range float 2.07, 1043.18
attribute EPS_carb_per_cell_vol bcodmo_name String unknown
attribute EPS_carb_per_cell_vol description String Exopolymer (EPS) carbohydrate concentration per cell volume.
attribute EPS_carb_per_cell_vol long_name String EPS Carb Per Cell Vol
attribute EPS_carb_per_cell_vol units String femtograms per cubic micrometer (fg um-3)
variable HW_carb float
attribute HW_carb _FillValue float NaN
attribute HW_carb actual_range float 0.12, 29.05
attribute HW_carb bcodmo_name String unknown
attribute HW_carb description String Intracellular carbohydrate (hot water (HW) extraction) concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The HW carbohydrate fractions were measured using the PSA method (Dubois et al. 1956).
attribute HW_carb long_name String HW Carb
attribute HW_carb units String micrograms per milliliter (ug mL-1)
variable HW_carb_per_cell float
attribute HW_carb_per_cell _FillValue float NaN
attribute HW_carb_per_cell actual_range float 1.88, 170.88
attribute HW_carb_per_cell bcodmo_name String unknown
attribute HW_carb_per_cell description String Intracellular carbohydrate (hot water (HW) extraction) concentration per cell.
attribute HW_carb_per_cell long_name String HW Carb Per Cell
attribute HW_carb_per_cell units String picograms per cell (pg cell-1)
variable HW_carb_per_cell_vol float
attribute HW_carb_per_cell_vol _FillValue float NaN
attribute HW_carb_per_cell_vol actual_range float 7.93, 1752.36
attribute HW_carb_per_cell_vol bcodmo_name String unknown
attribute HW_carb_per_cell_vol description String Intracellular carbohydrate (hot water (HW) extraction) concentration per cell volume.
attribute HW_carb_per_cell_vol long_name String HW Carb Per Cell Vol
attribute HW_carb_per_cell_vol units String femtograms per cubic micrometer (fg um-3)
variable HB_carb float
attribute HB_carb _FillValue float NaN
attribute HB_carb actual_range float 0.24, 9.08
attribute HB_carb bcodmo_name String unknown
attribute HB_carb description String Cell-wall associated carbohydrate (hot bicarbonate (HB) extraction) concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The HB carbohydrate fractions were measured using the PSA method (Dubois et al. 1956).
attribute HB_carb long_name String HB Carb
attribute HB_carb units String micrograms per milliliter (ug mL-1)
variable HB_carb_per_cell float
attribute HB_carb_per_cell _FillValue float NaN
attribute HB_carb_per_cell actual_range float 0.93, 135.08
attribute HB_carb_per_cell bcodmo_name String unknown
attribute HB_carb_per_cell description String Cell-wall associated carbohydrate (hot bicarbonate (HB) extraction) concentration per cell.
attribute HB_carb_per_cell long_name String HB Carb Per Cell
attribute HB_carb_per_cell units String picograms per cell (pg cell-1)
variable HB_carb_per_cell_vol float
attribute HB_carb_per_cell_vol _FillValue float NaN
attribute HB_carb_per_cell_vol actual_range float 10.0, 3951.35
attribute HB_carb_per_cell_vol bcodmo_name String unknown
attribute HB_carb_per_cell_vol description String Cell-wall associated carbohydrate (hot bicarbonate (HB) extraction) concentration per cell volume.
attribute HB_carb_per_cell_vol long_name String HB Carb Per Cell Vol
attribute HB_carb_per_cell_vol units String femtograms per cubic micrometer (fg um-3)
variable residual_carb float
attribute residual_carb _FillValue float NaN
attribute residual_carb actual_range float 0.11, 5.07
attribute residual_carb bcodmo_name String unknown
attribute residual_carb description String Residual carbohydrate concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The residual carbohydrate fractions were measured using the PSA method (Dubois et al. 1956).
attribute residual_carb long_name String Residual Carb
attribute residual_carb units String micrograms per milliliter (ug mL-1)
variable residual_carb_per_cell float
attribute residual_carb_per_cell _FillValue float NaN
attribute residual_carb_per_cell actual_range float 0.33, 50.91
attribute residual_carb_per_cell bcodmo_name String unknown
attribute residual_carb_per_cell description String Residual carbohydrate concentration per cell.
attribute residual_carb_per_cell long_name String Residual Carb Per Cell
attribute residual_carb_per_cell units String picograms per cell (pg cell-1)
variable residual_carb_per_cell_vol float
attribute residual_carb_per_cell_vol _FillValue float NaN
attribute residual_carb_per_cell_vol actual_range float 1.36, 738.83
attribute residual_carb_per_cell_vol bcodmo_name String unknown
attribute residual_carb_per_cell_vol description String Residual carbohydrate concentration per cell volume.
attribute residual_carb_per_cell_vol long_name String Residual Carb Per Cell Vol
attribute residual_carb_per_cell_vol units String femtograms per cubic micrometer (fg um-3)
variable TPTZ_intracell_mono float
attribute TPTZ_intracell_mono _FillValue float NaN
attribute TPTZ_intracell_mono actual_range float 0.02, 1.82
attribute TPTZ_intracell_mono bcodmo_name String unknown
attribute TPTZ_intracell_mono description String Intracellular monosaccharide concentration determined using the TPTZ method (Myklestad et al. 1997).
attribute TPTZ_intracell_mono long_name String TPTZ Intracell Mono
attribute TPTZ_intracell_mono units String micrograms per milliliter (ug mL-1)
variable TPTZ_extracell_mono float
attribute TPTZ_extracell_mono _FillValue float NaN
attribute TPTZ_extracell_mono actual_range float 0.09, 0.97
attribute TPTZ_extracell_mono bcodmo_name String unknown
attribute TPTZ_extracell_mono description String Extracellular monosaccharide concentration determined using the TPTZ method (Myklestad et al. 1997).
attribute TPTZ_extracell_mono long_name String TPTZ Extracell Mono
attribute TPTZ_extracell_mono units String micrograms per milliliter (ug mL-1)
variable TPTZ_intracell_polysacc float
attribute TPTZ_intracell_polysacc _FillValue float NaN
attribute TPTZ_intracell_polysacc actual_range float 0.2, 7.75
attribute TPTZ_intracell_polysacc bcodmo_name String unknown
attribute TPTZ_intracell_polysacc description String Intracellular polysaccharide concentration determined using the TPTZ method (Myklestad et al. 1997).
attribute TPTZ_intracell_polysacc long_name String TPTZ Intracell Polysacc
attribute TPTZ_intracell_polysacc units String micrograms per milliliter (ug mL-1)
variable TPTZ_extracell_polysacc float
attribute TPTZ_extracell_polysacc _FillValue float NaN
attribute TPTZ_extracell_polysacc actual_range float 0.04, 2.31
attribute TPTZ_extracell_polysacc bcodmo_name String unknown
attribute TPTZ_extracell_polysacc description String Extracellular polysaccharide concentration  determined using the TPTZ method (Myklestad et al. 1997).
attribute TPTZ_extracell_polysacc long_name String TPTZ Extracell Polysacc
attribute TPTZ_extracell_polysacc units String micrograms per milliliter (ug mL-1)
variable TEP_conc_mean double
attribute TEP_conc_mean _FillValue double NaN
attribute TEP_conc_mean actual_range double 754623.41, 5.429096222E7
attribute TEP_conc_mean bcodmo_name String unknown
attribute TEP_conc_mean description String Mean transparent exopolymer particle (TEP) concentration. TEP retained on 0.4 polycarbonate filters and stained with Alcian blue (Alldredge et al. 1993).
attribute TEP_conc_mean long_name String TEP Conc Mean
attribute TEP_conc_mean units String TEP per milliliter (TEP mL-1)
variable TEP_mean_size float
attribute TEP_mean_size _FillValue float NaN
attribute TEP_mean_size actual_range float 62.13, 1059.08
attribute TEP_mean_size bcodmo_name String unknown
attribute TEP_mean_size description String Mean size of Transparent exopolymer particles (TEP).
attribute TEP_mean_size long_name String TEP Mean Size
attribute TEP_mean_size units String square micrometers (um^2)
variable tot_TEP_area float
attribute tot_TEP_area _FillValue float NaN
attribute tot_TEP_area actual_range float 89.68, 8358.71
attribute tot_TEP_area bcodmo_name String unknown
attribute tot_TEP_area description String Total TEP area.
attribute tot_TEP_area long_name String Tot TEP Area
attribute tot_TEP_area units String square millimeters per milliliter (mm^2 mL-1)
variable CSP_conc_mean double
attribute CSP_conc_mean _FillValue double NaN
attribute CSP_conc_mean actual_range double 227584.84, 1.766777039E7
attribute CSP_conc_mean bcodmo_name String unknown
attribute CSP_conc_mean description String Mean coomassie staining particle (CSP) concentration. CSP retained on 0.4 polycarbonate filters and stained with Coomassie briliant blue blue (Long & Azam 1996).
attribute CSP_conc_mean long_name String CSP Conc Mean
attribute CSP_conc_mean units String CSP per milliliter (mL-1)
variable CSP_mean_size float
attribute CSP_mean_size _FillValue float NaN
attribute CSP_mean_size actual_range float 30.41, 411.4
attribute CSP_mean_size bcodmo_name String unknown
attribute CSP_mean_size description String Mean size of coomassie staining particle (CSP).
attribute CSP_mean_size long_name String CSP Mean Size
attribute CSP_mean_size units String square micrometers (um^2)
variable tot_CSP_area float
attribute tot_CSP_area _FillValue float NaN
attribute tot_CSP_area actual_range float 12.69, 5529.74
attribute tot_CSP_area bcodmo_name String unknown
attribute tot_CSP_area description String Total CSP area.
attribute tot_CSP_area long_name String Tot CSP Area
attribute tot_CSP_area units String square millimeters per milliliter (mm^2 mL-1)
variable stained_cells_pcnt float
attribute stained_cells_pcnt _FillValue float NaN
attribute stained_cells_pcnt actual_range float 2.5, 95.5
attribute stained_cells_pcnt bcodmo_name String unknown
attribute stained_cells_pcnt description String % of SYTOX Green stained cells. Cell permeability was determined by SYTOX Green staining (Veldhuis et al. 1997). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated.
attribute stained_cells_pcnt long_name String Stained Cells Pcnt
attribute stained_cells_pcnt units String percent (%)
variable bacteria double
attribute bacteria _FillValue double NaN
attribute bacteria actual_range double 5356.54, 648811.25
attribute bacteria bcodmo_name String bact_abundance
attribute bacteria description String Bacteria abundance determined by DAPI staining and counts using an epifluorescence microscope (Porter & Feig 1980).
attribute bacteria long_name String Bacteria
attribute bacteria nerc_identifier String https://vocab.nerc.ac.uk/collection/P02/current/BNTX (external link)
attribute bacteria units String cells per milliliter (mL-1)
variable bact_per_diatom float
attribute bact_per_diatom _FillValue float NaN
attribute bact_per_diatom actual_range float 0.03, 25.04
attribute bact_per_diatom bcodmo_name String unknown
attribute bact_per_diatom description String Bacteria abundance per diatom.
attribute bact_per_diatom long_name String Bact Per Diatom
attribute bact_per_diatom units String dimensionless

 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact