BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | access_formats | String | .htmlTable,.csv,.json,.mat,.nc,.tsv |
attribute | NC_GLOBAL | acquisition_description | String | Growth of the diatoms \n The diatoms Thalassiosira weissflogii (CCMP 1051), Skeletonema marinoi (CCMP\n1332), and Cylindrotheca closterium (CCMP 339) were grown in artificial\nseawater (Berges et al. 2001) in batch culture at 20 \\u00b0C with 100\n\\u00b5M\\u00a0 NaNO3, 200 \\u00b5M of NaH2PO4\\u00b7H2O, and 200 \\u00b5M of\nNa2SiO3\\u00b79H2O. Illumination was on a 14 h:10 h light:dark cycle at a\nphoton flux density of 160 \\u00b5mol m-2 s-1. There were three replicate\ncultures. Cultures were sampled during both the growth and death of the\ncultures over several weeks.\n \nMeasures of diatom abundance and biomass \n Counts of 400 cells from each culture were made using a hemacytometer\n(Fuchs-Rosenthal ruling, Hauser Scientific) (Guillard and Sieracki 2005) from\nsamples preserved in Lugol\\u2019s iodine (Parsons et al. 1984) using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Turbidity of the cultures,\nused as an indicator of growth, was measured by absorbance at 750 nm in a 1 cm\npath cuvette using a UV-Mini 1240 spectrophotometer (Shimadzu Corporation).\n \nCell volume was determined using live cells (Menden-Deuer and Lessard 2000).\nThe volume of 25 diatoms from each replicate culture was determined by\nmeasuring cell length (pervalver length) and width (valver length) at 400x\nmagnification using a light microscope (Axioplan 2, Carl Zeiss MicroImaging).\nCell volume was calculated based on the assumption that both T. wessiflogii\nand S. marinoi were cylinders. The volume of Cylindrotheca closterium was\nestimated assuming that its shape was equivalent to two cones.\n \nChlorophyll a concentration 90% acetone extractions from biomass retained on\nGF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was\ncalibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997). The\nextract was diluted with 90% acetone if the chl a concentration were too high.\n \nBacteria abundance \n Bacteria (400 cells) were counted using an epifluorescence microscope\n(Axioplan 2, Carl Zeiss MicroImaging) after staining with\n4'6-diamidino-2-phenylindole dihydrochloride (DAPI) (Porter and Feig 1980) at\na final concentration of 0.25 \\u00b5g ml-1.\n \nCarbohydrate analysis \n Two spectrophotometric methods were used to measure carbohydrates, the\nphenol sulfuric acid (PSA) method (Dubois et al. 1956) and the 2, 4,\n6-tripyridyl-s-triazine (TPTZ) method (Myklestad et al. 1997). The color\nproduced by both methods was measured in 1 cm path length cuvette using UV-\nMini 1240 spectrophotometer (Shimadzu Corporation). Both methods were\ncalibrated using D-glucose and the results are expressed as D-glucose\nequivalents. Different fractions of carbohydrate were extracted from the\ncultures using methods described in Underwood et al. (1995) and Underwood et\nal. (2004): total, colloidal, exopolymers (EPS), intracellular carbohydrate\n(hot water (HW) extraction), cell-wall associated carbohydrates (hot\nbicarbonate (HB) extraction), and residual. These carbohydrate fractions were\nmeasured using the PSA method. The TPTZ method was used to measure the\nintracellular and extracellular monosaccharide pools and the intracellular and\nextracellular polysaccharide pools after acid hydrolysis of the sample.\n \nCell permeability \n Uptake and staining with the membrane-impermeable SYTOX Green (Invitrogen)\nwas used to determine what proportion of the diatom population had permeable\ncell membranes (Veldhuis et al. 2001, Franklin et al. 2012). Four hundred\ncells were examined using an epifluorescence microscope (Axioplan 2, Carl\nZeiss MicroImaging) and the number of cells that stained with SYTOX Green was\nenumerated.\n \nTEP staining and analysis \n Transparent exopolymer particles (TEP) were sampled according to Alldredge\net al. (1993) and TEP abundance was enumerated by image analysis (Logan et al.\n1994, Engel 2009). Ten photomicrographs were taken of each slide using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Images were analyzed using\nImageJ software (National Institutes of Health) based on the method of Engel\n(2009). Thresholding during image processing was done using the triangle\nmethod (Zack et al. 1977).\n \nCSP staining and analysis \n Coomassie staining particles (CSP) were sampled according to Long and Azam\net al. (1996) and CSP abundance was enumerated by image analysis (Logan et al.\n1994, Engel 2009). Ten photomicrographs were taken of each slide using a light\nmicroscope (Axioplan 2, Carl Zeiss MicroImaging). Images were analyzed using\nImageJ software (National Institutes of Health) based on the method of Engel\n(2009). Thresholding during image processing was done using the triangle\nmethod (Zack et al. 1977).\n \nReferences cited \n Alldredge, A. L., Passow, U. & Logan B. E. 1993. The abundance and\nsignificance of a class of large, transparent organic particles in the ocean.\nDeep-Sea Res. Oceanogr., I. 40: 1131-1140.\ndoi:[10.1016/0967-0637(93)90129-Q](\\\\\"https://dx.doi.org/10.1016/0967-0637%2893%2990129-Q\\\\\")\n \nArar, E. J. & Collins, G. B. 1997. Method 445.0. In Vitro Determination of\nChlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence\nU.S. Environmental Protection Agency, Cincinnati, Ohio.\n \nBerges, J. A., Franklin D. J. & Harrison, P. J. 2001. Evolution of an\nartificial seawater medium: Improvements in enriched seawater, artificial\nwater over the last two decades. J. Phycol. 37:1138-1145.\ndoi:[10.1046/j.1529-8817.2001.01052.x](\\\\\"https://dx.doi.org/10.1046/j.1529-8817.2001.01052.x\\\\\")\n \nDubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956.\nColorimetric method for determination of sugars and related substances. Anal.\nChem. 28: 350\\u2013356.\ndoi:[10.1021/ac60111a017](\\\\\"https://dx.doi.org/10.1021/ac60111a017\\\\\")\n \nEngel, A. 2009. Determination of Marine Gel Particles. In Wurl, O. [Ed.]\nPractical Guidelines for the Analysis of Seawater. CRC Press, Taylor & Francis\nGroup, Boca Raton, Florida, pp.125-142.\n \nFranklin, D. J., Airs, R. L., Fernandes, M., Bell, T. G., Bongaerts, R. J.,\nBerges, J. A. & Malin, G. 2012. Identification of senescence and death in\nEmiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll\nalterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol.\nOceanogr. 57: 305\\u2013317. doi:10.4319/lo.2012.57.1.0305\n \nGuillard, R. R. L. & Sieracki, M. S. 2005. Counting cells in cultures with the\nlight microscope. In Andersen R. A. [Ed.] Algal Culturing Techniques. Elsevier\nAcademic Press, Burlington, MA, pp. 239-252.\n \nLogan, B. E., Grossart, H. P. & Simon, M. 1994. Direct observation of\nphytoplankton, TEP and aggregates on polycarbonate filters using brightfield\nmicroscopy. J. Plankton Res.16:\n1811-1815.doi:[10.1093/plankt/16.12.1811](\\\\\"https://dx.doi.org/10.1093/plankt/16.12.1811\\\\\")\n \nMenden-Deuer S. & Lessard, E. J. 2000. Carbon to volume relationships for\ndinoflagellates, diatoms, and other protists plankton. Limnol. Oceanogr. 45:\n569- 579.\ndoi:[10.4319/lo.2000.45.3.0569](\\\\\"https://dx.doi.org/10.4319/lo.2000.45.3.0569\\\\\")\n \nMyklestad, S. M., Skanoy, E., Hestmann S. 1997. A sensitive and rapid method\nfor analysis of dissolved mono- and polysaccharides in seawater. Marine\nChemistry 56: 279-286.\ndoi:[10.1016/S0304-4203(96)00074-6](\\\\\"https://dx.doi.org/10.1016/S0304-4203\\(96\\)00074-6\\\\\")\n \nParsons, T. R., Maita, Y. & Lalli, C. M. 1984. A Manual of Chemical and\nBiological Methods for Seawater Analysis. Pergamon Press, Oxford, UK.\n \nPassow, U. & Alldredge, A. L. 1995. A dye-binding assay for the\nspectrophotometric measurement of transparent exopolymer particles (TEP).\nLimnol. Oceanogr. 40: 1326-1335.\ndoi:[10.4319/lo.1995.40.7.1326](\\\\\"https://dx.doi.org/10.4319/lo.1995.40.7.1326\\\\\")\n \nPorter, K. G. & Feig, Y. S. 1980. The use of DAPI for identifying and counting\naquatic microflora. Limnol. Oceanogr. 25:943\\u2013948.\ndoi:[10.4319/lo.1980.25.5.0943](\\\\\"https://dx.doi.org/10.4319/lo.1980.25.5.0943\\\\\")\n \nUnderwood, G. J. C., Paterson D. M., Parkes R. J. 1995. The measurement of\nmicrobial carbohydrate exopolymers from intertidal sediments. Limnol.\nOceanogr. 40: 1243-1253.\ndoi:[10.4319/lo.1995.40.7.1243](\\\\\"https://dx.doi.org/10.4319/lo.1995.40.7.1243\\\\\")\n \nUnderwood, G. J. C., Boulcott, M., Raines, C. A., Waldron K. 2004.\nEnvironmental effects on exopolymer production by marine benthic diatoms:\nDynamics, changes in composition, and pathways of production. J. Phycol. 40:\n293-304.\ndoi:[10.1111/j.1529-8817.2004.03076.x](\\\\\"https://dx.doi.org/10.1111/j.1529-8817.2004.03076.x\\\\\")\n \nVeldhuis, M. J. W., Kraay, G. W. & Timmermans, K. R. 2001. Cell death in\nphytoplankton: correlation between changes in membrane permeability,\nphotosynthetic activity, pigmentation and growth. Eur. J. Phycol. 36:\n167\\u2013177.\ndoi:[10.1080/09670260110001735318](\\\\\"https://dx.doi.org/10.1080/09670260110001735318\\\\\")\n \nZack, G. W., Rogers, W.E., Latt S. A. 1977. Automatic-measurement of sister\nchromatid exchange frequency, J. Histochem. Cytochem., 25(7), 741-753.\ndoi:[10.1177/25.7.70454](\\\\\"https://dx.doi.org/10.1177/25.7.70454\\\\\") |
attribute | NC_GLOBAL | awards_0_award_nid | String | 55158 |
attribute | NC_GLOBAL | awards_0_award_number | String | OCE-0726369 |
attribute | NC_GLOBAL | awards_0_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0726369 |
attribute | NC_GLOBAL | awards_0_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_0_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_0_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_0_program_manager | String | David L. Garrison |
attribute | NC_GLOBAL | awards_0_program_manager_nid | String | 50534 |
attribute | NC_GLOBAL | cdm_data_type | String | Other |
attribute | NC_GLOBAL | comment | String | Growth phase exopolymer and carbohydrate production by diatoms \n PI: Daniel C.O. Thornton (Texas A&M) \n Version: 16 April 2014 |
attribute | NC_GLOBAL | Conventions | String | COARDS, CF-1.6, ACDD-1.3 |
attribute | NC_GLOBAL | creator_email | String | info at bco-dmo.org |
attribute | NC_GLOBAL | creator_name | String | BCO-DMO |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | creator_url | String | https://www.bco-dmo.org/ |
attribute | NC_GLOBAL | data_source | String | extract_data_as_tsv version 2.3 19 Dec 2019 |
attribute | NC_GLOBAL | date_created | String | 2014-04-16T15:19:09Z |
attribute | NC_GLOBAL | date_modified | String | 2019-11-21T18:09:10Z |
attribute | NC_GLOBAL | defaultDataQuery | String | &time<now |
attribute | NC_GLOBAL | doi | String | 10.1575/1912/bco-dmo.511526.1 |
attribute | NC_GLOBAL | infoUrl | String | https://www.bco-dmo.org/dataset/511526 |
attribute | NC_GLOBAL | institution | String | BCO-DMO |
attribute | NC_GLOBAL | instruments_0_acronym | String | UV Spectrophotometer-Shimadzu |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_description | String | Turbidity of the cultures was measured by absorbance at 750 nm in a 1 cm path cuvette using a UV-Mini 1240 spectrophotometer (Shimadzu Corporation). Two spectrophotometric methods were used to measure carbohydrates, the phenol sulfuric acid (PSA) method (Dubois et al. 1956) and the 2, 4, 6-tripyridyl-s-triazine (TPTZ) method (Myklestad et al. 1997). The color produced by both methods was measured in 1 cm path length cuvette using UV-Mini 1240 spectrophotometer (Shimadzu Corporation). |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_nid | String | 511581 |
attribute | NC_GLOBAL | instruments_0_description | String | The Shimadzu UV Spectrophotometer is manufactured by Shimadzu Scientific Instruments (ssi.shimadzu.com). Shimadzu manufacturers several models of spectrophotometer; refer to dataset for make/model information. |
attribute | NC_GLOBAL | instruments_0_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB20/ |
attribute | NC_GLOBAL | instruments_0_instrument_name | String | UV Spectrophotometer-Shimadzu |
attribute | NC_GLOBAL | instruments_0_instrument_nid | String | 595 |
attribute | NC_GLOBAL | instruments_0_supplied_name | String | UV-Mini 1240 Spectrophotometer |
attribute | NC_GLOBAL | instruments_1_acronym | String | TD-700 |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_description | String | Chlorophyll a concentration 90% acetone extractions from biomass retained on GF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was calibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997). |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_nid | String | 511582 |
attribute | NC_GLOBAL | instruments_1_description | String | The TD-700 Laboratory Fluorometer is a benchtop fluorometer designed to detect fluorescence over the UV to red range. The instrument can measure concentrations of a variety of compounds, including chlorophyll-a and fluorescent dyes, and is thus suitable for a range of applications, including chlorophyll, water quality monitoring and fluorescent tracer studies. Data can be output as concentrations or raw fluorescence measurements. |
attribute | NC_GLOBAL | instruments_1_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L22/current/TOOL0510/ |
attribute | NC_GLOBAL | instruments_1_instrument_name | String | Turner Designs 700 Laboratory Fluorometer |
attribute | NC_GLOBAL | instruments_1_instrument_nid | String | 694 |
attribute | NC_GLOBAL | instruments_1_supplied_name | String | Turner Designs 700 Fluorometer |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_description | String | Bacteria were counted and cell permeability was determined using an epifluorescence microscope (Axioplan 2, Carl Zeiss MicroImaging). |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_nid | String | 511583 |
attribute | NC_GLOBAL | instruments_2_description | String | Instruments that generate enlarged images of samples using the phenomena of fluorescence and phosphorescence instead of, or in addition to, reflection and absorption of visible light. Includes conventional and inverted instruments. |
attribute | NC_GLOBAL | instruments_2_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB06/ |
attribute | NC_GLOBAL | instruments_2_instrument_name | String | Microscope-Fluorescence |
attribute | NC_GLOBAL | instruments_2_instrument_nid | String | 695 |
attribute | NC_GLOBAL | instruments_2_supplied_name | String | Epifluorescence Microscope |
attribute | NC_GLOBAL | instruments_3_acronym | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_description | String | Counts of 400 cells from each culture were made using a hemocytometer (Fuchs-Rosenthal ruling, Hauser Scientific) (Guillard and Sieracki 2005) from samples preserved in Lugol’s iodine (Parsons et al. 1984) using a light microscope. |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_nid | String | 511579 |
attribute | NC_GLOBAL | instruments_3_description | String | A hemocytometer is a small glass chamber, resembling a thick microscope slide, used for determining the number of cells per unit volume of a suspension. Originally used for performing blood cell counts, a hemocytometer can be used to count a variety of cell types in the laboratory. Also spelled as \"haemocytometer\". Description from:\nhttp://hlsweb.dmu.ac.uk/ahs/elearning/RITA/Haem1/Haem1.html. |
attribute | NC_GLOBAL | instruments_3_instrument_name | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_3_instrument_nid | String | 704 |
attribute | NC_GLOBAL | instruments_3_supplied_name | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_description | String | Counts of 400 cells from each culture were made using a hemacytometer (Fuchs-Rosenthal ruling, Hauser Scientific) (Guillard and Sieracki 2005) from samples preserved in Lugol’s iodine (Parsons et al. 1984) using a light microscope (Axioplan 2, Carl Zeiss MicroImaging). A light microscope was also used to determine cell volume and to enumerate TEP and CSP by image analysis. |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_nid | String | 511580 |
attribute | NC_GLOBAL | instruments_4_description | String | Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a \"light microscope\". |
attribute | NC_GLOBAL | instruments_4_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ |
attribute | NC_GLOBAL | instruments_4_instrument_name | String | Microscope-Optical |
attribute | NC_GLOBAL | instruments_4_instrument_nid | String | 708 |
attribute | NC_GLOBAL | instruments_4_supplied_name | String | Light Microscope |
attribute | NC_GLOBAL | keywords | String | abundance, area, bact, bact_per_diatom, bacteria, bco, bco-dmo, biological, carb, cell, cell_abundance, cell_vol_mean, cells, chemical, chemistry, chla, chla_per_cell, chla_per_cell_vol, chlorophyll, chlorophyll-a, collodial, collodial_per_cell, colloidal, colloidal_carb, colloidal_per_cell_vol, conc, concentration, concentration_of_chlorophyll_in_sea_water, csp, CSP_conc_mean, CSP_mean_size, culture, data, dataset, day, diatom, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, eps, EPS_carb, EPS_carb_per_cell, EPS_carb_per_cell_vol, erddap, extracell, growth, growth_phase, HB_carb, HB_carb_per_cell, HB_carb_per_cell_vol, HW_carb, HW_carb_per_cell, HW_carb_per_cell_vol, intracell, management, mean, mono, ocean, oceanography, oceans, office, pcnt, per, phase, polysacc, preliminary, residual, residual_carb, residual_carb_per_cell, residual_carb_per_cell_vol, science, sea, seawater, size, species, stained, stained_cells_pcnt, tep, TEP_conc_mean, TEP_mean_size, tot, tot_carb, tot_carb_per_cell, tot_carb_per_cell_vol, tot_CSP_area, tot_TEP_area, tptz, TPTZ_extracell_mono, TPTZ_extracell_polysacc, TPTZ_intracell_mono, TPTZ_intracell_polysacc, vol, water |
attribute | NC_GLOBAL | keywords_vocabulary | String | GCMD Science Keywords |
attribute | NC_GLOBAL | license | String | https://www.bco-dmo.org/dataset/511526/license |
attribute | NC_GLOBAL | metadata_source | String | https://www.bco-dmo.org/api/dataset/511526 |
attribute | NC_GLOBAL | param_mapping | String | {'511526': {}} |
attribute | NC_GLOBAL | parameter_source | String | https://www.bco-dmo.org/mapserver/dataset/511526/parameters |
attribute | NC_GLOBAL | people_0_affiliation | String | Texas A&M University |
attribute | NC_GLOBAL | people_0_affiliation_acronym | String | TAMU |
attribute | NC_GLOBAL | people_0_person_name | String | Daniel C.O. Thornton |
attribute | NC_GLOBAL | people_0_person_nid | String | 51644 |
attribute | NC_GLOBAL | people_0_role | String | Principal Investigator |
attribute | NC_GLOBAL | people_0_role_type | String | originator |
attribute | NC_GLOBAL | people_1_affiliation | String | Woods Hole Oceanographic Institution |
attribute | NC_GLOBAL | people_1_affiliation_acronym | String | WHOI BCO-DMO |
attribute | NC_GLOBAL | people_1_person_name | String | Shannon Rauch |
attribute | NC_GLOBAL | people_1_person_nid | String | 51498 |
attribute | NC_GLOBAL | people_1_role | String | BCO-DMO Data Manager |
attribute | NC_GLOBAL | people_1_role_type | String | related |
attribute | NC_GLOBAL | project | String | Diatom EPS Production |
attribute | NC_GLOBAL | projects_0_acronym | String | Diatom EPS Production |
attribute | NC_GLOBAL | projects_0_description | String | Description from NSF Propsoal:\nIt is necessary to determine the fate of organic matter in the ocean to understand marine food webs, biogeochemical cycles, and climate change. Diatoms fix approximately a quarter of the net global primary production each year, and a significant proportion of this production is excreted as extracellular polymeric substances (EPS). EPS have a profound impact on pelagic ecosystems by affecting the formation of aggregates. Diatoms and other particulate organic carbon (POC) sink rapidly as aggregates, affecting the biological carbon pump, which plays a pivotal role in the sequestration of carbon in the ocean. The proposed research will test the central hypothesis: Temperature increase affects diatom release of EPS, which act as a glue, increasing aggregation. Previous work by the investigator showed that increased temperatures affected the aggregation of Skeletonema costatum. Four specific hypotheses will be tested:\nH1: Diatoms produce more EPS with increasing temperature.\nH2: Diatoms produce more transparent exopolymer particles (TEP) with increasing temperature.\nH3: The quantity or composition of cell-surface carbohydrates in diatoms changes with temperature.\nH4: Aggregation of diatom cultures and natural plankton increases with temperature.\nLaboratory experiments (years 1 - 2) will be conducted with three model diatom species grown at controlled growth rates and defined limitation (nitrogen or light) in continuous culture. Culture temperature will be stepped up or down in small increments to determine the effect of the temperature change on EPS production, aggregation, and partitioning of carbon in intra- and extracellular pools. Similar experiments in year 3 will be carried out using natural plankton populations from a coastal site where diatoms contribute a significant proportion to the biomass.\nThe proposed research will increase our understanding of the ecology and physiology of one of the dominant groups of primary producers on Earth. EPS are a central aspect of diatom biology, though the physiology, function and broader ecosystem impacts of EPS production remain unknown. This research will determine how temperature, light limitation, and nutrient limitation affect the partitioning of production between dissolved, gel, and particulate phases in the ocean. Measurements of plankton stickiness (alpha) under different conditions will be important to model aggregation processes in the ocean as alpha is an important (and variable) term in coagulation models. Determining how carbon is cycled between the ocean, atmosphere and lithosphere is key to understanding climate change on both geological and human time scales. This is a major societal issue as atmospheric CO2 concentrations are steadily increasing, correlating with a 0.6 C rise in global average temperature during the last century. This research will address potential feedbacks between warming of the surface ocean, diatom ecophysiology and the biological carbon pump.\nRelated Publications:\nRzadkowolski, Charles E. and Thornton, Daniel C. O. (2012) Using laser scattering to identify diatoms and conduct aggregation experiments. Eur. J. Phycol., 47(1): 30-41. DOI: 10.1080/09670262.2011.646314\nThornton, Daniel C. O. (2009) Effect of Low pH on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri). Research Letters in Ecology, vol. 2009, Article ID 105901, 4 pages. DOI: 10.1155/2009/105901\nThornton, D.C.O. (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology 49: 20-46. DOI: 10.1080/09670262.2013.875596\nThornton, D.C.O., Visser, L.A. (2009) Measurement of acid polysaccharides (APS) associated with microphytobenthos in salt marsh sediments. Aquat Microb Ecol 54:185-198. DOI: 10.3354/ame01265 |
attribute | NC_GLOBAL | projects_0_end_date | String | 2012-08 |
attribute | NC_GLOBAL | projects_0_geolocation | String | O&M Building, Texas A&M University, College Station, TX 77840 |
attribute | NC_GLOBAL | projects_0_name | String | Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms |
attribute | NC_GLOBAL | projects_0_project_nid | String | 2255 |
attribute | NC_GLOBAL | projects_0_start_date | String | 2007-09 |
attribute | NC_GLOBAL | publisher_name | String | Biological and Chemical Oceanographic Data Management Office (BCO-DMO) |
attribute | NC_GLOBAL | publisher_type | String | institution |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v55 |
attribute | NC_GLOBAL | summary | String | Data from laboratory experiment on exopolymer and carbohydrate production by\nthe diatoms Thalassiosira weissflogii (CCMP 1051), Skeletonema marinoi (CCMP\n1332), and Cylindrotheca closterium (CCMP 339) during the growth to death\nphases of the cultures.\n \nRelated references: \n Chen, J. 2014. Factors affecting carbohydrate production and the formation\nof transparent exopolymer particles (TEP) by diatoms. Ph.D. dissertation,\nTexas A&M University, College Station, TX. |
attribute | NC_GLOBAL | title | String | [growth phase exopolymers] - Experimental results: Exopolymer and carbohydrate production by diatoms with growth; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms) |
attribute | NC_GLOBAL | version | String | 1 |
attribute | NC_GLOBAL | xml_source | String | osprey2erddap.update_xml() v1.3 |
variable | species | String | ||
attribute | species | bcodmo_name | String | species |
attribute | species | description | String | Species name. |
attribute | species | long_name | String | Species |
attribute | species | units | String | dimensionless |
variable | growth_phase | String | ||
attribute | growth_phase | bcodmo_name | String | unknown |
attribute | growth_phase | description | String | Growth phase of the diatom (exponential, stationary, declining, death). |
attribute | growth_phase | long_name | String | Growth Phase |
attribute | growth_phase | units | String | dimensionless |
variable | day | byte | ||
attribute | day | _FillValue | byte | 127 |
attribute | day | actual_range | byte | 6, 43 |
attribute | day | bcodmo_name | String | unknown |
attribute | day | description | String | Day of the experiment. |
attribute | day | long_name | String | Day |
attribute | day | units | String | dimensionless |
variable | culture | byte | ||
attribute | culture | _FillValue | byte | 127 |
attribute | culture | actual_range | byte | 1, 3 |
attribute | culture | bcodmo_name | String | replicate |
attribute | culture | description | String | Identifier of the culture replicate. |
attribute | culture | long_name | String | Culture |
attribute | culture | units | String | dimensionless |
variable | cell_abundance | float | ||
attribute | cell_abundance | _FillValue | float | NaN |
attribute | cell_abundance | actual_range | float | 22700.0, 560970.0 |
attribute | cell_abundance | bcodmo_name | String | diatom |
attribute | cell_abundance | description | String | Cell count. Counts of 400 cells were made by transmitted light microscopy using a hemacytometer (Fuchs-Rosenthal ruling Hauser Scientific) (Guillard & Sieracki 2005). |
attribute | cell_abundance | long_name | String | Cell Abundance |
attribute | cell_abundance | units | String | cells per milliliter (mL-1) |
variable | cell_vol_mean | float | ||
attribute | cell_vol_mean | _FillValue | float | NaN |
attribute | cell_vol_mean | actual_range | float | 21.73, 567.15 |
attribute | cell_vol_mean | bcodmo_name | String | unknown |
attribute | cell_vol_mean | description | String | Mean cell volume calculated assuming that both T. wessiflogii and S. marinoi were cylinders. The volume of Cylindrotheca closterium was estimated assuming that its shape was equivalent to two cones. |
attribute | cell_vol_mean | long_name | String | Cell Vol Mean |
attribute | cell_vol_mean | units | String | cubic micrometers (um^3) |
variable | chla | float | ||
attribute | chla | _FillValue | float | NaN |
attribute | chla | actual_range | float | 0.02, 366.79 |
attribute | chla | bcodmo_name | String | chlorophyll a |
attribute | chla | colorBarMaximum | double | 30.0 |
attribute | chla | colorBarMinimum | double | 0.03 |
attribute | chla | colorBarScale | String | Log |
attribute | chla | description | String | Concentration of chlorophyll a measured by fluorescence (Arar & Collins 1997; Method 445.0. EPA). |
attribute | chla | long_name | String | Concentration Of Chlorophyll In Sea Water |
attribute | chla | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/ |
attribute | chla | units | String | micrograms per liter (ug L-1) |
variable | chla_per_cell | float | ||
attribute | chla_per_cell | _FillValue | float | NaN |
attribute | chla_per_cell | actual_range | float | 0.0, 5.14 |
attribute | chla_per_cell | bcodmo_name | String | unknown |
attribute | chla_per_cell | colorBarMaximum | double | 30.0 |
attribute | chla_per_cell | colorBarMinimum | double | 0.03 |
attribute | chla_per_cell | colorBarScale | String | Log |
attribute | chla_per_cell | description | String | Concentration of chlorophyll a per cell. |
attribute | chla_per_cell | long_name | String | Concentration Of Chlorophyll In Sea Water |
attribute | chla_per_cell | units | String | picograms per cell (pg cell-1) |
variable | chla_per_cell_vol | float | ||
attribute | chla_per_cell_vol | _FillValue | float | NaN |
attribute | chla_per_cell_vol | actual_range | float | 0.0, 94.0 |
attribute | chla_per_cell_vol | bcodmo_name | String | unknown |
attribute | chla_per_cell_vol | colorBarMaximum | double | 30.0 |
attribute | chla_per_cell_vol | colorBarMinimum | double | 0.03 |
attribute | chla_per_cell_vol | colorBarScale | String | Log |
attribute | chla_per_cell_vol | description | String | Concentration of chlorophyll a per cell volume. |
attribute | chla_per_cell_vol | long_name | String | Concentration Of Chlorophyll In Sea Water |
attribute | chla_per_cell_vol | units | String | femtograms per cubic micrometer (fg um-3) |
variable | tot_carb | float | ||
attribute | tot_carb | _FillValue | float | NaN |
attribute | tot_carb | actual_range | float | 1.95, 52.48 |
attribute | tot_carb | bcodmo_name | String | unknown |
attribute | tot_carb | description | String | Total carbohydrate concentration measured using the PSA method (Dubois et al. 1956). |
attribute | tot_carb | long_name | String | Tot Carb |
attribute | tot_carb | units | String | micrograms per milliliter (ug mL-1) |
variable | tot_carb_per_cell | float | ||
attribute | tot_carb_per_cell | _FillValue | float | NaN |
attribute | tot_carb_per_cell | actual_range | float | 8.52, 496.09 |
attribute | tot_carb_per_cell | bcodmo_name | String | unknown |
attribute | tot_carb_per_cell | description | String | Total carbohydrate concentration per cell. |
attribute | tot_carb_per_cell | long_name | String | Tot Carb Per Cell |
attribute | tot_carb_per_cell | units | String | picograms per cell (pg cell-1) |
variable | tot_carb_per_cell_vol | float | ||
attribute | tot_carb_per_cell_vol | _FillValue | float | NaN |
attribute | tot_carb_per_cell_vol | actual_range | float | 62.44, 16122.66 |
attribute | tot_carb_per_cell_vol | bcodmo_name | String | unknown |
attribute | tot_carb_per_cell_vol | description | String | Total carbohydrate concentration per cell volume. |
attribute | tot_carb_per_cell_vol | long_name | String | Tot Carb Per Cell Vol |
attribute | tot_carb_per_cell_vol | units | String | femtograms per cubic micrometer (fg um-3) |
variable | colloidal_carb | double | ||
attribute | colloidal_carb | _FillValue | double | NaN |
attribute | colloidal_carb | actual_range | double | 0.01, 26.31 |
attribute | colloidal_carb | bcodmo_name | String | unknown |
attribute | colloidal_carb | description | String | Colloidal carbohydrate concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The colloidal carbohydrate fractions were measured using the PSA method (Dubois et al. 1956). |
attribute | colloidal_carb | long_name | String | Colloidal Carb |
attribute | colloidal_carb | units | String | micrograms per milliliter (ug mL-1) |
variable | collodial_per_cell | float | ||
attribute | collodial_per_cell | _FillValue | float | NaN |
attribute | collodial_per_cell | actual_range | float | 0.05, 684.56 |
attribute | collodial_per_cell | bcodmo_name | String | unknown |
attribute | collodial_per_cell | description | String | Colloidal carbohydrate concentration per cell. |
attribute | collodial_per_cell | long_name | String | Collodial Per Cell |
attribute | collodial_per_cell | units | String | picograms per cell (pg cell-1) |
variable | colloidal_per_cell_vol | float | ||
attribute | colloidal_per_cell_vol | _FillValue | float | NaN |
attribute | colloidal_per_cell_vol | actual_range | float | 0.2, 18219.25 |
attribute | colloidal_per_cell_vol | bcodmo_name | String | unknown |
attribute | colloidal_per_cell_vol | description | String | Colloidal carbohydrate concentration per cell volume. |
attribute | colloidal_per_cell_vol | long_name | String | Colloidal Per Cell Vol |
attribute | colloidal_per_cell_vol | units | String | femtograms per cubic micrometer (fg um-3) |
variable | EPS_carb | float | ||
attribute | EPS_carb | _FillValue | float | NaN |
attribute | EPS_carb | actual_range | float | 0.17, 4.14 |
attribute | EPS_carb | bcodmo_name | String | unknown |
attribute | EPS_carb | description | String | Exopolymer (EPS) carbohydrate concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The EPS carbohydrate fractions were measured using the PSA method (Dubois et al. 1956). |
attribute | EPS_carb | long_name | String | EPS Carb |
attribute | EPS_carb | units | String | micrograms per milliliter (ug mL-1) |
variable | EPS_carb_per_cell | float | ||
attribute | EPS_carb_per_cell | _FillValue | float | NaN |
attribute | EPS_carb_per_cell | actual_range | float | 0.61, 49.57 |
attribute | EPS_carb_per_cell | bcodmo_name | String | unknown |
attribute | EPS_carb_per_cell | description | String | Exopolymer (EPS) carbohydrate concentration per cell. |
attribute | EPS_carb_per_cell | long_name | String | EPS Carb Per Cell |
attribute | EPS_carb_per_cell | units | String | picograms per cell (pg cell-1) |
variable | EPS_carb_per_cell_vol | float | ||
attribute | EPS_carb_per_cell_vol | _FillValue | float | NaN |
attribute | EPS_carb_per_cell_vol | actual_range | float | 2.07, 1043.18 |
attribute | EPS_carb_per_cell_vol | bcodmo_name | String | unknown |
attribute | EPS_carb_per_cell_vol | description | String | Exopolymer (EPS) carbohydrate concentration per cell volume. |
attribute | EPS_carb_per_cell_vol | long_name | String | EPS Carb Per Cell Vol |
attribute | EPS_carb_per_cell_vol | units | String | femtograms per cubic micrometer (fg um-3) |
variable | HW_carb | float | ||
attribute | HW_carb | _FillValue | float | NaN |
attribute | HW_carb | actual_range | float | 0.12, 29.05 |
attribute | HW_carb | bcodmo_name | String | unknown |
attribute | HW_carb | description | String | Intracellular carbohydrate (hot water (HW) extraction) concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The HW carbohydrate fractions were measured using the PSA method (Dubois et al. 1956). |
attribute | HW_carb | long_name | String | HW Carb |
attribute | HW_carb | units | String | micrograms per milliliter (ug mL-1) |
variable | HW_carb_per_cell | float | ||
attribute | HW_carb_per_cell | _FillValue | float | NaN |
attribute | HW_carb_per_cell | actual_range | float | 1.88, 170.88 |
attribute | HW_carb_per_cell | bcodmo_name | String | unknown |
attribute | HW_carb_per_cell | description | String | Intracellular carbohydrate (hot water (HW) extraction) concentration per cell. |
attribute | HW_carb_per_cell | long_name | String | HW Carb Per Cell |
attribute | HW_carb_per_cell | units | String | picograms per cell (pg cell-1) |
variable | HW_carb_per_cell_vol | float | ||
attribute | HW_carb_per_cell_vol | _FillValue | float | NaN |
attribute | HW_carb_per_cell_vol | actual_range | float | 7.93, 1752.36 |
attribute | HW_carb_per_cell_vol | bcodmo_name | String | unknown |
attribute | HW_carb_per_cell_vol | description | String | Intracellular carbohydrate (hot water (HW) extraction) concentration per cell volume. |
attribute | HW_carb_per_cell_vol | long_name | String | HW Carb Per Cell Vol |
attribute | HW_carb_per_cell_vol | units | String | femtograms per cubic micrometer (fg um-3) |
variable | HB_carb | float | ||
attribute | HB_carb | _FillValue | float | NaN |
attribute | HB_carb | actual_range | float | 0.24, 9.08 |
attribute | HB_carb | bcodmo_name | String | unknown |
attribute | HB_carb | description | String | Cell-wall associated carbohydrate (hot bicarbonate (HB) extraction) concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The HB carbohydrate fractions were measured using the PSA method (Dubois et al. 1956). |
attribute | HB_carb | long_name | String | HB Carb |
attribute | HB_carb | units | String | micrograms per milliliter (ug mL-1) |
variable | HB_carb_per_cell | float | ||
attribute | HB_carb_per_cell | _FillValue | float | NaN |
attribute | HB_carb_per_cell | actual_range | float | 0.93, 135.08 |
attribute | HB_carb_per_cell | bcodmo_name | String | unknown |
attribute | HB_carb_per_cell | description | String | Cell-wall associated carbohydrate (hot bicarbonate (HB) extraction) concentration per cell. |
attribute | HB_carb_per_cell | long_name | String | HB Carb Per Cell |
attribute | HB_carb_per_cell | units | String | picograms per cell (pg cell-1) |
variable | HB_carb_per_cell_vol | float | ||
attribute | HB_carb_per_cell_vol | _FillValue | float | NaN |
attribute | HB_carb_per_cell_vol | actual_range | float | 10.0, 3951.35 |
attribute | HB_carb_per_cell_vol | bcodmo_name | String | unknown |
attribute | HB_carb_per_cell_vol | description | String | Cell-wall associated carbohydrate (hot bicarbonate (HB) extraction) concentration per cell volume. |
attribute | HB_carb_per_cell_vol | long_name | String | HB Carb Per Cell Vol |
attribute | HB_carb_per_cell_vol | units | String | femtograms per cubic micrometer (fg um-3) |
variable | residual_carb | float | ||
attribute | residual_carb | _FillValue | float | NaN |
attribute | residual_carb | actual_range | float | 0.11, 5.07 |
attribute | residual_carb | bcodmo_name | String | unknown |
attribute | residual_carb | description | String | Residual carbohydrate concentration. Different fractions of carbohydrate were extracted from the cultures using methods described in Underwood et al. (1995) and Underwood et al. (2004). The residual carbohydrate fractions were measured using the PSA method (Dubois et al. 1956). |
attribute | residual_carb | long_name | String | Residual Carb |
attribute | residual_carb | units | String | micrograms per milliliter (ug mL-1) |
variable | residual_carb_per_cell | float | ||
attribute | residual_carb_per_cell | _FillValue | float | NaN |
attribute | residual_carb_per_cell | actual_range | float | 0.33, 50.91 |
attribute | residual_carb_per_cell | bcodmo_name | String | unknown |
attribute | residual_carb_per_cell | description | String | Residual carbohydrate concentration per cell. |
attribute | residual_carb_per_cell | long_name | String | Residual Carb Per Cell |
attribute | residual_carb_per_cell | units | String | picograms per cell (pg cell-1) |
variable | residual_carb_per_cell_vol | float | ||
attribute | residual_carb_per_cell_vol | _FillValue | float | NaN |
attribute | residual_carb_per_cell_vol | actual_range | float | 1.36, 738.83 |
attribute | residual_carb_per_cell_vol | bcodmo_name | String | unknown |
attribute | residual_carb_per_cell_vol | description | String | Residual carbohydrate concentration per cell volume. |
attribute | residual_carb_per_cell_vol | long_name | String | Residual Carb Per Cell Vol |
attribute | residual_carb_per_cell_vol | units | String | femtograms per cubic micrometer (fg um-3) |
variable | TPTZ_intracell_mono | float | ||
attribute | TPTZ_intracell_mono | _FillValue | float | NaN |
attribute | TPTZ_intracell_mono | actual_range | float | 0.02, 1.82 |
attribute | TPTZ_intracell_mono | bcodmo_name | String | unknown |
attribute | TPTZ_intracell_mono | description | String | Intracellular monosaccharide concentration determined using the TPTZ method (Myklestad et al. 1997). |
attribute | TPTZ_intracell_mono | long_name | String | TPTZ Intracell Mono |
attribute | TPTZ_intracell_mono | units | String | micrograms per milliliter (ug mL-1) |
variable | TPTZ_extracell_mono | float | ||
attribute | TPTZ_extracell_mono | _FillValue | float | NaN |
attribute | TPTZ_extracell_mono | actual_range | float | 0.09, 0.97 |
attribute | TPTZ_extracell_mono | bcodmo_name | String | unknown |
attribute | TPTZ_extracell_mono | description | String | Extracellular monosaccharide concentration determined using the TPTZ method (Myklestad et al. 1997). |
attribute | TPTZ_extracell_mono | long_name | String | TPTZ Extracell Mono |
attribute | TPTZ_extracell_mono | units | String | micrograms per milliliter (ug mL-1) |
variable | TPTZ_intracell_polysacc | float | ||
attribute | TPTZ_intracell_polysacc | _FillValue | float | NaN |
attribute | TPTZ_intracell_polysacc | actual_range | float | 0.2, 7.75 |
attribute | TPTZ_intracell_polysacc | bcodmo_name | String | unknown |
attribute | TPTZ_intracell_polysacc | description | String | Intracellular polysaccharide concentration determined using the TPTZ method (Myklestad et al. 1997). |
attribute | TPTZ_intracell_polysacc | long_name | String | TPTZ Intracell Polysacc |
attribute | TPTZ_intracell_polysacc | units | String | micrograms per milliliter (ug mL-1) |
variable | TPTZ_extracell_polysacc | float | ||
attribute | TPTZ_extracell_polysacc | _FillValue | float | NaN |
attribute | TPTZ_extracell_polysacc | actual_range | float | 0.04, 2.31 |
attribute | TPTZ_extracell_polysacc | bcodmo_name | String | unknown |
attribute | TPTZ_extracell_polysacc | description | String | Extracellular polysaccharide concentration determined using the TPTZ method (Myklestad et al. 1997). |
attribute | TPTZ_extracell_polysacc | long_name | String | TPTZ Extracell Polysacc |
attribute | TPTZ_extracell_polysacc | units | String | micrograms per milliliter (ug mL-1) |
variable | TEP_conc_mean | double | ||
attribute | TEP_conc_mean | _FillValue | double | NaN |
attribute | TEP_conc_mean | actual_range | double | 754623.41, 5.429096222E7 |
attribute | TEP_conc_mean | bcodmo_name | String | unknown |
attribute | TEP_conc_mean | description | String | Mean transparent exopolymer particle (TEP) concentration. TEP retained on 0.4 polycarbonate filters and stained with Alcian blue (Alldredge et al. 1993). |
attribute | TEP_conc_mean | long_name | String | TEP Conc Mean |
attribute | TEP_conc_mean | units | String | TEP per milliliter (TEP mL-1) |
variable | TEP_mean_size | float | ||
attribute | TEP_mean_size | _FillValue | float | NaN |
attribute | TEP_mean_size | actual_range | float | 62.13, 1059.08 |
attribute | TEP_mean_size | bcodmo_name | String | unknown |
attribute | TEP_mean_size | description | String | Mean size of Transparent exopolymer particles (TEP). |
attribute | TEP_mean_size | long_name | String | TEP Mean Size |
attribute | TEP_mean_size | units | String | square micrometers (um^2) |
variable | tot_TEP_area | float | ||
attribute | tot_TEP_area | _FillValue | float | NaN |
attribute | tot_TEP_area | actual_range | float | 89.68, 8358.71 |
attribute | tot_TEP_area | bcodmo_name | String | unknown |
attribute | tot_TEP_area | description | String | Total TEP area. |
attribute | tot_TEP_area | long_name | String | Tot TEP Area |
attribute | tot_TEP_area | units | String | square millimeters per milliliter (mm^2 mL-1) |
variable | CSP_conc_mean | double | ||
attribute | CSP_conc_mean | _FillValue | double | NaN |
attribute | CSP_conc_mean | actual_range | double | 227584.84, 1.766777039E7 |
attribute | CSP_conc_mean | bcodmo_name | String | unknown |
attribute | CSP_conc_mean | description | String | Mean coomassie staining particle (CSP) concentration. CSP retained on 0.4 polycarbonate filters and stained with Coomassie briliant blue blue (Long & Azam 1996). |
attribute | CSP_conc_mean | long_name | String | CSP Conc Mean |
attribute | CSP_conc_mean | units | String | CSP per milliliter (mL-1) |
variable | CSP_mean_size | float | ||
attribute | CSP_mean_size | _FillValue | float | NaN |
attribute | CSP_mean_size | actual_range | float | 30.41, 411.4 |
attribute | CSP_mean_size | bcodmo_name | String | unknown |
attribute | CSP_mean_size | description | String | Mean size of coomassie staining particle (CSP). |
attribute | CSP_mean_size | long_name | String | CSP Mean Size |
attribute | CSP_mean_size | units | String | square micrometers (um^2) |
variable | tot_CSP_area | float | ||
attribute | tot_CSP_area | _FillValue | float | NaN |
attribute | tot_CSP_area | actual_range | float | 12.69, 5529.74 |
attribute | tot_CSP_area | bcodmo_name | String | unknown |
attribute | tot_CSP_area | description | String | Total CSP area. |
attribute | tot_CSP_area | long_name | String | Tot CSP Area |
attribute | tot_CSP_area | units | String | square millimeters per milliliter (mm^2 mL-1) |
variable | stained_cells_pcnt | float | ||
attribute | stained_cells_pcnt | _FillValue | float | NaN |
attribute | stained_cells_pcnt | actual_range | float | 2.5, 95.5 |
attribute | stained_cells_pcnt | bcodmo_name | String | unknown |
attribute | stained_cells_pcnt | description | String | % of SYTOX Green stained cells. Cell permeability was determined by SYTOX Green staining (Veldhuis et al. 1997). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated. |
attribute | stained_cells_pcnt | long_name | String | Stained Cells Pcnt |
attribute | stained_cells_pcnt | units | String | percent (%) |
variable | bacteria | double | ||
attribute | bacteria | _FillValue | double | NaN |
attribute | bacteria | actual_range | double | 5356.54, 648811.25 |
attribute | bacteria | bcodmo_name | String | bact_abundance |
attribute | bacteria | description | String | Bacteria abundance determined by DAPI staining and counts using an epifluorescence microscope (Porter & Feig 1980). |
attribute | bacteria | long_name | String | Bacteria |
attribute | bacteria | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P02/current/BNTX |
attribute | bacteria | units | String | cells per milliliter (mL-1) |
variable | bact_per_diatom | float | ||
attribute | bact_per_diatom | _FillValue | float | NaN |
attribute | bact_per_diatom | actual_range | float | 0.03, 25.04 |
attribute | bact_per_diatom | bcodmo_name | String | unknown |
attribute | bact_per_diatom | description | String | Bacteria abundance per diatom. |
attribute | bact_per_diatom | long_name | String | Bact Per Diatom |
attribute | bact_per_diatom | units | String | dimensionless |