BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | access_formats | String | .htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson |
attribute | NC_GLOBAL | acquisition_description | String | See: [Series 4: Aggregation of Thalassiosira weissflogii -\nMethods](\\\\\"http://bcodata.whoi.edu/Ocean_Acidification_and_Aggregation\n/Series4_Seebah-Methods.pdf\\\\\") |
attribute | NC_GLOBAL | awards_0_award_nid | String | 54764 |
attribute | NC_GLOBAL | awards_0_award_number | String | OCE-0926711 |
attribute | NC_GLOBAL | awards_0_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0926711 |
attribute | NC_GLOBAL | awards_0_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_0_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_0_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_0_program_manager | String | Donald L. Rice |
attribute | NC_GLOBAL | awards_0_program_manager_nid | String | 51467 |
attribute | NC_GLOBAL | cdm_data_type | String | Other |
attribute | NC_GLOBAL | comment | String | Ocean Acidification and Aggregation \n Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature and bacteria \n Aggregation Phase - Sinking Velocity \n Version: 05 September 2013 \n PIs: Passow, Seebah |
attribute | NC_GLOBAL | Conventions | String | COARDS, CF-1.6, ACDD-1.3 |
attribute | NC_GLOBAL | creator_email | String | info at bco-dmo.org |
attribute | NC_GLOBAL | creator_name | String | BCO-DMO |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | creator_url | String | https://www.bco-dmo.org/ |
attribute | NC_GLOBAL | data_source | String | extract_data_as_tsv version 2.3 19 Dec 2019 |
attribute | NC_GLOBAL | date_created | String | 2014-09-15T17:40:15Z |
attribute | NC_GLOBAL | date_modified | String | 2016-08-20T03:10:46Z |
attribute | NC_GLOBAL | defaultDataQuery | String | &time<now |
attribute | NC_GLOBAL | doi | String | 10.1575/1912/6845 |
attribute | NC_GLOBAL | Easternmost_Easting | double | -119.842 |
attribute | NC_GLOBAL | geospatial_lat_max | double | 34.4126 |
attribute | NC_GLOBAL | geospatial_lat_min | double | 34.4126 |
attribute | NC_GLOBAL | geospatial_lat_units | String | degrees_north |
attribute | NC_GLOBAL | geospatial_lon_max | double | -119.842 |
attribute | NC_GLOBAL | geospatial_lon_min | double | -119.842 |
attribute | NC_GLOBAL | geospatial_lon_units | String | degrees_east |
attribute | NC_GLOBAL | infoUrl | String | https://www.bco-dmo.org/dataset/528175 |
attribute | NC_GLOBAL | institution | String | BCO-DMO |
attribute | NC_GLOBAL | instruments_0_acronym | String | Inverted Microscope |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_description | String | Diatom cell abundance was monitored daily by counting cells in a Sedgwick-Rafter Cell S50 (SPI Supplies, West Chester, PA, USA) using an inverted Axiovert 200 microscope (Zeiss, Jena, Germany). |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_nid | String | 528204 |
attribute | NC_GLOBAL | instruments_0_description | String | An inverted microscope is a microscope with its light source and condenser on the top, above the stage pointing down, while the objectives and turret are below the stage pointing up. It was invented in 1850 by J. Lawrence Smith, a faculty member of Tulane University (then named the Medical College of Louisiana).\n\nInverted microscopes are useful for observing living cells or organisms at the bottom of a large container (e.g. a tissue culture flask) under more natural conditions than on a glass slide, as is the case with a conventional microscope. Inverted microscopes are also used in micromanipulation applications where space above the specimen is required for manipulator mechanisms and the microtools they hold, and in metallurgical applications where polished samples can be placed on top of the stage and viewed from underneath using reflecting objectives.\n\nThe stage on an inverted microscope is usually fixed, and focus is adjusted by moving the objective lens along a vertical axis to bring it closer to or further from the specimen. The focus mechanism typically has a dual concentric knob for coarse and fine adjustment. Depending on the size of the microscope, four to six objective lenses of different magnifications may be fitted to a rotating turret known as a nosepiece. These microscopes may also be fitted with accessories for fitting still and video cameras, fluorescence illumination, confocal scanning and many other applications. |
attribute | NC_GLOBAL | instruments_0_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ |
attribute | NC_GLOBAL | instruments_0_instrument_name | String | Inverted Microscope |
attribute | NC_GLOBAL | instruments_0_instrument_nid | String | 675 |
attribute | NC_GLOBAL | instruments_0_supplied_name | String | Inverted Axiovert 200 Microscope |
attribute | NC_GLOBAL | instruments_1_acronym | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_description | String | Diatom cell abundance was monitored daily by counting cells in a Sedgwick-Rafter Cell S50 (SPI Supplies, West Chester, PA, USA) using an inverted Axiovert 200 microscope (Zeiss, Jena, Germany). |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_nid | String | 528202 |
attribute | NC_GLOBAL | instruments_1_description | String | A hemocytometer is a small glass chamber, resembling a thick microscope slide, used for determining the number of cells per unit volume of a suspension. Originally used for performing blood cell counts, a hemocytometer can be used to count a variety of cell types in the laboratory. Also spelled as \"haemocytometer\". Description from:\nhttp://hlsweb.dmu.ac.uk/ahs/elearning/RITA/Haem1/Haem1.html. |
attribute | NC_GLOBAL | instruments_1_instrument_name | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_1_instrument_nid | String | 704 |
attribute | NC_GLOBAL | instruments_1_supplied_name | String | Sedgwick-Rafter Cell S50 |
attribute | NC_GLOBAL | instruments_2_acronym | String | Spectrophotometer |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_description | String | The pH (total scale) was measured with a spectrophotometer using the indicator dye m-cresol purple\n(Sigma-Aldrich) within 1-2 hours of sampling at 25 oC (Clayton and Byrne 1993). |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_nid | String | 528203 |
attribute | NC_GLOBAL | instruments_2_description | String | An instrument used to measure the relative absorption of electromagnetic radiation of different wavelengths in the near infra-red, visible and ultraviolet wavebands by samples. |
attribute | NC_GLOBAL | instruments_2_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB20/ |
attribute | NC_GLOBAL | instruments_2_instrument_name | String | Spectrophotometer |
attribute | NC_GLOBAL | instruments_2_instrument_nid | String | 707 |
attribute | NC_GLOBAL | instruments_2_supplied_name | String | spectrophotometer |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_description | String | The dimensions of the aggregate axes (x, y, and z direction) were measured under a dissecting microscope, and the aggregated volume calculated assuming an ellipsoid shape. |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_nid | String | 528205 |
attribute | NC_GLOBAL | instruments_3_description | String | Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a \"light microscope\". |
attribute | NC_GLOBAL | instruments_3_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ |
attribute | NC_GLOBAL | instruments_3_instrument_name | String | Microscope-Optical |
attribute | NC_GLOBAL | instruments_3_instrument_nid | String | 708 |
attribute | NC_GLOBAL | instruments_3_supplied_name | String | dissecting microscope |
attribute | NC_GLOBAL | instruments_4_acronym | String | Roller Tank |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_description | String | During this acclimatization phase diatoms were kept in the exponential growth by regular dilutions. The diatom was grown in artificial seawater (Kester et al. 1967), the bacteria in marine broth prepared with ASW. After the acclimatization, aggregation experiments were conducted in duplicates in roller tanks in darkness. Replicate roller tanks were set-up with diatom cells at a final concentration of 3 x 103 cells ml-1 and – where appropriate - bacteria at a final concentration of 3 x 105 cells ml-1. |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_nid | String | 528206 |
attribute | NC_GLOBAL | instruments_4_description | String | Rolling tanks, which keep particles in suspension, thus simulating aggregate formation in situ.\n\nMarine snow experiments are conducted in roller tanks, which turn continuously, keeping marine snow in suspension. It is important for marine snow not to touch surfaces. The rolling tanks, which keep particles in suspension, thus simulate aggregate formation in situ. Marine snow formation due to different types of oil was tested. Some treatments are easily identifiable as containing oil by their color (middle). UCSB, CA 2012. |
attribute | NC_GLOBAL | instruments_4_instrument_name | String | Roller Tank |
attribute | NC_GLOBAL | instruments_4_instrument_nid | String | 528200 |
attribute | NC_GLOBAL | instruments_4_supplied_name | String | Roller Tank |
attribute | NC_GLOBAL | keywords | String | addition, agg, agg_num_per_tank, bco, bco-dmo, biological, carbon, carbon dioxide, chemical, co2, data, dataset, dioxide, dmo, erddap, esd, fraction, hp15, HP15_addition, lab, Lab_Id, latitude, longitude, management, num, oceanography, office, pCO2, per, point, preliminary, sampling, sampling_point, tank, Temp, temperature, velocity |
attribute | NC_GLOBAL | license | String | https://www.bco-dmo.org/dataset/528175/license |
attribute | NC_GLOBAL | metadata_source | String | https://www.bco-dmo.org/api/dataset/528175 |
attribute | NC_GLOBAL | Northernmost_Northing | double | 34.4126 |
attribute | NC_GLOBAL | param_mapping | String | {'528175': {'Lat': 'flag - latitude', 'Lon': 'flag - longitude'}} |
attribute | NC_GLOBAL | parameter_source | String | https://www.bco-dmo.org/mapserver/dataset/528175/parameters |
attribute | NC_GLOBAL | people_0_affiliation | String | University of California-Santa Barbara |
attribute | NC_GLOBAL | people_0_affiliation_acronym | String | UCSB-MSI |
attribute | NC_GLOBAL | people_0_person_name | String | Dr Uta Passow |
attribute | NC_GLOBAL | people_0_person_nid | String | 51317 |
attribute | NC_GLOBAL | people_0_role | String | Principal Investigator |
attribute | NC_GLOBAL | people_0_role_type | String | originator |
attribute | NC_GLOBAL | people_1_affiliation | String | University of California-Santa Barbara |
attribute | NC_GLOBAL | people_1_affiliation_acronym | String | UCSB-MSI |
attribute | NC_GLOBAL | people_1_person_name | String | Shalin Seebah |
attribute | NC_GLOBAL | people_1_person_nid | String | 528318 |
attribute | NC_GLOBAL | people_1_role | String | Student |
attribute | NC_GLOBAL | people_1_role_type | String | related |
attribute | NC_GLOBAL | people_2_affiliation | String | University of California-Santa Barbara |
attribute | NC_GLOBAL | people_2_affiliation_acronym | String | UCSB-MSI |
attribute | NC_GLOBAL | people_2_person_name | String | Dr Uta Passow |
attribute | NC_GLOBAL | people_2_person_nid | String | 51317 |
attribute | NC_GLOBAL | people_2_role | String | Contact |
attribute | NC_GLOBAL | people_2_role_type | String | related |
attribute | NC_GLOBAL | people_3_affiliation | String | Woods Hole Oceanographic Institution |
attribute | NC_GLOBAL | people_3_affiliation_acronym | String | WHOI BCO-DMO |
attribute | NC_GLOBAL | people_3_person_name | String | Stephen R. Gegg |
attribute | NC_GLOBAL | people_3_person_nid | String | 50910 |
attribute | NC_GLOBAL | people_3_role | String | BCO-DMO Data Manager |
attribute | NC_GLOBAL | people_3_role_type | String | related |
attribute | NC_GLOBAL | project | String | OA - Ocean Acidification and Aggregation |
attribute | NC_GLOBAL | projects_0_acronym | String | OA - Ocean Acidification and Aggregation |
attribute | NC_GLOBAL | projects_0_description | String | Will Ocean Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus Weakening the Biological Pump?\nThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).\nThe pH of the ocean is predicted to decrease by 0.2-0.5 pH units in the next 50 to100 years as a result of increasing atmospheric CO2. To date almost all the research on impending ocean acidification has focused on the impacts to calcifying organisms and the carbonate system. However, ocean acidification will also affect other significant marine processes that are pH dependent.\nIn this project, researchers at the University of California at Santa Barbara will investigate the impact of ocean acidification on the organic carbon or 'soft tissue' biological pump. They predict that a decline in oceanic pH will result in an increase in the protonation of negatively charged substances, especially of Transparent Exopolymer Particles (TEP), the gel-like particles that provide the matrix of aggregates and bind particles together. A decreased polarity of these highly surface-active particles may reduce their \"stickiness\" resulting in decreased aggregation of organic-rich particles and a decreased ability of aggregates to scavenge and retain heavy ballast minerals. A reduction in aggregation will lower the fraction of POC enclosed in fast-sinking aggregates. Decreased scavenging of minerals by aggregates will result in reduced sinking velocities and consequently a decline in the fraction of material escaping degradation in the water column. Both processes ultimately reduce carbon flux to depth. The resulting weakening of the biological pump will alter pelagic ecology and potentially produce a positive feed-back pathway that further increases atmospheric CO2 concentrations.\nThe research team will experimentally investigate TEP-production, aggregation rates and aggregate characteristics, mineral scavenging and sinking velocity as a function of ocean acidification, because these parameters are susceptible to pH and central in determining sedimentation rate of organic carbon. They will determine potential changes in the abiotic formation of TEP or in the release rate of TEP or TEP-precursors by phytoplankton that have been adapted to increased CO2 regimes for multiple generations, up to 1000 doublings. Additionally, they will experimentally test potential changes in the aggregation rate of adapted phytoplankton and natural particles, and measure impacts on scavenging rates of ballast minerals by aggregates. Effects of various acidification levels on aggregate characteristics, including size, composition, density, and sinking velocity will also be determined. These results are expected to provide parameterization for a predictive model that will be used to investigate the impact of changing ballasting or aggregation on carbon flux.\nBroader impact: Climate and environmental change are a global challenge to society. We need to know if possible positive feed back mechanisms to the biological pump will further increase atmospheric CO2 in order to prepare for and hopefully manage future climate changes.\nThese data are also available at Pangea\n\nRELATED FILES:\nPassow U (2012) The Abiotic Formation of Tep under Ocean Acidification Scenarios. Marine Chemistry 128-129:72-80\n\nPUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH\nBathmann U, Passow U. \"Global Erwaermung. Kohlenstoffpumpen im Ozean steuern das Klima.,\" Biologie in unserer Zeit 5, v.5, 2010.\nBenner I, Passow U. \"Utilization of organic nutrients by coccolithophores,\" Marine Ecology Progress Series, v.404, 2010, p. 21.\nFeng Y, Hare C, Leblanc K, Rose J, Zhang Y, DiTullio G, Lee P, Wilhelm S, Rowe J, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins D. \"Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response,\" Marine Ecology Progress Series, v.388, 2009, p. 13.\nGaerdes A, Iversen MH, Grossart H-P, Passow U, Ullrich M. \"Diatom associated bacteria are required for aggregation of Thalassiosira weissflogii.,\" ISME Journal, 2010, p. 1.\nLeblanc K, Hare CE, Feng Y, Berg GM, DiTullio GR, Neeley A, Benner I, Sprengel C, Beck A, Sanudo-Wilhelmy SA, Passow U, Klinck K, Rowe JM, Wilhelm SW, Brown CW, Hutchins DA. \"Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom,\" Biogeosciences, v.6, 2009, p. 2155.\nPloug H, Terbruggen A, Kaufmann A, Wolf-Gladrow D, Passow U. \"A novel method to measure particle sinking velocity in vitro, and its comparison to three other in vitro methods.,\" Limnolgy and Oceanography Methods, v.8, 2010, p. 386.\nPassow, U., Rocha, C.L.D.L., Fairfield, C., Schmidt, K., 2014. Aggregation as a function of pCO2 and mineral particles. Limnology and Oceanography 59 (2), 532-547.\nDe La Rocha, C.L., Passow, U., 2014. The biological pump. In: Turekian, K.K., Holland, H.D. (Eds.), Treatise on Geochemistry. Elsevier, Oxford, pp. 93-122.\nBoyd, P., Rynearson, T., Armstrong, E., Fu, F., Hayashi, K., Hu, Z., Hutchins, D., Kudela, R., Litchman, E., Mulholland, M., Passow, U., Strzepek, R., Whittaker, K., Yu, E., Thomas, M., 2013. Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters - Outcome of a Scientific Community-Wide Study. PLoS ONE 8 (5), e63091.\nPassow, U., Carlson, C., 2012. The Biological Pump in a High CO2 World. Marine Ecology Progress Series 470, 249-271. |
attribute | NC_GLOBAL | projects_0_end_date | String | 2012-08 |
attribute | NC_GLOBAL | projects_0_geolocation | String | Passow Lab, Marine Science Institute, University of California Santa Barbara |
attribute | NC_GLOBAL | projects_0_name | String | Will Ocean Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus Weakening the Biological Pump? |
attribute | NC_GLOBAL | projects_0_project_nid | String | 2201 |
attribute | NC_GLOBAL | projects_0_project_website | String | http://www.msi.ucsb.edu/people/research-scientists/uta-passow |
attribute | NC_GLOBAL | projects_0_start_date | String | 2009-09 |
attribute | NC_GLOBAL | publisher_name | String | Biological and Chemical Oceanographic Data Management Office (BCO-DMO) |
attribute | NC_GLOBAL | publisher_type | String | institution |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | Southernmost_Northing | double | 34.4126 |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v55 |
attribute | NC_GLOBAL | subsetVariables | String | Lab_Id,latitude,longitude,sampling_point,fraction |
attribute | NC_GLOBAL | summary | String | Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2,\ntemperature and bacteria: Aggregation Phase - Sinking Velocity\n \nRelated Reference: \n[Aggregation and Sedimentation of Thalassiosira weissflogii (diatom) in a\nWarmer and More Acidified Future\nOcean](\\\\http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0112379\\\\) |
attribute | NC_GLOBAL | title | String | [Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature and bacteria: Aggregation Phase - Sinking Velocity] - Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature and bacteria - Aggregation Phase - Sinking Velocity from a from 2009 to 2010 (OA - Ocean Acidification and Aggregation project) (Will Ocean Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus Weakening the Biological Pump? ) |
attribute | NC_GLOBAL | version | String | 1 |
attribute | NC_GLOBAL | Westernmost_Easting | double | -119.842 |
attribute | NC_GLOBAL | xml_source | String | osprey2erddap.update_xml() v1.3 |
variable | Lab_Id | String | ||
attribute | Lab_Id | bcodmo_name | String | laboratory |
attribute | Lab_Id | description | String | Lab Id – Lab identifier where experiments were conducted |
attribute | Lab_Id | long_name | String | Lab Id |
attribute | Lab_Id | units | String | text |
variable | latitude | double | ||
attribute | latitude | _CoordinateAxisType | String | Lat |
attribute | latitude | _FillValue | double | NaN |
attribute | latitude | actual_range | double | 34.4126, 34.4126 |
attribute | latitude | axis | String | Y |
attribute | latitude | bcodmo_name | String | latitude |
attribute | latitude | colorBarMaximum | double | 90.0 |
attribute | latitude | colorBarMinimum | double | -90.0 |
attribute | latitude | description | String | Approximate Latitude Position of Lab; South is negative |
attribute | latitude | ioos_category | String | Location |
attribute | latitude | long_name | String | Latitude |
attribute | latitude | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P09/current/LATX/ |
attribute | latitude | standard_name | String | latitude |
attribute | latitude | units | String | degrees_north |
variable | longitude | double | ||
attribute | longitude | _CoordinateAxisType | String | Lon |
attribute | longitude | _FillValue | double | NaN |
attribute | longitude | actual_range | double | -119.842, -119.842 |
attribute | longitude | axis | String | X |
attribute | longitude | bcodmo_name | String | longitude |
attribute | longitude | colorBarMaximum | double | 180.0 |
attribute | longitude | colorBarMinimum | double | -180.0 |
attribute | longitude | description | String | Approximate Longitude Position of Lab; West is negative |
attribute | longitude | ioos_category | String | Location |
attribute | longitude | long_name | String | Longitude |
attribute | longitude | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P09/current/LONX/ |
attribute | longitude | standard_name | String | longitude |
attribute | longitude | units | String | degrees_east |
variable | Temp | byte | ||
attribute | Temp | _FillValue | byte | 127 |
attribute | Temp | actual_range | byte | 15, 20 |
attribute | Temp | bcodmo_name | String | temp_incub |
attribute | Temp | description | String | Temperature |
attribute | Temp | long_name | String | Temperature |
attribute | Temp | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/ |
attribute | Temp | units | String | degrees C |
variable | pCO2 | String | ||
attribute | pCO2 | bcodmo_name | String | treatment |
attribute | pCO2 | description | String | pCO2 conditions |
attribute | pCO2 | long_name | String | P CO2 |
attribute | pCO2 | units | String | text |
variable | HP15_addition | String | ||
attribute | HP15_addition | bcodmo_name | String | treatment |
attribute | HP15_addition | description | String | HP15 Addition |
attribute | HP15_addition | long_name | String | HP15 Addition |
attribute | HP15_addition | units | String | text |
variable | sampling_point | byte | ||
attribute | sampling_point | _FillValue | byte | 127 |
attribute | sampling_point | actual_range | byte | 96, 96 |
attribute | sampling_point | bcodmo_name | String | time_sample |
attribute | sampling_point | description | String | Sampling Point |
attribute | sampling_point | long_name | String | Sampling Point |
attribute | sampling_point | units | String | hrs |
variable | fraction | String | ||
attribute | fraction | bcodmo_name | String | unknown |
attribute | fraction | description | String | Fraction |
attribute | fraction | long_name | String | Fraction |
attribute | fraction | units | String | text |
variable | agg_num_per_tank | byte | ||
attribute | agg_num_per_tank | _FillValue | byte | 127 |
attribute | agg_num_per_tank | actual_range | byte | 1, 22 |
attribute | agg_num_per_tank | bcodmo_name | String | number |
attribute | agg_num_per_tank | description | String | Aggregate Number per Tank |
attribute | agg_num_per_tank | long_name | String | Agg Num Per Tank |
attribute | agg_num_per_tank | units | String | count/tank |
variable | ESD | float | ||
attribute | ESD | _FillValue | float | NaN |
attribute | ESD | actual_range | float | 1.26, 15.53 |
attribute | ESD | bcodmo_name | String | unknown |
attribute | ESD | description | String | Equivalent Spherical Diameter |
attribute | ESD | long_name | String | ESD |
attribute | ESD | units | String | mm |
variable | Velocity | float | ||
attribute | Velocity | _FillValue | float | NaN |
attribute | Velocity | actual_range | float | 7.83, 110.57 |
attribute | Velocity | bcodmo_name | String | unknown |
attribute | Velocity | description | String | Aggregate sinking velocity |
attribute | Velocity | long_name | String | Velocity |
attribute | Velocity | units | String | meters/day |