BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    
 
 
Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL access_formats String .htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt
attribute NC_GLOBAL acquisition_description String Photosynthetic production of organic matter was measured by the 14C tracer\nmethod. All incubations from 1990 through mid-2000 were conducted in situ at\neight depths (5, 25, 45, 75, 100, 125, 150 and 175m) over one daylight period\nusing a free-drifting array as described by Winn et al. (1991). Starting\nHOT-119 (October 2000), we collected samples from only the upper six depths &\nmodeled the lower two depths based on the monthly climatology. During 2015,\nall incubations were conducted in situ on a free floating, surface tethered\narray. Integrated carbon assimilation rates were calculated using the\ntrapezoid rule with the shallowest value extended to 0 meters and the deepest\nextrapolated to a value of zero at 200 meters.\n \nThe information below has been copied from the HOT\\u00a0Field & Laboratory\nProtocols page, found\nat\\u00a0[http://hahana.soest.hawaii.edu/hot/protocols/protocols.html#](\\\\\"http://hahana.soest.hawaii.edu/hot/protocols/protocols.html#\\\\\")\n(last visited on 2018-05-21).\n \nSUMMARY: The 14C-radiotracer method is used to measure the assimilation of\ndissolved inorganic carbon (DIC) by phytoplankton as an estimate of the rate\nof photosynthetic production of organic matter in the euphotic zone.\n \n1\\. Principle  \n The 14C method, originally proposed by Steeman-Nielsen (1952), is used to\nestimate the uptake of dissolved inorganic carbon (DIC) by planktonic algae in\nthe water column. The method is based on the fact that the biological uptake\nof14C-labeled DIC is proportional to the biological uptake of 12C-DIC. If one\nknows the initial concentration of DIC in a water sample, the amount of 14C-\nDIC added, the 14C retained in particulate organic matter (14C-POC) at the end\nof the incubation and the metabolic discrimination between the two isotopes of\ncarbon (i.e., 5% discrimination against the heavier 14C isotope), then it is\npossible to estimate the total uptake of carbon from the following\nrelationship:  \n \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0\n\\u00a0 \\u00a0 \\u00a0 \\u00a0 DIC * 14C-POC * 1.05  \n \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 C uptake\\u00a0\n=\\u00a0 \\u00a0--------------------  \n \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0\n\\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 \\u00a0 14C-DIC added\\u00a0  \n Due to the potentially toxic effects of trace metals on phytoplankton\nmetabolism in oligotrophic waters, the following procedure is used to minimize\nthe contact between water samples and possible sources of contamination.  \n 2. Cleaning  \n 2.1.  \n HCl (Baker Instra-Analyzed) solution (1M) is prepared with high purity\nhydrochloric acid and freshly-prepared glass distilled deionized water (DDW).  \n 2.2.  \n 500 ml polycarbonate bottles are rinsed twice with 1M HCl (Baker Instra-\nAnalyzed) and left overnight filled with the same acid solution. The acid is\nremoved by rinsing the bottles three times with DDW before air drying.  \n 2.3.  \n Go-Flo bottles, fitted with teflon-coated springs, are rinsed three times\nwith 1M HCl and DDW before use.  \n 2.4.  \n Pipette tips used in the preparation of the isotope stock and in the\ninoculation of samples are rinsed three times with concentrated HCl (Baker\nInstra-Analyzed), three times with DDW and once with the sodium carbonate\nsolution (Chapter 14, section 3.2) and stored in a clean polyethylene glove\nuntil used.  \n 3. Isotope Stock  \n 3.1.  \n The preparation of the isotope stock is performed wearing polyethylene\ngloves. A 25 ml acid-washed teflon bottle and a 50 ml acid-washed\npolypropylene centifuge tube are rinsed three times with DDW.  \n 3.2.  \n 0.032 g of anhydrous Na2CO3 (ALDRICH 20,442-0, 99.999% purity) are dissolved\nin 50 ml DDW in the centrifuge tube to provide a solution of 6 mmol Na2CO3 per\nliter.  \n 3.3.  \n 3.5 ml of NaH-14CO3 (53 mCi mmol-1; Research Products Inc.) are mixed with\n16.5 ml of the above prepared Na2CO3 solution in the teflon bottle.  \n 3.4.  \n The new stock activity is checked by counting triplicate 10 \\u00b5l samples\nwith 1 ml \\u03b2-phenethylamine in 10 ml Aquasol-II.  \n 3.5.  \n Triplicate 10 \\u00b5l stock samples are also acidified with 1 ml of 2 M HCl,\nmixed intermittently for 1-2 hours and counted in 10 ml Aquasol-II to confirm\nthat there is no 14C-organic carbon contamination. The acidification is done\nunder the hood. The acidified dpm should be <0.001% of the total dpm of the\n14C preparation.  \n 4. Incubation Systems  \n Typically we measure primary production using in situ incubation techniques.  \n 4.1.  \n A free-floating array equipped with VHF radio and strobe light is used for\nthe in situ incubations. Incubation bottles are attached to a horizontal\npolycarbonate spreader bar which is then attached to the 200 m, 1/2\\\"\npolypropylene in situ line at the depths corresponding to the sample\ncollections.  \n 4.2.  \n Generally eight incubation depths are selected (5-175 m, approximately).  \n 5. Sampling  \n 5.1.  \n Approximately 3 hours before local sunrise, seawater samples are collected\nwith acid- washed, 12-liter Go-Flo bottles using Kevlar line, metal-free\nsheave, teflon messengers and a stainless steel bottom weight. A dedicated\nhydrowinch is used for the primary productivity sampling procedures in a\nfurther effort to reduce/eliminate all sources of trace metal contamination.  \n 5.2.  \n Under low light conditions, water samples are transferred to the incubation\nbottles (500 ml polycarbonate bottles) and stored in the dark. Polyethylene\ngloves are worn during sample collection and inoculation procedures. No\ndrawing tubes are used.  \n 6. Isotope Addition and Sample Incubation  \n 6.1.  \n Three light bottles, three dark bottles and 1 time-zero control (see Chapter\n14, section 8) are collected at each depth for in situ incubation. In situ\ndark bottles are deployed in specially- designed, double-layered cloth bags\nwith VelcroR closures.  \n 6.2.  \n After all water samples have been drawn from the appropriate Go-Flo bottles,\n250 \\u00b5l of the 14C-sodium carbonate stock solution is added to each sample\nusing a specially-cleaned pipette tip. The samples are deployed before dawn on\na free-floating, drifter buoy array.  \n 6.3.  \n At local sunset, the free-floating array is recovered and all in situ\nbottles are immediately placed in the dark and processed as soon as possible.\nThe time of recovery is recorded.  \n 7. Filtration  \n 7.1.  \n Filtration of the samples is done under low light conditions and begins as\nsoon as the incubation bottles are recovered from the in situ array.  \n 7.2.  \n 200 \\u00b5l are removed and placed into a second LSC vial containing 0.5 ml\nof \\u03b2-phenethylamine. This sample is used for the determination of total\nradioactivity in each sample.  \n 7.3.  \n The remainder is filtered through a 25 mm diameter GF/F filters. The filters\nare placed into prelabelled, clean glass liquid scintillation counting vials\n(LSC vials) and stored at -20 \\u00b0C.  \n 8. 14C Sample Processing  \n 8.1.  \n One ml of 2 M HCl is added to each sample vial (under the hood). Vials are\ncovered with their respective caps and shaken in a vortex mixer for at least 1\nhour with venting at 20 minute intervals. To vent, the vials are removed from\nthe shaker, and the cap opened (under the hood). After shaking is completed,\nthe vials are left open to vent under the hood for an additional 24 hours.  \n 8.2.  \n Ten ml of Aquasol-II are added per vial (including vials for total 14C\nradioactivity) and the samples are counted in a liquid scintillation counter.\nSamples are counted again after 2 and 4 weeks, before discarding. Counts have\nshown a consistent increase during the first two weeks and become stable\nbetween the second and the fourth week. This is probably the result of sample\nhydrolysis or diffusion of radioactivity from the GF/F filter matrix, thereby\nreducing the extent of self-absorption. Only the 4-week count is used for 14C\ncalculations. Counts per min (CPM) are converted to disintegration per min\n(DPM) using the channels ratio program supplied by the the manufacturer\n(Packard Instrument Co.)
attribute NC_GLOBAL awards_0_award_nid String 54915
attribute NC_GLOBAL awards_0_award_number String OCE-0926766
attribute NC_GLOBAL awards_0_data_url String http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0926766 (external link)
attribute NC_GLOBAL awards_0_funder_name String NSF Division of Ocean Sciences
attribute NC_GLOBAL awards_0_funding_acronym String NSF OCE
attribute NC_GLOBAL awards_0_funding_source_nid String 355
attribute NC_GLOBAL awards_0_program_manager String David L. Garrison
attribute NC_GLOBAL awards_0_program_manager_nid String 50534
attribute NC_GLOBAL cdm_data_type String Other
attribute NC_GLOBAL comment String version: 2018-05-18 \n  \n    Primary Production data \n    from monthly HOT cruises to deep-water Station ALOHA
attribute NC_GLOBAL Conventions String COARDS, CF-1.6, ACDD-1.3
attribute NC_GLOBAL creator_email String info at bco-dmo.org
attribute NC_GLOBAL creator_name String BCO-DMO
attribute NC_GLOBAL creator_type String institution
attribute NC_GLOBAL creator_url String https://www.bco-dmo.org/ (external link)
attribute NC_GLOBAL data_source String extract_data_as_tsv version 2.3  19 Dec 2019
attribute NC_GLOBAL date_created String 2018-05-18T17:03:33Z
attribute NC_GLOBAL date_modified String 2019-12-10T19:24:43Z
attribute NC_GLOBAL defaultDataQuery String &amp;time&lt;now
attribute NC_GLOBAL doi String 10.1575/1912/bco-dmo.737163.1
attribute NC_GLOBAL Easternmost_Easting double -158.0
attribute NC_GLOBAL geospatial_lat_max double 22.75
attribute NC_GLOBAL geospatial_lat_min double 22.75
attribute NC_GLOBAL geospatial_lat_units String degrees_north
attribute NC_GLOBAL geospatial_lon_max double -158.0
attribute NC_GLOBAL geospatial_lon_min double -158.0
attribute NC_GLOBAL geospatial_lon_units String degrees_east
attribute NC_GLOBAL geospatial_vertical_max double 178.0
attribute NC_GLOBAL geospatial_vertical_min double 0.0
attribute NC_GLOBAL geospatial_vertical_positive String down
attribute NC_GLOBAL geospatial_vertical_units String m
attribute NC_GLOBAL infoUrl String https://www.bco-dmo.org/dataset/737163 (external link)
attribute NC_GLOBAL institution String BCO-DMO
attribute NC_GLOBAL instruments_0_acronym String GO-FLO
attribute NC_GLOBAL instruments_0_dataset_instrument_description String Go-Flo bottles
attribute NC_GLOBAL instruments_0_dataset_instrument_nid String 737174
attribute NC_GLOBAL instruments_0_description String GO-FLO bottle cast used to collect water samples for pigment, nutrient, plankton, etc. The GO-FLO sampling bottle is specially designed to avoid sample contamination at the surface, internal spring contamination, loss of sample on deck (internal seals), and exchange of water from different depths.
attribute NC_GLOBAL instruments_0_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/30/ (external link)
attribute NC_GLOBAL instruments_0_instrument_name String GO-FLO Bottle
attribute NC_GLOBAL instruments_0_instrument_nid String 411
attribute NC_GLOBAL instruments_0_supplied_name String Go-Flo bottles
attribute NC_GLOBAL instruments_1_acronym String Niskin bottle
attribute NC_GLOBAL instruments_1_dataset_instrument_description String External closing niskin sampled in-situ Incubation.
attribute NC_GLOBAL instruments_1_dataset_instrument_nid String 737212
attribute NC_GLOBAL instruments_1_description String A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends.  The bottles can be attached individually on a hydrowire or deployed in 12, 24 or 36 bottle Rosette systems mounted on a frame and combined with a CTD.  Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.
attribute NC_GLOBAL instruments_1_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L22/current/TOOL0412/ (external link)
attribute NC_GLOBAL instruments_1_instrument_name String Niskin bottle
attribute NC_GLOBAL instruments_1_instrument_nid String 413
attribute NC_GLOBAL instruments_1_supplied_name String External closing niskin
attribute NC_GLOBAL instruments_2_acronym String LSC
attribute NC_GLOBAL instruments_2_dataset_instrument_description String liquid scintillation counter (Packard model 4640; United Technologies Inc.)
attribute NC_GLOBAL instruments_2_dataset_instrument_nid String 737175
attribute NC_GLOBAL instruments_2_description String Liquid scintillation counting is an analytical technique which is defined by the incorporation of the radiolabeled analyte into uniform distribution with a liquid chemical medium capable of converting the kinetic energy of nuclear emissions into light energy. Although the liquid scintillation counter is a sophisticated laboratory counting system used the quantify the activity of particulate emitting (ß and a) radioactive samples, it can also detect the auger electrons emitted from 51Cr and 125I samples.
attribute NC_GLOBAL instruments_2_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB21/ (external link)
attribute NC_GLOBAL instruments_2_instrument_name String Liquid Scintillation Counter
attribute NC_GLOBAL instruments_2_instrument_nid String 624
attribute NC_GLOBAL instruments_2_supplied_name String liquid scintillation counter
attribute NC_GLOBAL instruments_3_dataset_instrument_description String temperature- and light-controlled deck incubation system (NORDA/USM incubation system)
attribute NC_GLOBAL instruments_3_dataset_instrument_nid String 737173
attribute NC_GLOBAL instruments_3_description String A device mounted on a ship that holds water samples under conditions of controlled temperature or controlled temperature and illumination.
attribute NC_GLOBAL instruments_3_instrument_name String Shipboard Incubator
attribute NC_GLOBAL instruments_3_instrument_nid String 629001
attribute NC_GLOBAL instruments_3_supplied_name String NORDA/USM incubation system
attribute NC_GLOBAL keywords String bco, bco-dmo, biological, chemical, chemistry, chl, Chl_a_mean, Chl_a_sd, chlorophyll, concentration, concentration_of_chlorophyll_in_sea_water, cruise, dark, Dark_rep1, Dark_rep2, Dark_rep3, data, dataset, date, density, depth, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, Earth Science > Oceans > Salinity/Density > Salinity, end, end_date_time, End_time, erddap, euk, filename, flag, hetero, incubation, Incubation_type, latitude, light, Light_rep1, Light_rep2, Light_rep3, longitude, management, mean, ocean, oceanography, oceans, office, pheo, Pheo_mean, Pheo_sd, practical, preliminary, prim, PrimProd_filename, prochl, prod, rep1, rep2, rep3, salinity, Salt, science, sea, sea_water_practical_salinity, seawater, start, start_date_time, Start_time, synecho, time, time2, type, water
attribute NC_GLOBAL keywords_vocabulary String GCMD Science Keywords
attribute NC_GLOBAL license String https://www.bco-dmo.org/dataset/737163/license (external link)
attribute NC_GLOBAL metadata_source String https://www.bco-dmo.org/api/dataset/737163 (external link)
attribute NC_GLOBAL Northernmost_Northing double 22.75
attribute NC_GLOBAL param_mapping String {'737163': {'lat': 'flag - latitude', 'Depth': 'flag - depth', 'lon': 'flag - longitude', 'end_date_time': 'flag - time'}}
attribute NC_GLOBAL parameter_source String https://www.bco-dmo.org/mapserver/dataset/737163/parameters (external link)
attribute NC_GLOBAL people_0_affiliation String University of Hawaii at Manoa
attribute NC_GLOBAL people_0_affiliation_acronym String SOEST
attribute NC_GLOBAL people_0_person_name String David M. Karl
attribute NC_GLOBAL people_0_person_nid String 50750
attribute NC_GLOBAL people_0_role String Principal Investigator
attribute NC_GLOBAL people_0_role_type String originator
attribute NC_GLOBAL people_1_affiliation String University of Hawaii at Manoa
attribute NC_GLOBAL people_1_affiliation_acronym String SOEST
attribute NC_GLOBAL people_1_person_name String Lance  A Fujieki
attribute NC_GLOBAL people_1_person_nid String 51683
attribute NC_GLOBAL people_1_role String Contact
attribute NC_GLOBAL people_1_role_type String related
attribute NC_GLOBAL people_2_affiliation String Woods Hole Oceanographic Institution
attribute NC_GLOBAL people_2_affiliation_acronym String WHOI BCO-DMO
attribute NC_GLOBAL people_2_person_name String Mathew Biddle
attribute NC_GLOBAL people_2_person_nid String 708682
attribute NC_GLOBAL people_2_role String BCO-DMO Data Manager
attribute NC_GLOBAL people_2_role_type String related
attribute NC_GLOBAL project String HOT
attribute NC_GLOBAL projects_0_acronym String HOT
attribute NC_GLOBAL projects_0_description String Systematic, long-term observations are essential for evaluating natural variability of Earth’s climate and ecosystems and their responses to anthropogenic disturbances.  Since October 1988, the Hawaii Ocean Time-series (HOT) program has investigated temporal dynamics in biology, physics, and chemistry at Stn. ALOHA (22°45' N, 158°W), a deep ocean field site in the oligotrophic North Pacific Subtropical Gyre (NPSG). HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study NPSG climate and ecosystem variability over semi-diurnal to decadal time scales. HOT was founded to understand the processes controlling the time-varying fluxes of carbon and associated biogenic elements in the ocean and to document changes in the physical structure of the water column. To achieve these broad objectives, the program has several specific goals:\nQuantify time-varying (seasonal to decadal) changes in reservoirs and fluxes of carbon (C) and associated bioelements (nitrogen, oxygen, phosphorus, and silicon).\nIdentify processes controlling air-sea C exchange, rates of C transformation through the planktonic food web, and fluxes of C into the ocean’s interior.\nDevelop a climatology of hydrographic and biogeochemical dynamics from which to form a multi-decadal baseline from which to decipher natural and anthropogenic influences on the NPSG ecosystem. \nProvide scientific and logistical support to ancillary programs that benefit from the temporal context, interdisciplinary science, and regular access to the open sea afforded by HOT program occupation of Sta. ALOHA, including projects implementing, testing, and validating new methodologies, models, and transformative ocean sampling technologies.\nOver the past 24+ years, time-series research at Station ALOHA has provided an unprecedented view of temporal variability in NPSG climate and ecosystem processes.  Foremost among HOT accomplishments are an increased understanding of the sensitivity of bioelemental cycling to large scale ocean-climate interactions, improved quantification of reservoirs and time varying fluxes of carbon, identification of the importance of the hydrological cycle and its influence on upper ocean biogeochemistry, and the creation of long-term data sets from which the oceanic response to anthropogenic perturbation of elemental cycles may be gauged. \nA defining characteristic of the NPSG is the perennially oligotrophic nature of the upper ocean waters.  This biogeochemically reactive layer of the ocean is where air-sea exchange of climate reactive gases occurs, solar radiation fuels rapid biological transformation of nutrient elements, and diverse assemblages of planktonic organisms comprise the majority of living biomass and sustain productivity.  The prevailing Ekman convergence and weak seasonality in surface light flux, combined with relatively mild subtropical weather and persistent stratification, result in a nutrient depleted upper ocean habitat.  The resulting dearth of bioessential nutrients limits plankton standing stocks and maintains a deep (175 m) euphotic zone.  Despite the oligotrophic state of the NPSG, estimates of net organic matter production at Sta. ALOHA are estimated to range ~1.4 and 4.2 mol C m2 yr1.  Such respectable rates of productivity have highlighted the need to identify processes supplying growth limiting nutrients to the upper ocean.  Over the lifetime of HOT numerous ancillary science projects have leveraged HOT science and infrastructure to examine possible sources of nutrients supporting plankton productivity.  Both physical (mixing, upwelling) and biotic (N2 fixation, vertical migration) processes supply nutrients to the upper ocean in this region, and HOT has been instrumental in demonstrating that these processes are sensitive to variability in ocean climate.\nStation ALOHA - site selection and infrastructure\nStation ALOHA is a deep water (~4800 m) location approximately 100 km north of the Hawaiian Island of Oahu.  Thus, the region is far enough from land to be free of coastal ocean dynamics and terrestrial inputs, but close enough to a major port (Honolulu) to make relatively short duration (45 m depth), below depths of detection by Earth-orbiting satellites.  The emerging data emphasize the value of in situ measurements for validating remote and autonomous detection of plankton biomass and productivity and demonstrate that detection of potential secular-scale changes in productivity against the backdrop of significant interannual and decadal fluctuations demands a sustained sampling effort.     \nCareful long-term measurements at Stn. ALOHA also highlight a well-resolved, though relatively weak, seasonal climatology in upper ocean primary productivity.  Measurements of 14C-primary production document a ~3-fold increase during the summer months (Karl et al., 2012) that coincides with increases in plankton biomass (Landry et al., 2001; Sheridan and Landry, 2004).  Moreover, phytoplankton blooms, often large enough to be detected by ocean color satellites, are a recurrent summertime feature of these waters (White et al., 2007; Dore et al., 2008; Fong et al., 2008). Analyses of ~13-years (1992-2004) of particulate C, N, P, and biogenic Si fluxes collected from bottom-moored deep-ocean (2800 m and 4000 m) sediment traps provide clues to processes underlying these seasonal changes.  Unlike the gradual summertime increase in sinking particle flux observed in the upper ocean (150 m) traps, the deep sea particle flux record depicts a sharply defined summer maximum that accounts for ~20% of the annual POC flux to the deep sea, and appears driven by rapidly sinking diatom biomass (Karl et al., 2012).  Analyses of the 15N isotopic signatures associated with sinking particles at Sta. ALOHA, together with genetic analyses of N2 fixing microorganisms, implicates upper ocean N2 fixation as a major control on the magnitude and efficiency of the biological carbon pump in this ecosystem (Dore et al., 2002; Church et al., 2009; Karl et al., 2012).\nMotivating Questions\nScience results from HOT continue to raise new, important questions about linkages between ocean climate and biogeochemistry that remain at the core of contemporary oceanography.  Answers have begun to emerge from the existing suite of core program measurements; however, sustained sampling is needed to improve our understanding of contemporary ecosystem behavior and our ability to make informed projections of future changes to this ecosystem. HOT continues to focus on providing answers to some of the questions below:\nHow sensitive are rates of primary production and organic matter export to short- and long-term climate variability?\nWhat processes regulate nutrient supply to the upper ocean and how sensitive are these processes to climate forcing? \nWhat processes control the magnitude of air-sea carbon exchange and over what time scales do these processes vary?\nIs the strength of the NPSG CO2 sink changing in time?\nTo what extent does advection (including eddies) contribute to the mixed layer salinity budget over annual to decadal time scales and what are the implications for upper ocean biogeochemistry?\nHow do variations in plankton community structure influence productivity and material export? \nWhat processes trigger the formation and demise of phytoplankton blooms in a persistently stratified ocean ecosystem?\nReferences
attribute NC_GLOBAL projects_0_end_date String 2014-12
attribute NC_GLOBAL projects_0_geolocation String North Pacific Subtropical Gyre; 22 deg 45 min N, 158 deg W
attribute NC_GLOBAL projects_0_name String Hawaii Ocean Time-series (HOT): Sustaining ocean ecosystem and climate observations in the North Pacific Subtropical Gyre
attribute NC_GLOBAL projects_0_project_nid String 2101
attribute NC_GLOBAL projects_0_project_website String http://hahana.soest.hawaii.edu/hot/hot_jgofs.html (external link)
attribute NC_GLOBAL projects_0_start_date String 1988-07
attribute NC_GLOBAL publisher_name String Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
attribute NC_GLOBAL publisher_type String institution
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL Southernmost_Northing double 22.75
attribute NC_GLOBAL standard_name_vocabulary String CF Standard Name Table v55
attribute NC_GLOBAL subsetVariables String longitude,latitude
attribute NC_GLOBAL summary String Primary productivity measurements from the Hawaii Ocean Time-Series (HOT). Photosynthetic production of organic matter was measured by the 14C tracer method. All incubations from 1990 through mid-2000 were conducted in situ at eight depths (5, 25, 45, 75, 100, 125, 150 and 175m) over one daylight period using a free-drifting array as described by Winn et al. (1991). Starting HOT-119 (October 2000), we collected samples from only the upper six depths & modeled the lower two depths based on the monthly climatology. During 2015, all incubations were conducted in situ on a free floating, surface tethered array. Integrated carbon assimilation rates were calculated using the trapezoid rule with the shallowest value extended to 0 meters and the deepest extrapolated to a value of zero at 200 meters.
attribute NC_GLOBAL time_coverage_start String 1989-07-29T19:00:00Z
attribute NC_GLOBAL title String Primary productivity measurements from the Hawaii Ocean Time-Series (HOT) project from 1989-09-22 to 2016-10-15 at station ALOHA.
attribute NC_GLOBAL version String 1
attribute NC_GLOBAL Westernmost_Easting double -158.0
attribute NC_GLOBAL xml_source String osprey2erddap.update_xml() v1.3
variable Cruise short
attribute Cruise _FillValue short 32767
attribute Cruise actual_range short 1, 287
attribute Cruise bcodmo_name String cruise_id
attribute Cruise description String Cruise Number
attribute Cruise long_name String Cruise
attribute Cruise units String unitless
variable longitude double
attribute longitude _CoordinateAxisType String Lon
attribute longitude _FillValue double NaN
attribute longitude actual_range double -158.0, -158.0
attribute longitude axis String X
attribute longitude bcodmo_name String longitude
attribute longitude colorBarMaximum double 180.0
attribute longitude colorBarMinimum double -180.0
attribute longitude description String Longitude with East negative
attribute longitude ioos_category String Location
attribute longitude long_name String Longitude
attribute longitude nerc_identifier String https://vocab.nerc.ac.uk/collection/P09/current/LONX/ (external link)
attribute longitude standard_name String longitude
attribute longitude units String degrees_east
variable latitude double
attribute latitude _CoordinateAxisType String Lat
attribute latitude _FillValue double NaN
attribute latitude actual_range double 22.75, 22.75
attribute latitude axis String Y
attribute latitude bcodmo_name String latitude
attribute latitude colorBarMaximum double 90.0
attribute latitude colorBarMinimum double -90.0
attribute latitude description String Latitude with South negative
attribute latitude ioos_category String Location
attribute latitude long_name String Latitude
attribute latitude nerc_identifier String https://vocab.nerc.ac.uk/collection/P09/current/LATX/ (external link)
attribute latitude standard_name String latitude
attribute latitude units String degrees_north
variable PrimProd_filename String
attribute PrimProd_filename bcodmo_name String file_name
attribute PrimProd_filename description String Original filename of the primary production data from HOT
attribute PrimProd_filename long_name String Prim Prod Filename
attribute PrimProd_filename units String unitless
variable Incubation_type String
attribute Incubation_type bcodmo_name String treatment
attribute Incubation_type description String O - GO-FLO sampled on-deck Incubation; \nI - GO-FLO sampled in-situ Incubation;\nR - Rosette sampled in-situ Incubation;\nN - External closing niskin sampled in-situ Incubation.
attribute Incubation_type long_name String Incubation Type
attribute Incubation_type units String unitless
variable Date int
attribute Date _FillValue int 2147483647
attribute Date actual_range int 203, 991215
attribute Date bcodmo_name String date
attribute Date description String Date in YYMMDD format
attribute Date long_name String Date
attribute Date nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/ (external link)
attribute Date units String unitless
variable Start_time short
attribute Start_time _FillValue short 32767
attribute Start_time actual_range short 400, 740
attribute Start_time bcodmo_name String time_start
attribute Start_time description String Start Time in HHMM format
attribute Start_time long_name String Start Time
attribute Start_time units String unitless
variable start_date_time String
attribute start_date_time bcodmo_name String ISO_DateTime_UTC
attribute start_date_time description String start date and time in ISO 8601 format
attribute start_date_time long_name String Start Date Time
attribute start_date_time nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/ (external link)
attribute start_date_time units String unitless
variable End_time short
attribute End_time _FillValue short 32767
attribute End_time actual_range short 1500, 3130
attribute End_time bcodmo_name String time_end
attribute End_time description String End Time in HHMM format
attribute End_time long_name String End Time
attribute End_time units String unitless
variable time double
attribute time _CoordinateAxisType String Time
attribute time actual_range double 6.17742E8, NaN
attribute time axis String T
attribute time bcodmo_name String ISO_DateTime_UTC
attribute time description String end date and time in ISO 8601 format
attribute time ioos_category String Time
attribute time long_name String End Date Time
attribute time nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/ (external link)
attribute time standard_name String time
attribute time time_origin String 01-JAN-1970 00:00:00
attribute time units String seconds since 1970-01-01T00:00:00Z
variable time2 float
attribute time2 _FillValue float NaN
attribute time2 actual_range float 8.5, 25.0
attribute time2 bcodmo_name String duration
attribute time2 description String Incubation Time
attribute time2 long_name String Time
attribute time2 units String hours
variable depth double
attribute depth _CoordinateAxisType String Height
attribute depth _CoordinateZisPositive String down
attribute depth _FillValue double NaN
attribute depth actual_range double 0.0, 178.0
attribute depth axis String Z
attribute depth bcodmo_name String depth
attribute depth colorBarMaximum double 8000.0
attribute depth colorBarMinimum double -8000.0
attribute depth colorBarPalette String TopographyDepth
attribute depth description String Depth
attribute depth ioos_category String Location
attribute depth long_name String Depth
attribute depth nerc_identifier String https://vocab.nerc.ac.uk/collection/P09/current/DEPH/ (external link)
attribute depth positive String down
attribute depth standard_name String depth
attribute depth units String m
variable Chl_a_mean float
attribute Chl_a_mean _FillValue float NaN
attribute Chl_a_mean actual_range float 0.004, 0.5
attribute Chl_a_mean bcodmo_name String chlorophyll a
attribute Chl_a_mean colorBarMaximum double 30.0
attribute Chl_a_mean colorBarMinimum double 0.03
attribute Chl_a_mean colorBarScale String Log
attribute Chl_a_mean description String Chlorophyll a. Mean
attribute Chl_a_mean long_name String Concentration Of Chlorophyll In Sea Water
attribute Chl_a_mean nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/ (external link)
attribute Chl_a_mean units String miligrams per cubic meter (mg/m3)
variable Chl_a_sd float
attribute Chl_a_sd _FillValue float NaN
attribute Chl_a_sd actual_range float 0.0, 0.139
attribute Chl_a_sd bcodmo_name String chlorophyll a
attribute Chl_a_sd colorBarMaximum double 50.0
attribute Chl_a_sd colorBarMinimum double 0.0
attribute Chl_a_sd description String Chlroropyll a. Standard Deviation
attribute Chl_a_sd long_name String Chl A Sd
attribute Chl_a_sd nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/ (external link)
attribute Chl_a_sd units String miligrams per cubic meter (mg/m3)
variable Pheo_mean float
attribute Pheo_mean _FillValue float NaN
attribute Pheo_mean actual_range float 0.0, 0.887
attribute Pheo_mean bcodmo_name String phaeopigment
attribute Pheo_mean description String Pheopigments Mean
attribute Pheo_mean long_name String Pheo Mean
attribute Pheo_mean nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/PHAEFMP1/ (external link)
attribute Pheo_mean units String miligrams per cubic meter (mg/m3)
variable Pheo_sd float
attribute Pheo_sd _FillValue float NaN
attribute Pheo_sd actual_range float 0.0, 0.336
attribute Pheo_sd bcodmo_name String phaeopigment
attribute Pheo_sd colorBarMaximum double 50.0
attribute Pheo_sd colorBarMinimum double 0.0
attribute Pheo_sd description String Pheopigments Standard Deviation
attribute Pheo_sd long_name String Pheo Sd
attribute Pheo_sd nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/PHAEFMP1/ (external link)
attribute Pheo_sd units String miligrams per cubic meter (mg/m3)
variable Light_rep1 float
attribute Light_rep1 _FillValue float NaN
attribute Light_rep1 actual_range float 0.01, 29.01
attribute Light_rep1 bcodmo_name String replicate
attribute Light_rep1 description String Light - replicate #1
attribute Light_rep1 long_name String Light Rep1
attribute Light_rep1 units String miligrams Carbon per cubic meter (mg C/m3)
variable Light_rep2 float
attribute Light_rep2 _FillValue float NaN
attribute Light_rep2 actual_range float 0.02, 25.02
attribute Light_rep2 bcodmo_name String replicate
attribute Light_rep2 description String Light - replicate #2
attribute Light_rep2 long_name String Light Rep2
attribute Light_rep2 units String miligrams Carbon per cubic meter (mg C/m3)
variable Light_rep3 float
attribute Light_rep3 _FillValue float NaN
attribute Light_rep3 actual_range float 0.0, 27.64
attribute Light_rep3 bcodmo_name String replicate
attribute Light_rep3 description String Light - replicate #3
attribute Light_rep3 long_name String Light Rep3
attribute Light_rep3 units String miligrams Carbon per cubic meter (mg C/m3)
variable Dark_rep1 float
attribute Dark_rep1 _FillValue float NaN
attribute Dark_rep1 actual_range float 0.0, 0.88
attribute Dark_rep1 bcodmo_name String replicate
attribute Dark_rep1 description String Dark - replicate #1
attribute Dark_rep1 long_name String Dark Rep1
attribute Dark_rep1 units String miligrams Carbon per cubic meter (mg C/m3)
variable Dark_rep2 float
attribute Dark_rep2 _FillValue float NaN
attribute Dark_rep2 actual_range float 0.01, 0.62
attribute Dark_rep2 bcodmo_name String replicate
attribute Dark_rep2 description String Dark - replicate #2
attribute Dark_rep2 long_name String Dark Rep2
attribute Dark_rep2 units String miligrams Carbon per cubic meter (mg C/m3)
variable Dark_rep3 float
attribute Dark_rep3 _FillValue float NaN
attribute Dark_rep3 actual_range float 0.0, 0.46
attribute Dark_rep3 bcodmo_name String replicate
attribute Dark_rep3 description String Dark - replicate #3
attribute Dark_rep3 long_name String Dark Rep3
attribute Dark_rep3 units String miligrams Carbon per cubic meter (mg C/m3)
variable Salt float
attribute Salt _FillValue float NaN
attribute Salt actual_range float 34.3871, 35.5255
attribute Salt bcodmo_name String sal
attribute Salt colorBarMaximum double 37.0
attribute Salt colorBarMinimum double 32.0
attribute Salt description String Salinity (PSS-78)
attribute Salt long_name String Sea Water Practical Salinity
attribute Salt nerc_identifier String https://vocab.nerc.ac.uk/collection/P01/current/PSALST01/ (external link)
attribute Salt units String unitless
variable Prochl int
attribute Prochl _FillValue int 2147483647
attribute Prochl actual_range int 44, 447037
attribute Prochl bcodmo_name String abundance
attribute Prochl description String Prochlorococcus
attribute Prochl long_name String Prochl
attribute Prochl nerc_identifier String https://vocab.nerc.ac.uk/collection/P03/current/B070/ (external link)
attribute Prochl units String count per mililiter
variable Hetero int
attribute Hetero _FillValue int 2147483647
attribute Hetero actual_range int 20127, 1262038
attribute Hetero bcodmo_name String abundance
attribute Hetero description String Heterotrophic Bacteria
attribute Hetero long_name String Hetero
attribute Hetero nerc_identifier String https://vocab.nerc.ac.uk/collection/P03/current/B070/ (external link)
attribute Hetero units String count per mililiter
variable Synecho short
attribute Synecho _FillValue short 32767
attribute Synecho actual_range short 0, 21852
attribute Synecho bcodmo_name String abundance
attribute Synecho description String Synechococcus
attribute Synecho long_name String Synecho
attribute Synecho nerc_identifier String https://vocab.nerc.ac.uk/collection/P03/current/B070/ (external link)
attribute Synecho units String count per mililiter
variable Euk short
attribute Euk _FillValue short 32767
attribute Euk actual_range short 0, 4238
attribute Euk bcodmo_name String abundance
attribute Euk description String Eukaryotes
attribute Euk long_name String Euk
attribute Euk nerc_identifier String https://vocab.nerc.ac.uk/collection/P03/current/B070/ (external link)
attribute Euk units String count per mililiter
variable Flag String
attribute Flag bcodmo_name String flag
attribute Flag description String Quality Flags for the bottle, chlorophyll, pheopigments, light incubation, dark incubation, salinity & bacteria values respectively.\nQuality Indicators:\nFlag: Meaning\n1: unquality controlled\n2: good data\n3: suspect (i.e.  questionable) data\n4: bad data\n5: missing value\n9: variable not measured during this cast
attribute Flag long_name String Flag
attribute Flag units String unitless

 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact