BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | access_formats | String | .htmlTable,.csv,.json,.mat,.nc,.tsv |
attribute | NC_GLOBAL | acquisition_description | String | Collection & Larval Rearing\n \nWe collected adult Olympia oysters (Ostrea lurida) from Fidalgo Bay in June\n2017 and maintained them in a sea table with continuous flowing seawater\nheated to 19-20\\u00b0C at the Shannon Point Marine Center. We fed adult\noysters were fed concentrated algae once a day (Shellfish Diet, Reed\nMariculture) and utilized banjo-style filters (60-m) attached to the outflow\npipes of the sea table to catch released O. lurida larvae. We then collected\nand reared larvae at 12\\u00b0C in 3-L jars (2 individuals mL-1). Each jar of\nlarvae received a 50% water change with 0.35-m filtered sea water and were fed\nIsochrysis galbana algae (50,000 cells mL-1) daily.\n \nExperimental Design\n \nTo measure the effect of pH conditions on the vertical distribution of larvae\nwe established three experimental pycnocline treatments within clear\nplexiglass water columns (2.5cm x 2.5cm x 30cm): (1) ambient water (400ppm) in\nthe top layer and acidic water in the bottom layer (1500ppm), (2) ambient\nwater (400ppm) in both top and bottom layers, and (3) acidic water (1500ppm)\nin the top layer and ambient water (400ppm) in the bottom layer. Each water\nlayer was 60-mL of water and filled the column 10-cm high, so when each\nexperimental treatment was established it filled the column to 20-cm. We\nestablished the experimental treatments by increasing the density of seawater\nin the bottom layer by 0.003-0.005 g ml-1 using dialyzed Percoll (Mills 1984;\nPodolskey & Emlet 1993). Experimental treatment water was kept at 12\\u00b0C\nand pre-equilibrated to the desired pCO2 level and density. We also included\nblue food coloring (1 drop per 100-mL) to the dense bottom layer to more\neasily visualize the density layers while establishing experimental\ntreatments. We set-up four replicate columns for each experimental treatment\nmaking twelve columns total per experiment.\n \nOn the day of each experiment, we incubated the experimental treatment columns\nin clear plexiglass water baths connected to a Fisher Scientific Isotemp\nrecirculating water bath to maintain treatment temperature at 12\\u00b0C\nthroughout the experiment. We carefully injected 150 larvae by syringe into\nthe bottom 2-cm of each column with no more than 2-mL of their culture water.\nOlympia oyster larvae are highly phototactic (personal observations), so we\ngave the larvae 10 minutes to acclimate in darkness and then recorded their\nvertical position in the water columns under infrared light. We video recorded\nthe larvae\\u2019s vertical position in each column using an infrared uEye\ncamera equipped with Edmund Optics VIS-NIR Lens mounted on a motorized stand.\nWe later counted by eye the number of larvae per centimeter area of each\ncolumn from the videos.\n \nSampling and analytical procedures:\n \nCarefully collected water with a syringe and pipet from the top 1-3cm of the\ncolumn, the bottom 1-3cm of the water column and right at the transition layer\nwhere the top and bottom layers of water met and was visible by the blue dye\nin the bottom layer of water. The water from the syringe was carefully\ntransferred to a clean 2 ml microcentrifuge tube and pH was measured directly\nusing a pH probe (Micro PerpHect Ross Ross\\u00ae Combination pH electrode) and\nread with a Thermo Scientific Orion Star pH meter. |
attribute | NC_GLOBAL | awards_0_award_nid | String | 684166 |
attribute | NC_GLOBAL | awards_0_award_number | String | OCE-1538626 |
attribute | NC_GLOBAL | awards_0_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1538626 |
attribute | NC_GLOBAL | awards_0_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_0_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_0_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_0_program_manager | String | Michael E. Sieracki |
attribute | NC_GLOBAL | awards_0_program_manager_nid | String | 50446 |
attribute | NC_GLOBAL | cdm_data_type | String | Other |
attribute | NC_GLOBAL | comment | String | pH measurements \n Ostrea behavior lab expts, July 2017 \n S. Arellano, B. Olson, S. Yang (WWU) \n version: 2019-01-14 |
attribute | NC_GLOBAL | Conventions | String | COARDS, CF-1.6, ACDD-1.3 |
attribute | NC_GLOBAL | creator_email | String | info at bco-dmo.org |
attribute | NC_GLOBAL | creator_name | String | BCO-DMO |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | creator_url | String | https://www.bco-dmo.org/ |
attribute | NC_GLOBAL | data_source | String | extract_data_as_tsv version 2.3 19 Dec 2019 |
attribute | NC_GLOBAL | date_created | String | 2019-01-17T14:28:24Z |
attribute | NC_GLOBAL | date_modified | String | 2019-09-25T19:58:11Z |
attribute | NC_GLOBAL | defaultDataQuery | String | &time<now |
attribute | NC_GLOBAL | doi | String | 10.1575/1912/bco-dmo.753080.1 |
attribute | NC_GLOBAL | infoUrl | String | https://www.bco-dmo.org/dataset/753080 |
attribute | NC_GLOBAL | institution | String | BCO-DMO |
attribute | NC_GLOBAL | instruments_0_acronym | String | in-situ incubator |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_description | String | Used to maintain treatment temperature during experiment |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_nid | String | 753087 |
attribute | NC_GLOBAL | instruments_0_description | String | A device on shipboard or in the laboratory that holds water samples under controlled conditions of temperature and possibly illumination. |
attribute | NC_GLOBAL | instruments_0_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/82/ |
attribute | NC_GLOBAL | instruments_0_instrument_name | String | In-situ incubator |
attribute | NC_GLOBAL | instruments_0_instrument_nid | String | 494 |
attribute | NC_GLOBAL | instruments_0_supplied_name | String | Fisher Scientific Isotemp Circulating Water Bath |
attribute | NC_GLOBAL | instruments_1_acronym | String | Benchtop pH Meter |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_description | String | The pH electrode was prepared before each set of measurements following instructions in the ROSS® Electrode User Guide (Thermo Fisher Scientific Inc.) and calibrated with a three-buffer calibration using Thermo ScientificTM OrionTM pH Buffer Individual Use Pouches. |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_nid | String | 753090 |
attribute | NC_GLOBAL | instruments_1_description | String | An instrument consisting of an electronic voltmeter and pH-responsive electrode that gives a direct conversion of voltage differences to differences of pH at the measurement temperature. (McGraw-Hill Dictionary of Scientific and Technical Terms) \nThis instrument does not map to the NERC instrument vocabulary term for 'pH Sensor' which measures values in the water column. Benchtop models are typically employed for stationary lab applications. |
attribute | NC_GLOBAL | instruments_1_instrument_name | String | Benchtop pH Meter |
attribute | NC_GLOBAL | instruments_1_instrument_nid | String | 681 |
attribute | NC_GLOBAL | instruments_1_supplied_name | String | Thermo Scientific Orion Star A214 pH/ISE meter with a Micro PerpHect Ross® Combination pH electrode |
attribute | NC_GLOBAL | keywords | String | bco, bco-dmo, biological, cat, chemical, chemistry, column, column_depth_cat, column_depth_cm, column_name, data, dataset, date, depth, dmo, earth, Earth Science > Oceans > Ocean Chemistry > pH, erddap, management, name, ocean, oceanography, oceans, office, preliminary, reported, scale, science, sea, sea_water_ph_reported_on_total_scale, seawater, time, total, trial, water |
attribute | NC_GLOBAL | keywords_vocabulary | String | GCMD Science Keywords |
attribute | NC_GLOBAL | license | String | https://www.bco-dmo.org/dataset/753080/license |
attribute | NC_GLOBAL | metadata_source | String | https://www.bco-dmo.org/api/dataset/753080 |
attribute | NC_GLOBAL | param_mapping | String | {'753080': {'column_depth_cat': 'master - depth'}} |
attribute | NC_GLOBAL | parameter_source | String | https://www.bco-dmo.org/mapserver/dataset/753080/parameters |
attribute | NC_GLOBAL | people_0_affiliation | String | Western Washington University |
attribute | NC_GLOBAL | people_0_affiliation_acronym | String | WWU |
attribute | NC_GLOBAL | people_0_person_name | String | Shawn M Arellano |
attribute | NC_GLOBAL | people_0_person_nid | String | 684169 |
attribute | NC_GLOBAL | people_0_role | String | Principal Investigator |
attribute | NC_GLOBAL | people_0_role_type | String | originator |
attribute | NC_GLOBAL | people_1_affiliation | String | Western Washington University |
attribute | NC_GLOBAL | people_1_affiliation_acronym | String | WWU |
attribute | NC_GLOBAL | people_1_person_name | String | Dr Brady M. Olson |
attribute | NC_GLOBAL | people_1_person_nid | String | 51528 |
attribute | NC_GLOBAL | people_1_role | String | Co-Principal Investigator |
attribute | NC_GLOBAL | people_1_role_type | String | originator |
attribute | NC_GLOBAL | people_2_affiliation | String | Western Washington University |
attribute | NC_GLOBAL | people_2_affiliation_acronym | String | WWU |
attribute | NC_GLOBAL | people_2_person_name | String | Dr Sylvia Yang |
attribute | NC_GLOBAL | people_2_person_nid | String | 684172 |
attribute | NC_GLOBAL | people_2_role | String | Co-Principal Investigator |
attribute | NC_GLOBAL | people_2_role_type | String | originator |
attribute | NC_GLOBAL | people_3_affiliation | String | Woods Hole Oceanographic Institution |
attribute | NC_GLOBAL | people_3_affiliation_acronym | String | WHOI BCO-DMO |
attribute | NC_GLOBAL | people_3_person_name | String | Nancy Copley |
attribute | NC_GLOBAL | people_3_person_nid | String | 50396 |
attribute | NC_GLOBAL | people_3_role | String | BCO-DMO Data Manager |
attribute | NC_GLOBAL | people_3_role_type | String | related |
attribute | NC_GLOBAL | project | String | Climate stressors on larvae |
attribute | NC_GLOBAL | projects_0_acronym | String | Climate stressors on larvae |
attribute | NC_GLOBAL | projects_0_description | String | In the face of climate change, future distribution of animals will depend not only on whether they adjust to new conditions in their current habitat, but also on whether a species can spread to suitable locations in a changing habitat landscape. In the ocean, where most species have tiny drifting larval stages, dispersal between habitats is impacted by more than just ocean currents alone; the swimming behavior of larvae, the flow environment the larvae encounter, and the length of time the larvae spend in the water column all interact to impact the distance and direction of larval dispersal. The effects of climate change, especially ocean acidification, are already evident in shellfish species along the Pacific coast, where hatchery managers have noticed shellfish cultures with 'lazy larvae syndrome.' Under conditions of increased acidification, these 'lazy larvae' simply stop swimming; yet, larval swimming behavior is rarely incorporated into studies of ocean acidification. Furthermore, how ocean warming interacts with the effects of acidification on larvae and their swimming behaviors remains unexplored; indeed, warming could reverse 'lazy larvae syndrome.' This project uses a combination of manipulative laboratory experiments, computer modeling, and a real case study to examine whether the impacts of ocean warming and acidification on individual larvae may affect the distribution and restoration of populations of native oysters in the Salish Sea. The project will tightly couple research with undergraduate education at Western Washington University, a primarily undergraduate university, by employing student researchers, incorporating materials into undergraduate courses, and pairing marine science student interns with art student interns to develop art projects aimed at communicating the effects of climate change to public audiences\nAs studies of the effects of climate stress in the marine environment progress, impacts on individual-level performance must be placed in a larger ecological context. While future climate-induced circulation changes certainly will affect larval dispersal, the effects of climate-change stressors on individual larval traits alone may have equally important impacts, significantly altering larval transport and, ultimately, species distribution. This study will experimentally examine the relationship between combined climate stressors (warming and acidification) on planktonic larval duration, morphology, and swimming behavior; create models to generate testable hypotheses about the effects of these factors on larval dispersal that can be applied across systems; and, finally, use a bio-physically coupled larval transport model to examine whether climate-impacted larvae may affect the distribution and restoration of populations of native oysters in the Salish Sea. |
attribute | NC_GLOBAL | projects_0_end_date | String | 2018-08 |
attribute | NC_GLOBAL | projects_0_geolocation | String | Coastal Pacific, USA |
attribute | NC_GLOBAL | projects_0_name | String | RUI: Will climate change cause 'lazy larvae'? Effects of climate stressors on larval behavior and dispersal |
attribute | NC_GLOBAL | projects_0_project_nid | String | 684167 |
attribute | NC_GLOBAL | projects_0_start_date | String | 2015-09 |
attribute | NC_GLOBAL | publisher_name | String | Biological and Chemical Oceanographic Data Management Office (BCO-DMO) |
attribute | NC_GLOBAL | publisher_type | String | institution |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v55 |
attribute | NC_GLOBAL | summary | String | This dataset contains pH measurements collected from a laboratory water column experiments to investigate the behavioral effects of ocean acidification on Olympia oyster larvae (Ostrea lurida). |
attribute | NC_GLOBAL | title | String | [Ostrea_pH_OA_Expt2017] - pH measurements from laboratory water column experiments on the behavioral effects of ocean acidification on Olympia oyster larvae (Ostrea lurida), July 2017 (RUI: Will climate change cause 'lazy larvae'? Effects of climate stressors on larval behavior and dispersal) |
attribute | NC_GLOBAL | version | String | 1 |
attribute | NC_GLOBAL | xml_source | String | osprey2erddap.update_xml() v1.3 |
variable | trial | byte | ||
attribute | trial | _FillValue | byte | 127 |
attribute | trial | actual_range | byte | 1, 2 |
attribute | trial | bcodmo_name | String | exp_id |
attribute | trial | description | String | Trial number |
attribute | trial | long_name | String | Trial |
attribute | trial | units | String | unitless |
variable | date | String | ||
attribute | date | bcodmo_name | String | date_local |
attribute | date | description | String | Date of trial formatted as yyyy-mm-dd |
attribute | date | long_name | String | Date |
attribute | date | source_name | String | date |
attribute | date | time_precision | String | 1970-01-01 |
attribute | date | units | String | unitless |
variable | column_name | String | ||
attribute | column_name | bcodmo_name | String | sample |
attribute | column_name | description | String | Identifies the experimental water column treatment and replicate #: AN-# = Acidic water at the top and Neutral water at the bottom ; NN-# = Neutral water at the top and Neutral water at the bottom; NA-# = Neutral water at the top and Acid water at the bottom |
attribute | column_name | long_name | String | Column Name |
attribute | column_name | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P02/current/ACYC/ |
attribute | column_name | units | String | unitless |
variable | column_depth_cat | double | ||
attribute | column_depth_cat | _FillValue | double | NaN |
attribute | column_depth_cat | bcodmo_name | String | depth |
attribute | column_depth_cat | description | String | Water column depth category where the pH sample was collected. top = 18-20 cm from bottom of water column; bottom = 1-2 cm from the bottom of the water column; transition point = middle of the water column where two treatment waters meet |
attribute | column_depth_cat | long_name | String | Column Depth Cat |
attribute | column_depth_cat | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P09/current/DEPH/ |
attribute | column_depth_cat | units | String | unitless |
variable | column_depth_cm | String | ||
attribute | column_depth_cm | bcodmo_name | String | depth |
attribute | column_depth_cm | description | String | Water column depth in cm where the pH sample was collected. |
attribute | column_depth_cm | long_name | String | Column Depth Cm |
attribute | column_depth_cm | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P09/current/DEPH/ |
attribute | column_depth_cm | units | String | centimeters (cm) |
variable | pH | float | ||
attribute | pH | _FillValue | float | NaN |
attribute | pH | actual_range | float | 7.43, 7.9 |
attribute | pH | bcodmo_name | String | pH |
attribute | pH | colorBarMaximum | double | 9.0 |
attribute | pH | colorBarMinimum | double | 7.0 |
attribute | pH | description | String | pH of seawater in water column |
attribute | pH | long_name | String | Sea Water Ph Reported On Total Scale |
attribute | pH | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/ |
attribute | pH | units | String | standard pH units |