BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | access_formats | String | .htmlTable,.csv,.json,.mat,.nc,.tsv |
attribute | NC_GLOBAL | acquisition_description | String | See Carpenter et al. (2018) for a detailed overview of the methodology of the\nexperiment designed to measure coral reef community metabolism responses to\nocean acidification over a 4-month period from November 13th, 2015 to March\n15th, 2016 in outdoor flumes at the UCB Gump Research Station Moorea, French\nPolynesia.\n \nMetabolism data: \n Community Gnet was measured using the alkalinity anomaly method (after Smith\n(1973)), and community Pnet was measured using changes in dissolved oxygen\n(DO). Measurements of community Gnet and Pnet over 3-h periods for daytime (n\n= 4) and 6-h periods for nighttime (n = 2) were averaged, and used to estimate\ndaily community Gnet (over 24 h) and daytime community Pnet (over ~ 12 h).\n \nCommunity composition: \n ~\\u200925% coral cover, comprised of 11% cover of massive Porites spp., 7%\nPorites rus, 4% Montipora spp. and 3% Pocillopora spp. There\nwas\\u2009~\\u20097% cover of crustose coralline algae (CCA), with 4% Porolithon\nonkodes and 3% Lithophyllum kotschyanum, and ~\\u20095% cover of small pieces\n(i.e., ~\\u20091-cm diameter) of coral rubble (Fig. S2, Carpenter et al.,\n2018).\" |
attribute | NC_GLOBAL | awards_0_award_nid | String | 536317 |
attribute | NC_GLOBAL | awards_0_award_number | String | OCE-1415268 |
attribute | NC_GLOBAL | awards_0_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1415268 |
attribute | NC_GLOBAL | awards_0_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_0_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_0_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_0_program_manager | String | David L. Garrison |
attribute | NC_GLOBAL | awards_0_program_manager_nid | String | 50534 |
attribute | NC_GLOBAL | cdm_data_type | String | Other |
attribute | NC_GLOBAL | comment | String | Metabolism \n PI: Robert Carpenter \n Data Version 1: 2019-05-21 |
attribute | NC_GLOBAL | Conventions | String | COARDS, CF-1.6, ACDD-1.3 |
attribute | NC_GLOBAL | creator_email | String | info at bco-dmo.org |
attribute | NC_GLOBAL | creator_name | String | BCO-DMO |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | creator_url | String | https://www.bco-dmo.org/ |
attribute | NC_GLOBAL | data_source | String | extract_data_as_tsv version 2.3 19 Dec 2019 |
attribute | NC_GLOBAL | date_created | String | 2019-02-01T23:13:06Z |
attribute | NC_GLOBAL | date_modified | String | 2020-03-06T18:22:23Z |
attribute | NC_GLOBAL | defaultDataQuery | String | &time<now |
attribute | NC_GLOBAL | doi | String | 10.1575/1912/bco-dmo.754676.1 |
attribute | NC_GLOBAL | infoUrl | String | https://www.bco-dmo.org/dataset/754676 |
attribute | NC_GLOBAL | institution | String | BCO-DMO |
attribute | NC_GLOBAL | keywords | String | bco, bco-dmo, biological, chemical, data, dataset, date, day, dmo, erddap, flume, gnet, management, oceanography, office, pnet, preliminary, time, Time_of_day, treatment |
attribute | NC_GLOBAL | license | String | https://www.bco-dmo.org/dataset/754676/license |
attribute | NC_GLOBAL | metadata_source | String | https://www.bco-dmo.org/api/dataset/754676 |
attribute | NC_GLOBAL | param_mapping | String | {'754676': {}} |
attribute | NC_GLOBAL | parameter_source | String | https://www.bco-dmo.org/mapserver/dataset/754676/parameters |
attribute | NC_GLOBAL | people_0_affiliation | String | California State University Northridge |
attribute | NC_GLOBAL | people_0_affiliation_acronym | String | CSU-Northridge |
attribute | NC_GLOBAL | people_0_person_name | String | Robert Carpenter |
attribute | NC_GLOBAL | people_0_person_nid | String | 51535 |
attribute | NC_GLOBAL | people_0_role | String | Principal Investigator |
attribute | NC_GLOBAL | people_0_role_type | String | originator |
attribute | NC_GLOBAL | people_1_affiliation | String | California State University Northridge |
attribute | NC_GLOBAL | people_1_affiliation_acronym | String | CSU-Northridge |
attribute | NC_GLOBAL | people_1_person_name | String | Peter J. Edmunds |
attribute | NC_GLOBAL | people_1_person_nid | String | 51536 |
attribute | NC_GLOBAL | people_1_role | String | Co-Principal Investigator |
attribute | NC_GLOBAL | people_1_role_type | String | originator |
attribute | NC_GLOBAL | people_2_affiliation | String | California State University Northridge |
attribute | NC_GLOBAL | people_2_affiliation_acronym | String | CSU-Northridge |
attribute | NC_GLOBAL | people_2_person_name | String | Griffin Srednick |
attribute | NC_GLOBAL | people_2_person_nid | String | 737324 |
attribute | NC_GLOBAL | people_2_role | String | Technician |
attribute | NC_GLOBAL | people_2_role_type | String | related |
attribute | NC_GLOBAL | people_3_affiliation | String | Woods Hole Oceanographic Institution |
attribute | NC_GLOBAL | people_3_affiliation_acronym | String | WHOI BCO-DMO |
attribute | NC_GLOBAL | people_3_person_name | String | Amber York |
attribute | NC_GLOBAL | people_3_person_nid | String | 643627 |
attribute | NC_GLOBAL | people_3_role | String | BCO-DMO Data Manager |
attribute | NC_GLOBAL | people_3_role_type | String | related |
attribute | NC_GLOBAL | project | String | OA_Corals |
attribute | NC_GLOBAL | projects_0_acronym | String | OA_Corals |
attribute | NC_GLOBAL | projects_0_description | String | While coral reefs have undergone unprecedented changes in community structure in the past 50 y, they now may be exposed to their gravest threat since the Triassic. This threat is increasing atmospheric CO2, which equilibrates with seawater and causes ocean acidification (OA). In the marine environment, the resulting decline in carbonate saturation state (Omega) makes it energetically less feasible for calcifying taxa to mineralize; this is a major concern for coral reefs. It is possible that the scleractinian architects of reefs will cease to exist as a mineralized taxon within a century, and that calcifying algae will be severely impaired. While there is a rush to understand these effects and make recommendations leading to their mitigation, these efforts are influenced strongly by the notion that the impacts of pCO2 (which causes Omega to change) on calcifying taxa, and the mechanisms that drive them, are well-known. The investigators believe that many of the key processes of mineralization on reefs that are potentially affected by OA are only poorly known and that current knowledge is inadequate to support the scaling of OA effects to the community level. It is vital to measure organismal-scale calcification of key taxa, elucidate the mechanistic bases of these responses, evaluate community scale calcification, and finally, to conduct focused experiments to describe the functional relationships between these scales of mineralization.\nThis project is a 4-y effort focused on the effects of Ocean Acidification (OA) on coral reefs at multiple spatial and functional scales. The project focuses on the corals, calcified algae, and coral reefs of Moorea, French Polynesia, establishes baseline community-wide calcification data for the detection of OA effects on a decadal-scale, and builds on the research context and climate change focus of the Moorea Coral Reef LTER.\nThis project is a hypothesis-driven approach to compare the effects of OA on reef taxa and coral reefs in Moorea. The PIs will utilize microcosms to address the impacts and mechanisms of OA on biological processes, as well as the ecological processes shaping community structure. Additionally, studies of reef-wide metabolism will be used to evaluate the impacts of OA on intact reef ecosystems, to provide a context within which the experimental investigations can be scaled to the real world, and critically, to provide a much needed reference against which future changes can be gauged.\nThe following publications and data resulted from this project:\n2016 Edmunds P.J. and 15 others. Integrating the effects of ocean acidification across functional scales on tropical coral reefs. Bioscience (in press Feb 2016) **not yet available**\n2016 Comeau S, Carpenter RC, Lantz CA, Edmunds PJ. Parameterization of the response of calcification to temperature and pCO2 in the coral Acropora pulchra and the alga Lithophyllum kotschyanum. Coral Reefs (in press Feb 2016)\n2016 Brown D., Edmunds P.J. Differences in the responses of three scleractinians and the hydrocoral Millepora platyphylla to ocean acidification. Marine Biology (in press Feb 2016) **available soon**MarBio. 2016: calcification and biomassMarBio. 2016: tank conditions\n2016 Comeau, S., Carpenter, R.C., Edmunds, P.J. Effects of pCO2 on photosynthesis and respiration of tropical scleractinian corals and calcified algae. ICES Journal of Marine Science doi:10.1093/icesjms/fsv267\n2015 Evensen NR, Edmunds PJ, Sakai K. Effects of pCO2 on the capacity for spatial competition by the corals Montipora aequituberculata and massive Porites spp. Marine Ecology Progress Series 541: 123–134. doi: 10.3354/meps11512MEPS 2015: chemistryMEPS 2015: field surveyMEPS 2015: linear extensionDownload data for this publication (Excel file)\n2015 Comeau S., Lantz C. A., Edmunds P. J., Carpenter R. C. Framework of barrier reefs threatened by ocean acidification. Global Change Biology doi: 10.1111/gcb.13023\n2015 Comeau, S., Carpenter, R. C., Lantz, C. A., and Edmunds, P. J. Ocean acidification accelerates dissolution of experimental coral reef communities, Biogeosciences, 12, 365-372, doi:10.5194/bg-12-365-2015.calcification rates - flume exptcarbonate chemistry - flume expt\nExternal data repository: http://doi.pangaea.de/10.1594/PANGAEA.847986\n2014 Comeau S, Carpenter RC, Edmunds PJ. Effects of irradiance on the response of the coral Acropora pulchra and the calcifying alga Hydrolithon reinboldii to temperature elevation and ocean acidification. Journal of Experimental Marine Biology and Ecology (in press)\n2014 Comeau S, Carpenter RC, Nojiri Y, Putnam HM, Sakai K, Edmunds PJ. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Royal Society of London (B) 281: doi.org/10.1098/rspb.2014.1339\nExternal data repository: http://doi.pangaea.de/10.1594/PANGAEA.832834\n2014 Comeau, S., Edmunds, P. J., Lantz, C. A., & Carpenter, R. C. Water flow modulates the response of coral reef communities to ocean acidification. Scientific Reports, 4. doi:10.1038/srep06681calcification rates - flume exptcarbonate chemistry - flume expt\n2014 Comeau, S., Edmunds, P. J., Spindel, N. B., & Carpenter, R. C. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations. Limnology and Oceanography, 59(3), 1081–1091. doi:10.4319/lo.2014.59.3.1081algae_calcificationcoral_calcification\nExternal data repository: http://doi.pangaea.de/10.1594/PANGAEA.832584\n2014 Comeau S, Edmunds PJ, Spindel NB, Carpenter RC. Diel pCO2 oscillations modulate the response of the coral Acropora hyacinthus to ocean acidification. Marine Ecology Progress Series 453: 28-35\n2013 Comeau, S, Carpenter, RC, Edmunds PJ. Response to coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proceedings of the Royal Society of London 280: doi.org/10.1098/rspb.2013.1153\n2013 Comeau S, Carpenter RC. Edmunds PJ. Effects of feeding and light intensity on the response of the coral Porites rus to ocean acidification. Marine Biology 160: 1127-1134\nExternal data repository: http://doi.pangaea.de/10.1594/PANGAEA.829815\n2013 Comeau, S., Edmunds, P. J., Spindel, N. B., Carpenter, R. C. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol. Oceanogr. 58, 388–398.algae_calcificationcoral_calcification\nExternal data repository: http://doi.pangaea.de/10.1594/PANGAEA.833687\n2012 Comeau, S., Carpenter, R. C., & Edmunds, P. J. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proceedings of the Royal Society B: Biological Sciences, 280(1753), 20122374. doi:10.1098/rspb.2012.2374carbonate_chemistrylight_dark_calcificationmean_calcification\nExternal data repository: http://doi.pangaea.de/10.1594/PANGAEA.832834 |
attribute | NC_GLOBAL | projects_0_end_date | String | 2014-12 |
attribute | NC_GLOBAL | projects_0_geolocation | String | Moorea, French Polynesia |
attribute | NC_GLOBAL | projects_0_name | String | The effects of ocean acidification on the organismic biology and community ecology of corals, calcified algae, and coral reefs |
attribute | NC_GLOBAL | projects_0_project_nid | String | 2242 |
attribute | NC_GLOBAL | projects_0_start_date | String | 2011-01 |
attribute | NC_GLOBAL | publisher_name | String | Biological and Chemical Oceanographic Data Management Office (BCO-DMO) |
attribute | NC_GLOBAL | publisher_type | String | institution |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v55 |
attribute | NC_GLOBAL | summary | String | This dataset contains coral community metabolism data from outdoor flumes at the UCB Gump Research Station Moorea, French Polynesia. These measurements were taken during an experiment designed to measure coral reef community metabolism responses to ocean acidification over a 4-month period from November 13th, 2015 to March 15th, 2016. These data were published in Carpenter et al. (2018). |
attribute | NC_GLOBAL | title | String | [Carpenter 2018: metabolism] - Coral community metabolism from outdoor flumes at the UCB Gump Research Station Moorea, French Polynesia from November of 2015 to March of 2016 (RUI: Ocean Acidification- Category 1- The effects of ocean acidification on the organismic biology and community ecology of corals, calcified algae, and coral reefs) |
attribute | NC_GLOBAL | version | String | 1 |
attribute | NC_GLOBAL | xml_source | String | osprey2erddap.update_xml() v1.3 |
variable | Treatment | short | ||
attribute | Treatment | _FillValue | short | 32767 |
attribute | Treatment | actual_range | short | 344, 1146 |
attribute | Treatment | bcodmo_name | String | treatment |
attribute | Treatment | description | String | pCO2 treatment (values 344; 633; 870; 1146) |
attribute | Treatment | long_name | String | Treatment |
attribute | Treatment | units | String | unitless |
variable | Flume | byte | ||
attribute | Flume | _FillValue | byte | 127 |
attribute | Flume | actual_range | byte | 1, 4 |
attribute | Flume | bcodmo_name | String | site_descrip |
attribute | Flume | description | String | Flume number (1; 2; 3; 4) |
attribute | Flume | long_name | String | Flume |
attribute | Flume | units | String | unitless |
variable | Date | String | ||
attribute | Date | bcodmo_name | String | date_local |
attribute | Date | description | String | Date (HST) of measurement in ISO 8601 format yyyy-mm-dd |
attribute | Date | long_name | String | Date |
attribute | Date | source_name | String | Date |
attribute | Date | time_precision | String | 1970-01-01 |
attribute | Date | units | String | unitless |
variable | Time_of_day | String | ||
attribute | Time_of_day | bcodmo_name | String | site_descrip |
attribute | Time_of_day | description | String | Time of day (Day or night) |
attribute | Time_of_day | long_name | String | Time Of Day |
attribute | Time_of_day | units | String | unitless |
variable | Gnet | float | ||
attribute | Gnet | _FillValue | float | NaN |
attribute | Gnet | actual_range | float | -1.63, 8.93 |
attribute | Gnet | bcodmo_name | String | calcification |
attribute | Gnet | description | String | Net community calcification |
attribute | Gnet | long_name | String | Gnet |
attribute | Gnet | units | String | millimoles per meter squared per hour (mmol/m2/h) |
variable | Pnet | float | ||
attribute | Pnet | _FillValue | float | NaN |
attribute | Pnet | actual_range | float | -11.76, 16.66 |
attribute | Pnet | bcodmo_name | String | Primary Production |
attribute | Pnet | description | String | Net primary production |
attribute | Pnet | long_name | String | Pnet |
attribute | Pnet | units | String | millimoles per meter squared per hour (mmol/m2/h) |