BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    
 
 
Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL cdm_data_type String Other
attribute NC_GLOBAL Conventions String COARDS, CF-1.6, ACDD-1.3
attribute NC_GLOBAL creator_email String info at bco-dmo.org
attribute NC_GLOBAL creator_name String BCO-DMO
attribute NC_GLOBAL creator_url String https://www.bco-dmo.org/ (external link)
attribute NC_GLOBAL doi String 10.26008/1912/bco-dmo.894125.1
attribute NC_GLOBAL infoUrl String https://www.bco-dmo.org/dataset/894125 (external link)
attribute NC_GLOBAL institution String BCO-DMO
attribute NC_GLOBAL license String The data may be used and redistributed for free but is not intended\nfor legal use, since it may contain inaccuracies. Neither the data\nContributor, ERD, NOAA, nor the United States Government, nor any\nof their employees or contractors, makes any warranty, express or\nimplied, including warranties of merchantability and fitness for a\nparticular purpose, or assumes any legal liability for the accuracy,\ncompleteness, or usefulness, of this information.
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL summary String Increased standing macroalgal biomass in upwelling zones is generally assumed to be the result of higher nutrient flux due to upwelled waters. However, other factors can strongly impact macroalgal communities. For example, herbivory and temperature, via their effects on primary producers and the metabolic demands of consumers, can also influence macroalgal biomass and productivity, respectively.  Although there are a fair number of studies looking at the interactive effects of herbivores and nutrients in both tropical and temperate regions, there is a lack of studies looking at these effects in tropical or subtropical upwelling regions. The purpose of this study was to measure the effects that herbivores, temperature, and nutrient availability have on standing macroalgal biomass. We manipulated nutrient availability and herbivory in six field experiments during contrasting productivity and thermal regimes (cool-upwelling and warm, non-upwelling season) on a subtidal nearshore rocky reef. \n\nHere, we present a set of temperature (°C) data collected at Cerro Mundo Bay, San Cristobal, Galapagos from July 2019 to August 2022. The environmental temperature was recorded every 15 minutes using a HOBO Water Temperature Pro v2 Data Logger (Onset®) attached to the seafloor at a 10 meters depth mark.
attribute NC_GLOBAL time_coverage_end String 2022-09-01T05:50:00Z
attribute NC_GLOBAL time_coverage_start String 2019-07-28T16:30:00Z
attribute NC_GLOBAL title String [Cerro Mundo Temperature] - Temperature data collected at Cerro Mundo Bay, San Cristobal, Galapagos from July 2019 to August 2022 using an Onset HOBO Water Temperature Pro v2 Data Logger (The Role of Temperature in Regulating Herbivory and Algal Biomass in Upwelling Systems)
variable ISO_DateTime_Local String
attribute ISO_DateTime_Local long_name String Iso_datetime_local
attribute ISO_DateTime_Local units String unitless
variable time double
attribute time _CoordinateAxisType String Time
attribute time actual_range double 1.5643314E9, 1.6620114E9
attribute time axis String T
attribute time ioos_category String Time
attribute time long_name String Iso_datetime_utc
attribute time standard_name String time
attribute time time_origin String 01-JAN-1970 00:00:00
attribute time units String seconds since 1970-01-01T00:00:00Z
variable Temp float
attribute Temp actual_range float 14.481, 32.6
attribute Temp long_name String Temp
attribute Temp units String degrees Celsius

 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact