BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  [NEP1995_T_S] - Data from mooring deployed on Northeast Peak in the Georges
Bank, Northeast Peak in 1995 (GB project) (U.S. GLOBEC Georges Bank)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_2493)
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Subset | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
   or a List of Values ?
   Maximum ?
 
 brief_desc (unitless) ?      
   - +  ?
 year_start (unitless) ?      
   - +  ?
 latitude (degrees_north) ?      
   - +  ?
  < slider >
 longitude (degrees_east) ?      
   - +  ?
  < slider >
 depth (m) ?          1.0    72.0
  < slider >
 hour_gmt (unitless) ?          0    23
 minute_gmt (unitless) ?          0    58
 seconds_gmt (unitless) ?          0.0    45.0
 day_gmt (unitless) ?          "01"    "31"
 month_gmt (unitless) ?          "01"    "12"
 year (unitless) ?          1995    1996
 julian_day (unitless) ?          2450023.7995    2450174.5695
 yrday_gmt (unitless) ?          1.0    365.99863
 flvolt (volts) ?      
   - +  ?
 trans_v (volts) ?      
   - +  ?
 par_scalar (microEinstein/meter^2/second) ?      
   - +  ?
 cond (seimens/meter) ?      
   - +  ?
 sigma_0 (kg/m^3) ?      
   - +  ?
 sal (unitless) ?          31.8827    33.0353
 temp (Temperature, decimal deg. C) ?          3.2226    13.5324
 temp_air (decimal deg. C) ?      
   - +  ?
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more information)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  brief_desc {
    String bcodmo_name "brief_desc";
    String description "data type description";
    String long_name "Brief Desc";
    String units "unitless";
  }
  year_start {
    Int16 _FillValue 32767;
    Int16 actual_range 1995, 1995;
    String bcodmo_name "year_start";
    String description "starting year of mooring deployment";
    String long_name "Year Start";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 41.711, 41.711;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "latitude, negative = South";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -66.4759, -66.4759;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "longitude, negative = West";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 1.0, 72.0;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "depth of instrument, negative = height above sea surf.";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  hour_gmt {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 23;
    String bcodmo_name "hour_gmt";
    String description "time GMT in hours (0-23)";
    String long_name "Hour Gmt";
    String units "unitless";
  }
  minute_gmt {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 58;
    String bcodmo_name "minute_gmt";
    String description "time GMT in minutes (0-59)";
    String long_name "Minute Gmt";
    String units "unitless";
  }
  seconds_gmt {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 45.0;
    String bcodmo_name "seconds_gmt";
    String description "time GMT in seconds";
    String long_name "Seconds Gmt";
    String units "unitless";
  }
  day_gmt {
    String bcodmo_name "day_gmt";
    String description "day of month GMT (1-31)";
    String long_name "Day Gmt";
    String units "unitless";
  }
  month_gmt {
    String bcodmo_name "month_gmt";
    String description "month of year GMT (1-12)";
    String long_name "Month Gmt";
    String units "unitless";
  }
  year {
    Int16 _FillValue 32767;
    Int16 actual_range 1995, 1996;
    String bcodmo_name "year";
    String description "year";
    String long_name "Year";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/YEARXXXX/";
    String units "unitless";
  }
  julian_day {
    Float64 _FillValue NaN;
    Float64 actual_range 2450023.7995, 2450174.5695;
    String bcodmo_name "julian_day";
    String description 
"Julian day. In this convention, Julian day 2440000
begins at 0000 hours, May 23, 1968";
    String long_name "Julian Day";
    String units "unitless";
  }
  yrday_gmt {
    Float64 _FillValue NaN;
    Float64 actual_range 1.0, 365.99863;
    String bcodmo_name "yrday_gmt";
    String description "GMT day and decimal time, as 326.5 for the 326th day of the year, or November 22 at 1200 hours (noon). In the case of drifter data, year day may be continuous over a multi year period.";
    String long_name "Yrday Gmt";
    String units "unitless";
  }
  flvolt {
    Float64 _FillValue NaN;
    String bcodmo_name "fluor voltage";
    String description "fluorescense";
    String long_name "Flvolt";
    String units "volts";
  }
  trans_v {
    Float64 _FillValue NaN;
    String bcodmo_name "trans_v";
    String description "light transmission";
    String long_name "Trans V";
    String units "volts";
  }
  par_scalar {
    Float64 _FillValue NaN;
    String bcodmo_name "par_scalar";
    String description "scalar PAR";
    String long_name "Par Scalar";
    String units "microEinstein/meter^2/second";
  }
  cond {
    Float64 _FillValue NaN;
    String bcodmo_name "conductivity";
    String description "conductivity";
    String long_name "Cond";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/CNDC/";
    String units "seimens/meter";
  }
  sigma_0 {
    Float64 _FillValue NaN;
    String bcodmo_name "sigma_0";
    String description "sigma-theta or potential density: density which takes into account adiabatic heating/cooling with changes in pressure";
    String long_name "Sigma 0";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/SIGTPR01/";
    String units "kg/m^3";
  }
  sal {
    Float32 _FillValue NaN;
    Float32 actual_range 31.8827, 33.0353;
    String bcodmo_name "sal";
    String description "salinity, PSS78";
    String long_name "Sal";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PSALST01/";
    String units "unitless";
  }
  temp {
    Float32 _FillValue NaN;
    Float32 actual_range 3.2226, 13.5324;
    String bcodmo_name "temperature";
    String description "water temperature, IPTS68";
    String long_name "Temperature";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "decimal deg. C";
  }
  temp_air {
    Float64 _FillValue NaN;
    String bcodmo_name "temp_air";
    String description "air temperature";
    String long_name "Temp Air";
    String units "decimal deg. C";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson";
    String acquisition_description 
"The data reported here are for those data obtained by the N.E.Peak mooring
deployment of Nov 1 1995 to Mar 30 1996.";
    String awards_0_award_nid "54610";
    String awards_0_award_number "unknown GB NSF";
    String awards_0_funder_name "National Science Foundation";
    String awards_0_funding_acronym "NSF";
    String awards_0_funding_source_nid "350";
    String awards_0_program_manager "David L. Garrison";
    String awards_0_program_manager_nid "50534";
    String awards_1_award_nid "54626";
    String awards_1_award_number "unknown GB NOAA";
    String awards_1_funder_name "National Oceanic and Atmospheric Administration";
    String awards_1_funding_acronym "NOAA";
    String awards_1_funding_source_nid "352";
    String cdm_data_type "Other";
    String comment 
"Georges Bank Northeast Peak Moorings 
  various PIs 
  qc'd by R. Beardsley, et al.";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2010-01-14T16:34:37Z";
    String date_modified "2019-11-29T08:19:22Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.2493.1";
    Float64 Easternmost_Easting -66.4759;
    Float64 geospatial_lat_max 41.711;
    Float64 geospatial_lat_min 41.711;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -66.4759;
    Float64 geospatial_lon_min -66.4759;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 72.0;
    Float64 geospatial_vertical_min 1.0;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2024-12-03T17:18:23Z (local files)
2024-12-03T17:18:23Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_2493.html";
    String infoUrl "https://www.bco-dmo.org/dataset/2493";
    String institution "BCO-DMO";
    String instruments_0_acronym "ADCP";
    String instruments_0_dataset_instrument_description "300-khz RD Instruments Workhorse ADCP mounted in a downward looking configuration in an in-line frame with auxiliary battery pack";
    String instruments_0_dataset_instrument_nid "4293";
    String instruments_0_description 
"The ADCP measures water currents with sound, using a principle of sound waves called the Doppler effect. A sound wave has a higher frequency, or pitch, when it moves to you than when it moves away. You hear the Doppler effect in action when a car speeds past with a characteristic building of sound that fades when the car passes.
The ADCP works by transmitting \"pings\" of sound at a constant frequency into the water. (The pings are so highly pitched that humans and even dolphins can't hear them.) As the sound waves travel, they ricochet off particles suspended in the moving water, and reflect back to the instrument. Due to the Doppler effect, sound waves bounced back from a particle moving away from the profiler have a slightly lowered frequency when they return. Particles moving toward the instrument send back higher frequency waves. The difference in frequency between the waves the profiler sends out and the waves it receives is called the Doppler shift. The instrument uses this shift to calculate how fast the particle and the water around it are moving.
Sound waves that hit particles far from the profiler take longer to come back than waves that strike close by. By measuring the time it takes for the waves to bounce back and the Doppler shift, the profiler can measure current speed at many different depths with each series of pings. (More from WHOI instruments listing).";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/115/";
    String instruments_0_instrument_name "Acoustic Doppler Current Profiler";
    String instruments_0_instrument_nid "405";
    String instruments_0_supplied_name "Acoustic Doppler Current Profiler";
    String instruments_1_acronym "Rotronics Temp";
    String instruments_1_dataset_instrument_description "Air Temperature";
    String instruments_1_dataset_instrument_nid "4275";
    String instruments_1_description "Rotronics used to measure Air Temperature";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/102/";
    String instruments_1_instrument_name "Rotronics";
    String instruments_1_instrument_nid "472";
    String instruments_1_supplied_name "Rotronics";
    String instruments_2_acronym "SBE-3 Temperature";
    String instruments_2_dataset_instrument_description "SBE-3 Temperature";
    String instruments_2_dataset_instrument_nid "4287";
    String instruments_2_description "The SBE-3 is a slow response, frequency output temperature sensor manufactured by Sea-Bird Electronics, Inc. (Bellevue, Washington, USA).  It has an initial accuracy of +/- 0.001 degrees Celsius with a stability of +/- 0.002 degrees Celsius per year and measures seawater temperature in the range of -5.0 to +35 degrees Celsius. more information from Sea-Bird Electronics";
    String instruments_2_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/134/";
    String instruments_2_instrument_name "Sea-Bird SBE-3 Temperature Sensor";
    String instruments_2_instrument_nid "473";
    String instruments_2_supplied_name "SBE-3";
    String instruments_3_acronym "SBE-4 Conductivity";
    String instruments_3_dataset_instrument_description "SBE-4 Conductivity";
    String instruments_3_dataset_instrument_nid "4290";
    String instruments_3_description "The Sea-Bird SBE-4 conductivity sensor is a modular, self-contained instrument that measures conductivity from 0 to 7 Siemens/meter.  The sensors (Version 2; S/N 2000 and higher) have electrically isolated power circuits and optically coupled outputs to eliminate any possibility of noise and corrosion caused by ground loops. The sensing element is a cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes. Because the outer electrodes are connected together, electric fields are confined inside the cell, making the measured resistance (and instrument calibration) independent of calibration bath size or proximity to protective cages or other objects.";
    String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0417/";
    String instruments_3_instrument_name "Sea-Bird SBE-4 Conductivity Sensor";
    String instruments_3_instrument_nid "474";
    String instruments_3_supplied_name "SBE-4";
    String instruments_4_acronym "LI-COR LI-192 PAR";
    String instruments_4_dataset_instrument_description "LiCor scalar(4steradians) PAR sensor.";
    String instruments_4_dataset_instrument_nid "4284";
    String instruments_4_description 
"The LI-192 Underwater Quantum Sensor (UWQ) measures underwater or atmospheric Photon Flux Density (PPFD) (Photosynthetically Available Radiation from 360 degrees) using a Silicon Photodiode and glass filters encased in a waterproof housing.  The LI-192 is cosine corrected and features corrosion resistant, rugged construction for use in freshwater or saltwater and pressures up to 800 psi (5500 kPa, 560 meters depth). Typical output is in um s-1 m-2.  The LI-192 uses computer-tailored filter glass to achieve the desired quantum response. Calibration is traceable to NIST.  The LI-192 serial numbers begin with UWQ-XXXXX.  LI-COR has been producing Underwater Quantum Sensors since 1973.  

These LI-192 sensors are typically listed as LI-192SA to designate the 2-pin connector on the base of the housing  and require an Underwater Cable (LI-COR part number 2222UWB) to connect to the pins on the Sensor and connect to a data recording device. 

The LI-192 differs from the LI-193 primarily in sensitivity and angular response.

193:  Sensitivity: Typically 7 uA per 1000 umol s-1 m-2 in water.  Azimuth: < ± 3% error over 360° at 90° from normal axis.  Angular Response: < ± 4% error up to ± 90° from normal axis  

192: Sensitivity: Typically 4 uA per 1000 umol s-1 m-2 in water.  Azimuth: < ± 1% error over 360° at 45° elevation.  Cosine Correction: Optimized for underwater and atmospheric use.

(www.licor.com)";
    String instruments_4_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0120/";
    String instruments_4_instrument_name "LI-COR LI-192 PAR Sensor";
    String instruments_4_instrument_nid "475";
    String instruments_4_supplied_name "LiCor Scalar Photosynthetically Active Radiation Sensor";
    String instruments_5_acronym "Sea Tech Transmissometer";
    String instruments_5_dataset_instrument_description "Sea Tech 25-cm path-length transmissometer";
    String instruments_5_dataset_instrument_nid "4278";
    String instruments_5_description "The Sea Tech Transmissometer can be deployed in either moored or profiling mode to estimate the concentration of suspended or particulate matter in seawater. The transmissometer measures the beam attenuation coefficient in the red spectral band (660 nm) of the laser lightsource over the instrument's path-length (e.g. 20 or 25 cm).  This instrument designation is used when specific make and model are not known. The Sea Tech Transmissometer was manufactured by Sea Tech, Inc. (Corvalis, OR, USA).";
    String instruments_5_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0003/";
    String instruments_5_instrument_name "Sea Tech Transmissometer";
    String instruments_5_instrument_nid "476";
    String instruments_5_supplied_name "SeaTech Transmissometer";
    String instruments_6_acronym "Sea Tech Fluorometer";
    String instruments_6_dataset_instrument_description "Sea Tech chlorophyll-a fluorometer";
    String instruments_6_dataset_instrument_nid "4281";
    String instruments_6_description "The Sea Tech chlorophyll-a fluorometer has internally selectable settings to adjust for different ranges of chlorophyll concentration, and is designed to measure chlorophyll-a fluorescence in situ.  The instrument is stable with time and temperature and uses specially selected optical filters enabling accurate measurements of chlorophyll a.  It can be deployed in moored or profiling mode.  This instrument designation is used when specific make and model are not known.  The Sea Tech Fluorometer was manufactured by Sea Tech, Inc. (Corvalis, OR, USA).";
    String instruments_6_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/113/";
    String instruments_6_instrument_name "Sea Tech Fluorometer";
    String instruments_6_instrument_nid "477";
    String instruments_6_supplied_name "SeaTech Fluorometer";
    String instruments_7_acronym "CTD MicroCAT 37";
    String instruments_7_dataset_instrument_description "MicroCAT (SBE-37) was mounted about 72-m depth (4m above bottom) to measure near-bottom water properties";
    String instruments_7_dataset_instrument_nid "4299";
    String instruments_7_description 
"The Sea-Bird MicroCAT CTD unit is a high-accuracy conductivity and temperature recorder based on the Sea-Bird SBE 37 MicroCAT series of products.  It can be configured with optional pressure sensor, internal batteries, memory, built-in Inductive Modem, integral Pump, and/or SBE-43 Integrated Dissolved Oxygen sensor. Constructed of titanium and other non-corroding materials for long life with minimal maintenance, the MicroCAT is designed for long duration on moorings.  

In a typical mooring, a modem module housed in the buoy communicates with underwater instruments and is interfaced to a computer or data logger via serial port. The computer or data logger is programmed to poll each instrument on the mooring for its data, and send the data to a telemetry transmitter (satellite link, cell phone, RF modem, etc.). The MicroCAT saves data in memory for upload after recovery, providing a data backup if real-time telemetry is interrupted.";
    String instruments_7_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/350/";
    String instruments_7_instrument_name "CTD Sea-Bird MicroCAT 37";
    String instruments_7_instrument_nid "478";
    String instruments_7_supplied_name "MicroCat";
    String instruments_8_acronym "CTD SEACAT";
    String instruments_8_dataset_instrument_description "The SEACATs are mounted parallel with the mooring  cable and tie wrapped and taped to the cable.";
    String instruments_8_dataset_instrument_nid "4296";
    String instruments_8_description "The CTD SEACAT recorder is an instrument package manufactured by Sea-Bird Electronics. The first Sea-Bird SEACAT Recorder was the original SBE 16 SEACAT developed in 1987. There are several model numbers including the SBE 16plus (SEACAT C-T Recorder (P optional))and the SBE 19 (SBE 19plus SEACAT Profiler measures conductivity, temperature, and pressure (depth)). More information from Sea-Bird Electronics.";
    String instruments_8_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/350/";
    String instruments_8_instrument_name "CTD Sea-Bird SEACAT";
    String instruments_8_instrument_nid "479";
    String instruments_8_supplied_name "Sea-Bird Seacat CTD";
    String keywords "air, altimetry, available, bco, bco-dmo, biological, brief, brief_desc, chemical, cond, data, dataset, day, day_gmt, depth, desc, dmo, erddap, flvolt, hour, hour_gmt, julian, julian_day, laboratory, latitude, longitude, management, minute, minute_gmt, month, month_gmt, oceanography, office, par, par_scalar, photosynthetically, preliminary, radiation, sal, satellite, scalar, seconds, seconds_gmt, sigma, sigma_0, start, temp_air, temperature, trans, trans_v, v, year, year_start, yrday, yrday_gmt";
    String license "https://www.bco-dmo.org/dataset/2493/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/2493";
    Float64 Northernmost_Northing 41.711;
    String param_mapping "{'2493': {'lat': 'flag - latitude', 'depth': 'flag - depth', 'lon': 'flag - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/2493/parameters";
    String people_0_affiliation "Woods Hole Oceanographic Institution";
    String people_0_affiliation_acronym "WHOI";
    String people_0_person_name "Robert C Beardsley";
    String people_0_person_nid "50384";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI";
    String people_1_person_name "Dr Jim Irish";
    String people_1_person_nid "50414";
    String people_1_role "Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI";
    String people_2_person_name "Ms Dicky Allison";
    String people_2_person_nid "50382";
    String people_2_role "BCO-DMO Data Manager";
    String people_2_role_type "related";
    String project "GB";
    String projects_0_acronym "GB";
    String projects_0_description 
"The U.S. GLOBEC Georges Bank Program is a large multi- disciplinary multi-year oceanographic effort. The proximate goal is to understand the population dynamics of key species on the Bank - Cod, Haddock, and two species of zooplankton (Calanus finmarchicus and Pseudocalanus) - in terms of their coupling to the physical environment and in terms of their predators and prey. The ultimate goal is to be able to predict changes in the distribution and abundance of these species as a result of changes in their physical and biotic environment as well as to anticipate how their populations might respond to climate change.
The effort is substantial, requiring broad-scale surveys of the entire Bank, and process studies which focus both on the links between the target species and their physical environment, and the determination of fundamental aspects of these species' life history (birth rates, growth rates, death rates, etc).
Equally important are the modelling efforts that are ongoing which seek to provide realistic predictions of the flow field and which utilize the life history information to produce an integrated view of the dynamics of the populations.
The U.S. GLOBEC Georges Bank Executive Committee (EXCO) provides program leadership and effective communication with the funding agencies.";
    String projects_0_geolocation "Georges Bank, Gulf of Maine, Northwest Atlantic Ocean";
    String projects_0_name "U.S. GLOBEC Georges Bank";
    String projects_0_project_nid "2037";
    String projects_0_project_website "http://globec.whoi.edu/globec_program.html";
    String projects_0_start_date "1991-01";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 41.711;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "brief_desc,year_start,latitude,longitude,flvolt,trans_v,par_scalar,cond,sigma_0,temp_air";
    String summary "Data from mooring deployed on Northeast Peak in the Georges Bank, Northeast Peak in 1995";
    String title "[NEP1995_T_S] - Data from mooring deployed on Northeast Peak in the Georges Bank, Northeast Peak in 1995 (GB project) (U.S. GLOBEC Georges Bank)";
    String version "1";
    Float64 Westernmost_Easting -66.4759;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact