Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Southern Ocean 2001 moorings: depth and pressure vs. time from ARSV Laurence
M. Gould LMG0103, LMG0201A in the Southern Ocean from 2001-2002 (SOGLOBEC
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_3236)
Range: longitude = -70.99985 to -69.02029°E, latitude = -68.25575 to -66.75003°N, depth = 47.0 to 804.0m
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
Graph Type:  ?
X Axis: 
Y Axis: 
Constraints ? Optional
Constraint #1 ?
Constraint #2 ?
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
Graph Settings
Marker Type:   Size: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
(Please be patient. It may take a while to get the data.)
Then set the File Type: (File Type information)
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
[The graph you specified. Please be patient.]


Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  mooring {
    String bcodmo_name "mooring";
    String description "mooring identification";
    String long_name "Mooring";
  year_start {
    Int16 _FillValue 32767;
    Int16 actual_range 2001, 2001;
    String bcodmo_name "year_start";
    String description "starting year of mooring deployment";
    String long_name "Year Start";
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range -68.25575, -66.75003;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "latitude, negative = South";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -70.99985, -69.020283;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "longitude, negative = West";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  depth_w {
    Int16 _FillValue 32767;
    Int16 actual_range 447, 811;
    String bcodmo_name "depth_w";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "water depth";
    String long_name "Depth";
    String standard_name "depth";
    String units "meters";
  rotangle {
    Int16 _FillValue 32767;
    Int16 actual_range -152, -82;
    String bcodmo_name "unknown";
    String description "The angle that the rotated coordinates, xr, and the rotated velocity components, ur, point - measured in degrees counterclockwise from east (see more in Acquisition section, above)";
    String long_name "Rotangle";
    String units "degrees";
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 47.0, 804.0;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "depth of instrument, negative = height above sea surf.";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  yrday_gmt {
    Float32 _FillValue NaN;
    Float32 actual_range 1.0, 365.9583;
    String bcodmo_name "yrday_gmt";
    String description "GMT day and decimal time, as 326.5 for the 326th day of the year, or November 22 at 1200 hours (noon).";
    String long_name "Yrday Gmt";
  julian_day {
    Float64 _FillValue NaN;
    Float64 actual_range 2451995.875, 2452320.792;
    String bcodmo_name "julian_day";
    String description "Julian day as a decimal, for reference: Julian day 2440000 begins at 0000 hours, May 23, 1968";
    String long_name "Julian Day";
  press {
    Float64 _FillValue NaN;
    Float64 actual_range 44.105233, 814.07077;
    String bcodmo_name "pressure";
    String description "water pressure at measurement; depth reported as pressure; positive number increasing with water depth";
    String long_name "Press";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PRESPR01/";
    String units "decibars";
  year {
    Int16 _FillValue 32767;
    Int16 actual_range 2001, 2002;
    String bcodmo_name "year";
    String description "year";
    String long_name "Year";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/YEARXXXX/";
  month_gmt {
    String bcodmo_name "month_gmt";
    String description "month of year GMT (1-12)";
    String long_name "Month Gmt";
  day_gmt {
    String bcodmo_name "day_gmt";
    String description "day of month GMT (1-31)";
    String long_name "Day Gmt";
  hour_gmt {
    Byte _FillValue 127;
    Byte actual_range 0, 23;
    String bcodmo_name "hour_gmt";
    String description "time GMT in hours (0-23)";
    String long_name "Hour Gmt";
    String units "whole hours";
  minute_gmt {
    Byte _FillValue 127;
    Byte actual_range 0, 0;
    String bcodmo_name "minute_gmt";
    String description "time GMT in minutes (0-59)";
    String long_name "Minute Gmt";
    String units "whole minutes";
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson";
    String acquisition_description 
"See [WHOI-2005-07.pdf](\\\\\"http://globec.whoi.edu/so-
dir/data_doc/WHOI-2005-07_Moored_Report_updated.pdf\\\\\") (10.2 MB)]
Rotation angle (rotangle): The basic coordinate system is x(east) and y
(north); the x and y velocity components are u and v. for some analysis, the
coordinate and velocity are rotated into a local isobath coordinate system,
where xr and yr are the rotated coordinates and ur and vr are the rotated
velocity components. rotangle is the angle that the rotated xr and ur point
in, measured in degrees counterclockwise from east. In the A1 case, rotangle =
-152 degrees. Thus, the xr axis has been rotated 152 degrees clockwise (due to
the negative sign on rotangle) from x (east). The governing complex equation
(as it is written in matlab) is:
ur + i*vr = exp(i*pi*rotangle/180)*(u + i*v) where i = sqrt(-1).";
    String awards_0_award_nid "54822";
    String awards_0_award_number "ANT-9910092";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=9910092";
    String awards_0_funder_name "NSF Antarctic Sciences";
    String awards_0_funding_acronym "NSF ANT";
    String awards_0_funding_source_nid "369";
    String cdm_data_type "Other";
    String comment 
"SOGLOBEC Mooring data 
  P.I.: C. Moffat (WHOI) 
  2001 pressure data";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String dataset_current_state "Final and no updates";
    String date_created "2010-06-16T20:40:40Z";
    String date_modified "2020-05-18T20:13:21Z";
    String defaultDataQuery "&time<now";
    String doi "10.26008/1912/bco-dmo.3236.1";
    Float64 Easternmost_Easting -69.020283;
    Float64 geospatial_lat_max -66.75003;
    Float64 geospatial_lat_min -68.25575;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -69.020283;
    Float64 geospatial_lon_min -70.99985;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 804.0;
    Float64 geospatial_vertical_min 47.0;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2022-01-26T10:25:41Z (local files)
2022-01-26T10:25:41Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_3236.das";
    String infoUrl "https://www.bco-dmo.org/dataset/3236";
    String institution "BCO-DMO";
    String instruments_0_acronym "ADCP";
    String instruments_0_dataset_instrument_description 
"RDI ADCP (WorkHorse), sample baud rate=1800;
RDI ADCP (BroadBand), sample baud rate=3600";
    String instruments_0_dataset_instrument_nid "4983";
    String instruments_0_description 
"The ADCP measures water currents with sound, using a principle of sound waves called the Doppler effect. A sound wave has a higher frequency, or pitch, when it moves to you than when it moves away. You hear the Doppler effect in action when a car speeds past with a characteristic building of sound that fades when the car passes.
The ADCP works by transmitting \"pings\" of sound at a constant frequency into the water. (The pings are so highly pitched that humans and even dolphins can't hear them.) As the sound waves travel, they ricochet off particles suspended in the moving water, and reflect back to the instrument. Due to the Doppler effect, sound waves bounced back from a particle moving away from the profiler have a slightly lowered frequency when they return. Particles moving toward the instrument send back higher frequency waves. The difference in frequency between the waves the profiler sends out and the waves it receives is called the Doppler shift. The instrument uses this shift to calculate how fast the particle and the water around it are moving.
Sound waves that hit particles far from the profiler take longer to come back than waves that strike close by. By measuring the time it takes for the waves to bounce back and the Doppler shift, the profiler can measure current speed at many different depths with each series of pings. (More from WHOI instruments listing).";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/115/";
    String instruments_0_instrument_name "Acoustic Doppler Current Profiler";
    String instruments_0_instrument_nid "405";
    String instruments_0_supplied_name "Acoustic Doppler Current Profiler";
    String instruments_1_acronym "VACM";
    String instruments_1_dataset_instrument_description "900s sample rate";
    String instruments_1_dataset_instrument_nid "4988";
    String instruments_1_description "Vector Averaging Current Meter";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/114/";
    String instruments_1_instrument_name "Vector Averaging Current Meter";
    String instruments_1_instrument_nid "459";
    String instruments_1_supplied_name "Vector Averaging Current Meter";
    String instruments_2_acronym "CTD MicroCAT 37";
    String instruments_2_dataset_instrument_description "Temperature and conductivity measurements, 150s sample rate.";
    String instruments_2_dataset_instrument_nid "4985";
    String instruments_2_description 
"The Sea-Bird MicroCAT CTD unit is a high-accuracy conductivity and temperature recorder based on the Sea-Bird SBE 37 MicroCAT series of products.  It can be configured with optional pressure sensor, internal batteries, memory, built-in Inductive Modem, integral Pump, and/or SBE-43 Integrated Dissolved Oxygen sensor. Constructed of titanium and other non-corroding materials for long life with minimal maintenance, the MicroCAT is designed for long duration on moorings.  

In a typical mooring, a modem module housed in the buoy communicates with underwater instruments and is interfaced to a computer or data logger via serial port. The computer or data logger is programmed to poll each instrument on the mooring for its data, and send the data to a telemetry transmitter (satellite link, cell phone, RF modem, etc.). The MicroCAT saves data in memory for upload after recovery, providing a data backup if real-time telemetry is interrupted.";
    String instruments_2_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/350/";
    String instruments_2_instrument_name "CTD Sea-Bird MicroCAT 37";
    String instruments_2_instrument_nid "478";
    String instruments_2_supplied_name "MicroCat";
    String instruments_3_acronym "CTD SEACAT";
    String instruments_3_dataset_instrument_description "temperature, conductivity & pressure measurements, 900s sample rate.";
    String instruments_3_dataset_instrument_nid "4986";
    String instruments_3_description "The CTD SEACAT recorder is an instrument package manufactured by Sea-Bird Electronics. The first Sea-Bird SEACAT Recorder was the original SBE 16 SEACAT developed in 1987. There are several model numbers including the SBE 16plus (SEACAT C-T Recorder (P optional))and the SBE 19 (SBE 19plus SEACAT Profiler measures conductivity, temperature, and pressure (depth)). More information from Sea-Bird Electronics.";
    String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/350/";
    String instruments_3_instrument_name "CTD Sea-Bird SEACAT";
    String instruments_3_instrument_nid "479";
    String instruments_3_supplied_name "Sea-Bird Seacat CTD";
    String instruments_4_acronym "Ice Profiler";
    String instruments_4_dataset_instrument_description 
"ASL Environmental Sciences ice-profiling sonars (IPSs)deployed at the top of A2 and B2 measured the acoustic range
to the surface (the sea surface or ice bottom when present) every 2 secs and water temperature, pressure, and x- and y-tilt every 120 secs.";
    String instruments_4_dataset_instrument_nid "4984";
    String instruments_4_description "The ASL Environmental Sciences (e.g. IPS4 or IPS5) ice profiler is an upward looking sonar device deployed on a mooring for measuring ice keel drafts. The distance between the instrument and the bottom of the ice is measured by sonar at an operating frequency of 420 kHz with a beam width of 1.8 degrees and sampling rate of up to 2Hz.  Water depth is measured by a pressure sensor and ice draft is calculated by the difference.";
    String instruments_4_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0292/";
    String instruments_4_instrument_name "Ice Profiling Sonar";
    String instruments_4_instrument_nid "556";
    String instruments_4_supplied_name "ice profiler";
    String instruments_5_acronym "SBE 26  SEAGAUGE";
    String instruments_5_dataset_instrument_description "wave and tide recorder: 300s sample rate";
    String instruments_5_dataset_instrument_nid "4987";
    String instruments_5_description "The Sea-Bird Electronics SBE 26 SEAGAUGE is a wave level and tide recorder with a pressure sensor, accurate clock, precision thermometer and optional SBE 4M conductivity sensor. Pressure data are integrated to give sea level or are burst recorded at rates up to 4 Hz to characterize waves. The standard pressure sensor is a 20 meter (45 psia) Quartzonix, with a temperature-compensated quartz element. Optionally, the SBE 26 can be configured with a Paroscientific Digiquartz pressure sensor with a temperature-compensated quartz element in 13 ranges, from 1 to 6800 meters (15 to 10,000 psia). more information from Sea-Bird Electronics";
    String instruments_5_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0024/";
    String instruments_5_instrument_name "Sea-Bird SBE 26 Wave and Tide Recorder";
    String instruments_5_instrument_nid "557";
    String instruments_5_supplied_name "SBE 26  SeaGauge";
    String keywords "bco, bco-dmo, biological, chemical, data, dataset, day, day_gmt, depth, depth_w, dmo, erddap, hour, hour_gmt, julian, julian_day, latitude, longitude, management, minute, minute_gmt, month, month_gmt, mooring, oceanography, office, preliminary, press, rotangle, start, year, year_start, yrday, yrday_gmt";
    String license "https://www.bco-dmo.org/dataset/3236/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/3236";
    Float64 Northernmost_Northing -66.75003;
    String param_mapping "{'3236': {'lat': 'master - latitude', 'depth': 'flag - depth', 'lon': 'master - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/3236/parameters";
    String people_0_affiliation "Woods Hole Oceanographic Institution";
    String people_0_affiliation_acronym "WHOI";
    String people_0_person_name "Robert C Beardsley";
    String people_0_person_nid "50384";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI";
    String people_1_person_name "Dr Richard Limeburner";
    String people_1_person_nid "50423";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI";
    String people_2_person_name "Dr Carlos Moffat";
    String people_2_person_nid "51122";
    String people_2_role "Student";
    String people_2_role_type "related";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Nancy Copley";
    String people_3_person_nid "50396";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "SOGLOBEC";
    String projects_0_acronym "SOGLOBEC";
    String projects_0_description "The fundamental objectives of United States Global Ocean Ecosystems Dynamics (U.S. GLOBEC) Program are dependent upon the cooperation of scientists from several disciplines. Physicists, biologists, and chemists must make use of data collected during U.S. GLOBEC field programs to further our understanding of the interplay of physics, biology, and chemistry. Our objectives require quantitative analysis of interdisciplinary data sets and, therefore, data must be exchanged between researchers. To extract the full scientific value, data must be made available to the scientific community on a timely basis.";
    String projects_0_geolocation "Southern Ocean";
    String projects_0_name "U.S. GLOBEC Southern Ocean";
    String projects_0_project_nid "2039";
    String projects_0_project_website "http://www.ccpo.odu.edu/Research/globec_menu.html";
    String projects_0_start_date "2001-01";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing -68.25575;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "year_start,minute_gmt";
    String summary "Southern Ocean 2001 moorings: depth and pressure vs. time from ARSV Laurence M. Gould LMG0103, LMG0201A in the Southern Ocean from 2001-2002.";
    String title "Southern Ocean 2001 moorings: depth and pressure vs. time from ARSV Laurence M. Gould LMG0103, LMG0201A in the Southern Ocean from 2001-2002 (SOGLOBEC project)";
    String version "1";
    Float64 Westernmost_Easting -70.99985;
    String xml_source "osprey2erddap.update_xml() v1.5";


Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
For example,
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.

ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact