BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Two decibar-averaged CTD profiles from the Hawaii Ocean Time-Series cruises
from 1988-2016 (HOT project)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_3937)
Range: longitude = -158.8575 to -157.4567°E, latitude = 21.2283 to 23.4375°N, time = 1988-10-30T21:34:00Z to 2016-11-29T05:40:00Z
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  cruise_name {
    String bcodmo_name "cruise_id";
    String description "cruise identifier";
    String long_name "Cruise Name";
    String units "unitless";
  }
  station {
    Byte _FillValue 127;
    Byte actual_range 1, 61;
    String bcodmo_name "sta";
    String description "station identifier";
    String long_name "Station";
    String units "unitless";
  }
  cast {
    Byte _FillValue 127;
    Byte actual_range 1, 31;
    String bcodmo_name "cast";
    String description "CTD cast number";
    String long_name "Cast";
    String units "unitless";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 5.9425044e+8, 1.480398e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "time in ISO-8601 format following the convention YYYY-mm-ddTHH:MM:SS[.xx]Z (UTC time)";
    String ioos_category "Time";
    String long_name "ISO Date Time";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "ISO_DateTime";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  Year {
    Int16 _FillValue 32767;
    Int16 actual_range 1988, 2016;
    String bcodmo_name "year";
    String description "Four digit year as extracted from the Date field";
    String long_name "Year";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/YEARXXXX/";
    String units "unitless";
  }
  Month {
    Byte _FillValue 127;
    Byte actual_range 1, 12;
    String bcodmo_name "month";
    String description "Month of the year value as extracted from the Date field";
    String long_name "Month";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/MNTHXXXX/";
    String units "unitless";
  }
  Day {
    String bcodmo_name "day";
    String description "Day of the month value as extracted from the Date field";
    String long_name "Day";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DAYXXXXX/";
    String units "unitless";
  }
  timeutc {
    String bcodmo_name "time";
    String description "time in UTC";
    String long_name "Timeutc";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -158.8575, -157.4567;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "longitude with west being negative";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 21.2283, 23.4375;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "latitude with south being negative";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  depth_max {
    Int16 _FillValue 32767;
    Int16 actual_range -9, 5700;
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth meassured by shipboard echo sounder in meters.  The nominal depth for Station 1 = 1500m and for Station 2 = 4750m.";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String standard_name "depth";
    String units "meters (m)";
  }
  pres_max {
    Int16 _FillValue 32767;
    Int16 actual_range 30, 4912;
    String bcodmo_name "pressure maximum";
    String description "The deepest pressure sampled.";
    String long_name "Pres Max";
    String units "decibars (db)";
  }
  Date {
    String bcodmo_name "unknown";
    String description "The date of the cast in MMDDYY.";
    String long_name "Date";
    String units "untiless";
  }
  timecode {
    String bcodmo_name "unknown";
    String description "The code for when the time was taken. At the beginning (BE); bottom (BO); and completion (EN) of the cast.";
    String long_name "Timecode";
    String units "unitless";
  }
  HOT_summary_file_name {
    String bcodmo_name "file_name";
    String description "Filename from which the cruise summary information was obtained";
    String long_name "HOT Summary File Name";
    String units "unitless";
  }
  parameters {
    String bcodmo_name "unknown";
    String description 
"A list of the parameters measured from the water samples collected during the cast. The identification numbers are listed here.
1 = Salinity;
2 = Oxygen;
3 = Silicate;
4 = Nitrate;
5 = Nitrite;
6 = Phosphate;
7 = Freon 11;
8 = Freon 12;
9 = Tritium;
10= Helium;
11= Carbon 14;
12= Carbon 13;
13= Krypton 85;
14= Argon;
15= Argon 39;
16= Neon;
17= Radium;
18= Radium 226;
19= o18/o16 ratio;
20= Stronitum 90;
21= Cesium 137";
    String long_name "Parameters";
    String units "unitless";
  }
  num_bottles {
    Byte _FillValue 127;
    Byte actual_range 0, 24;
    String bcodmo_name "unknown";
    String description "The number of bottles used during the cast.";
    String long_name "Num Bottles";
    String units "unitless";
  }
  section {
    String bcodmo_name "unknown";
    String description "The WHP section designator.";
    String long_name "Section";
    String units "unitless";
  }
  nav_code {
    String bcodmo_name "unknown";
    String description "navigation system code";
    String long_name "Nav Code";
    String units "unitless";
  }
  depth_hgt {
    Int16 _FillValue 32767;
    Int16 actual_range -838, 4754;
    String bcodmo_name "altitude";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Bottom depth less the maximum pressure sampled.";
    String long_name "Depth";
    String standard_name "depth";
    String units "meters (m)";
  }
  EXPOCODE {
    String bcodmo_name "EXPOCODE";
    String description "This code allows for the identification of cast.  It consists of a 4 character NODC country-ship code; a maximum of 8 character cruise number followed by a \"_\" and leg number.";
    String long_name "EXPOCODE";
    String units "unitless";
  }
  Ship {
    String bcodmo_name "unknown";
    String description "This code allows for the identification of cast. It consists of a 4 character NODC country-ship code; a maximum of 8 character cruise number followed by a \"/\" and leg number.";
    String long_name "Ship";
    String units "unitless";
  }
  comments {
    String bcodmo_name "comment";
    String description "cast comments";
    String long_name "Comments";
    String units "unitless";
  }
  CTDPRS {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 4912.0;
    String bcodmo_name "pressure";
    String description "Pressure (Decibars)";
    String long_name "CTDPRS";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PRESPR01/";
    String units "Decibars (db)";
  }
  CTDTMP {
    Float32 _FillValue NaN;
    Float32 actual_range -0.2913, 28.4339;
    String bcodmo_name "temperature";
    String description "Temperature (Degrees Celsius International Temperature Scale of 1988)";
    String long_name "CTDTMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "Degrees Celsius";
  }
  CTDSAL {
    Float32 _FillValue NaN;
    Float32 actual_range -9.0, 39.1634;
    String bcodmo_name "sal";
    String description "Salinity (1978 International Practical Salinity Scale)";
    String long_name "CTDSAL";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PSALST01/";
    String units "PSU";
  }
  CTDOXY {
    Float32 _FillValue NaN;
    Float32 actual_range -9.0, 999.0;
    String bcodmo_name "O2_umol_kg";
    String description "Oxygen (micromoles per kilogram)";
    String long_name "CTDOXY";
    Float32 missing_value NaN;
    String units "micromoles per kilogram (umol/kg)";
  }
  XMISS {
    Float32 _FillValue NaN;
    Float32 actual_range -98.733, 100.383;
    String bcodmo_name "transmission";
    String description "Transmission (% transmission)";
    String long_name "XMISS";
    String units "percent transmission (%)";
  }
  CHLPIG {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 118.962;
    String bcodmo_name "pig_tot";
    String description "Chloropigments (microgram/liter)";
    String long_name "CHLPIG";
    Float32 missing_value NaN;
    String units "microgram per liter (ug/L)";
  }
  NUMBER {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 8172;
    String bcodmo_name "count";
    Float64 colorBarMaximum 100.0;
    Float64 colorBarMinimum 0.0;
    String description "Number of observations averaged at this pressure level";
    String long_name "NUMBER";
    String units "count";
  }
  NITRATE {
    Float32 _FillValue NaN;
    Float32 actual_range -9.0, 586.01;
    String bcodmo_name "NO3";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Nitrate (micromoles per kilogram) after HOT-176";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRAIGGS/";
    String units "micromoles per kilogram (umol/kg)";
  }
  FLUOR {
    Float64 _FillValue NaN;
    String bcodmo_name "fluorescence";
    String description "fluorescence";
    String long_name "FLUOR";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CPHLPM01/";
    String units "mVOLTS";
  }
  QUALT1 {
    Int32 _FillValue 2147483647;
    Int32 actual_range 202293, 666969;
    String bcodmo_name "Q_code";
    String description 
"Quality (defined by investigator); The quality word is the left-to-right concatenation of required quality bytes for the variables measured. They are defined as follows:
1 = Not calibrated with water samples;
2 = Acceptable measurement;
3 = Questionable measurement;
4 = Bad measurement;
5 = Not reported;
6 = Interpolated value;
7 = Not assigned for CTD data;
8 = Not assigned for CTD data;
9 = Not sampled";
    String long_name "QUALT1";
    String units "unitless";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"[HOT CTD yearly
reports](\\\\\"http://hahana.soest.hawaii.edu/hot/reports/reports.html\\\\\")";
    String awards_0_award_nid "54915";
    String awards_0_award_number "OCE-0926766";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0926766";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "David L. Garrison";
    String awards_0_program_manager_nid "50534";
    String cdm_data_type "Other";
    String comment 
"version: 2018-04-18 
  
  
  
   CTD profiles from monthly HOT cruises";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2013-05-02T16:17:18Z";
    String date_modified "2019-07-15T18:08:02Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.3937.1";
    Float64 Easternmost_Easting -157.4567;
    Float64 geospatial_lat_max 23.4375;
    Float64 geospatial_lat_min 21.2283;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -157.4567;
    Float64 geospatial_lon_min -158.8575;
    String geospatial_lon_units "degrees_east";
    String history 
"2024-06-12T22:47:31Z (local files)
2024-06-12T22:47:31Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_3937.das";
    String infoUrl "https://www.bco-dmo.org/dataset/3937";
    String institution "BCO-DMO";
    String instruments_0_acronym "CTD SBE 911";
    String instruments_0_dataset_instrument_description 
"HOT CTD data are collected using a SeaBird CTD 9-11 (9-11 Plus
with dual sensors as of HOT-54) at the maximum sampling rate
of 24 samples per second (24 Hz).";
    String instruments_0_dataset_instrument_nid "733709";
    String instruments_0_description "The Sea-Bird SBE 911 is a type of CTD instrument package.  The SBE 911 includes the SBE 9 Underwater Unit and the SBE 11 Deck Unit (for real-time readout using conductive wire) for deployment from a vessel. The combination of the SBE 9 and SBE 11 is called a SBE 911.  The SBE 9 uses Sea-Bird's standard modular temperature and conductivity sensors (SBE 3 and SBE 4). The SBE 9 CTD can be configured with auxiliary sensors to measure other parameters including dissolved oxygen, pH, turbidity, fluorescence, light (PAR), light transmission, etc.). More information from Sea-Bird Electronics.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0035/";
    String instruments_0_instrument_name "CTD Sea-Bird 911";
    String instruments_0_instrument_nid "422";
    String instruments_0_supplied_name "SeaBird CTD 9-11";
    String instruments_1_acronym "CTD SBE 911plus";
    String instruments_1_dataset_instrument_description 
"HOT CTD data are collected using a SeaBird CTD 9-11 (9-11 Plus
with dual sensors as of HOT-54) at the maximum sampling rate
of 24 samples per second (24 Hz).";
    String instruments_1_dataset_instrument_nid "733710";
    String instruments_1_description "The Sea-Bird SBE 911plus is a type of CTD instrument package for continuous measurement of conductivity, temperature and pressure.  The SBE 911plus includes the SBE 9plus Underwater Unit and the SBE 11plus Deck Unit (for real-time readout using conductive wire) for deployment from a vessel. The combination of the SBE 9plus and SBE 11plus is called a SBE 911plus.  The SBE 9plus uses Sea-Bird's standard modular temperature and conductivity sensors (SBE 3plus and SBE 4). The SBE 9plus CTD can be configured with up to eight auxiliary sensors to measure other parameters including dissolved oxygen, pH, turbidity, fluorescence, light (PAR), light transmission, etc.). more information from Sea-Bird Electronics";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0058/";
    String instruments_1_instrument_name "CTD Sea-Bird SBE 911plus";
    String instruments_1_instrument_nid "591";
    String instruments_1_supplied_name "SeaBird CTD 9-11 Plus";
    String keywords "bco, bco-dmo, biological, bottles, cast, chemical, chemistry, chlpig, code, comments, concentration, cruise, cruise_name, ctdoxy, ctdprs, ctdsal, ctdtmp, data, dataset, date, day, depth, depth_hgt, depth_max, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Nitrate, erddap, expocode, file, fluor, hot, HOT_summary_file_name, iso, latitude, longitude, management, max, mole, mole_concentration_of_nitrate_in_sea_water, month, n02, name, nav, nav_code, nitrate, no3, num, num_bottles, number, ocean, oceanography, oceans, office, parameters, preliminary, pres, pres_max, qualt1, science, sea, seawater, section, ship, station, summary, time, timecode, timeutc, water, xmiss, year";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "https://www.bco-dmo.org/dataset/3937/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/3937";
    Float64 Northernmost_Northing 23.4375;
    String param_mapping "{'3937': {'lat': 'flag - latitude', 'lon': 'flag - longitude', 'ISO_DateTime': 'flag - time', 'CTDPRS': 'flag - depth'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/3937/parameters";
    String people_0_affiliation "University of Hawaii at Manoa";
    String people_0_affiliation_acronym "SOEST";
    String people_0_person_name "David M. Karl";
    String people_0_person_nid "50750";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "University of Hawaii at Manoa";
    String people_1_affiliation_acronym "SOEST";
    String people_1_person_name "Lance  A Fujieki";
    String people_1_person_nid "51683";
    String people_1_role "Contact";
    String people_1_role_type "related";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI BCO-DMO";
    String people_2_person_name "Mathew Biddle";
    String people_2_person_nid "708682";
    String people_2_role "BCO-DMO Data Manager";
    String people_2_role_type "related";
    String project "HOT";
    String projects_0_acronym "HOT";
    String projects_0_description 
"Systematic, long-term observations are essential for evaluating natural variability of Earth’s climate and ecosystems and their responses to anthropogenic disturbances.  Since October 1988, the Hawaii Ocean Time-series (HOT) program has investigated temporal dynamics in biology, physics, and chemistry at Stn. ALOHA (22°45' N, 158°W), a deep ocean field site in the oligotrophic North Pacific Subtropical Gyre (NPSG). HOT conducts near monthly ship-based sampling and makes continuous observations from moored instruments to document and study NPSG climate and ecosystem variability over semi-diurnal to decadal time scales. HOT was founded to understand the processes controlling the time-varying fluxes of carbon and associated biogenic elements in the ocean and to document changes in the physical structure of the water column. To achieve these broad objectives, the program has several specific goals:
Quantify time-varying (seasonal to decadal) changes in reservoirs and fluxes of carbon (C) and associated bioelements (nitrogen, oxygen, phosphorus, and silicon).
Identify processes controlling air-sea C exchange, rates of C transformation through the planktonic food web, and fluxes of C into the ocean’s interior.
Develop a climatology of hydrographic and biogeochemical dynamics from which to form a multi-decadal baseline from which to decipher natural and anthropogenic influences on the NPSG ecosystem. 
Provide scientific and logistical support to ancillary programs that benefit from the temporal context, interdisciplinary science, and regular access to the open sea afforded by HOT program occupation of Sta. ALOHA, including projects implementing, testing, and validating new methodologies, models, and transformative ocean sampling technologies.
Over the past 24+ years, time-series research at Station ALOHA has provided an unprecedented view of temporal variability in NPSG climate and ecosystem processes.  Foremost among HOT accomplishments are an increased understanding of the sensitivity of bioelemental cycling to large scale ocean-climate interactions, improved quantification of reservoirs and time varying fluxes of carbon, identification of the importance of the hydrological cycle and its influence on upper ocean biogeochemistry, and the creation of long-term data sets from which the oceanic response to anthropogenic perturbation of elemental cycles may be gauged. 
A defining characteristic of the NPSG is the perennially oligotrophic nature of the upper ocean waters.  This biogeochemically reactive layer of the ocean is where air-sea exchange of climate reactive gases occurs, solar radiation fuels rapid biological transformation of nutrient elements, and diverse assemblages of planktonic organisms comprise the majority of living biomass and sustain productivity.  The prevailing Ekman convergence and weak seasonality in surface light flux, combined with relatively mild subtropical weather and persistent stratification, result in a nutrient depleted upper ocean habitat.  The resulting dearth of bioessential nutrients limits plankton standing stocks and maintains a deep (175 m) euphotic zone.  Despite the oligotrophic state of the NPSG, estimates of net organic matter production at Sta. ALOHA are estimated to range ~1.4 and 4.2 mol C m2 yr1.  Such respectable rates of productivity have highlighted the need to identify processes supplying growth limiting nutrients to the upper ocean.  Over the lifetime of HOT numerous ancillary science projects have leveraged HOT science and infrastructure to examine possible sources of nutrients supporting plankton productivity.  Both physical (mixing, upwelling) and biotic (N2 fixation, vertical migration) processes supply nutrients to the upper ocean in this region, and HOT has been instrumental in demonstrating that these processes are sensitive to variability in ocean climate.
Station ALOHA - site selection and infrastructure
Station ALOHA is a deep water (~4800 m) location approximately 100 km north of the Hawaiian Island of Oahu.  Thus, the region is far enough from land to be free of coastal ocean dynamics and terrestrial inputs, but close enough to a major port (Honolulu) to make relatively short duration (45 m depth), below depths of detection by Earth-orbiting satellites.  The emerging data emphasize the value of in situ measurements for validating remote and autonomous detection of plankton biomass and productivity and demonstrate that detection of potential secular-scale changes in productivity against the backdrop of significant interannual and decadal fluctuations demands a sustained sampling effort.     
Careful long-term measurements at Stn. ALOHA also highlight a well-resolved, though relatively weak, seasonal climatology in upper ocean primary productivity.  Measurements of 14C-primary production document a ~3-fold increase during the summer months (Karl et al., 2012) that coincides with increases in plankton biomass (Landry et al., 2001; Sheridan and Landry, 2004).  Moreover, phytoplankton blooms, often large enough to be detected by ocean color satellites, are a recurrent summertime feature of these waters (White et al., 2007; Dore et al., 2008; Fong et al., 2008). Analyses of ~13-years (1992-2004) of particulate C, N, P, and biogenic Si fluxes collected from bottom-moored deep-ocean (2800 m and 4000 m) sediment traps provide clues to processes underlying these seasonal changes.  Unlike the gradual summertime increase in sinking particle flux observed in the upper ocean (150 m) traps, the deep sea particle flux record depicts a sharply defined summer maximum that accounts for ~20% of the annual POC flux to the deep sea, and appears driven by rapidly sinking diatom biomass (Karl et al., 2012).  Analyses of the 15N isotopic signatures associated with sinking particles at Sta. ALOHA, together with genetic analyses of N2 fixing microorganisms, implicates upper ocean N2 fixation as a major control on the magnitude and efficiency of the biological carbon pump in this ecosystem (Dore et al., 2002; Church et al., 2009; Karl et al., 2012).
Motivating Questions
Science results from HOT continue to raise new, important questions about linkages between ocean climate and biogeochemistry that remain at the core of contemporary oceanography.  Answers have begun to emerge from the existing suite of core program measurements; however, sustained sampling is needed to improve our understanding of contemporary ecosystem behavior and our ability to make informed projections of future changes to this ecosystem. HOT continues to focus on providing answers to some of the questions below:
How sensitive are rates of primary production and organic matter export to short- and long-term climate variability?
What processes regulate nutrient supply to the upper ocean and how sensitive are these processes to climate forcing? 
What processes control the magnitude of air-sea carbon exchange and over what time scales do these processes vary?
Is the strength of the NPSG CO2 sink changing in time?
To what extent does advection (including eddies) contribute to the mixed layer salinity budget over annual to decadal time scales and what are the implications for upper ocean biogeochemistry?
How do variations in plankton community structure influence productivity and material export? 
What processes trigger the formation and demise of phytoplankton blooms in a persistently stratified ocean ecosystem?
References";
    String projects_0_end_date "2014-12";
    String projects_0_geolocation "North Pacific Subtropical Gyre; 22 deg 45 min N, 158 deg W";
    String projects_0_name "Hawaii Ocean Time-series (HOT): Sustaining ocean ecosystem and climate observations in the North Pacific Subtropical Gyre";
    String projects_0_project_nid "2101";
    String projects_0_project_website "http://hahana.soest.hawaii.edu/hot/hot_jgofs.html";
    String projects_0_start_date "1988-07";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 21.2283;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "timecode,section,nav_code,FLUOR";
    String summary "HOT CTD data are collected using a SeaBird CTD 9-11 (9-11 Plus with dual sensors as of HOT-54) at the maximum sampling rate of 24 samples per second (24 Hz). They are screened for errors and processed to 2-dbar averages. The majority of the sampling effort, approximately 60-72 h per standard HOT cruise, is spent at Station ALOHA. High vertical resolution environmental data are collected with a Sea-Bird CTD having external temperature (T), conductivity (C), dissolved oxygen (DO) and fluorescence (F) sensors and an internal pressure (P) sensor. A Sea-Bird 24-place carousel and an aluminum rosette that is capable of supporting 24 12-L PVC bottles are used to obtain water samples from desired depths. The CTD and rosette are deployed on a 3-conductor cable allowing for real-time display of data and for tripping the bottles at specific depths of interest.";
    String time_coverage_end "2016-11-29T05:40:00Z";
    String time_coverage_start "1988-10-30T21:34:00Z";
    String title "Two decibar-averaged CTD profiles from the Hawaii Ocean Time-Series cruises from 1988-2016 (HOT project)";
    String version "1";
    Float64 Westernmost_Easting -158.8575;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact