BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Biogeochemical and biological data from Niskin bottle samples from R/V
Atlantic Explorer cruises AE1102, AE1118, AE1206, AE1219 in the Sargasso Sea,
Bermuda Atlantic Time-Series Station from 2011-2012 (Trophic BATS project)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_3951)
Range: longitude = -65.8 to -63.3235°E, latitude = 29.5012 to 33.5032°N, depth = 2.9 to 1999.33m
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  cruise_id {
    String bcodmo_name "cruise_id";
    String description "Official cruise identifier e.g. AE1102 = R/V Atlantic Explorer cruise number 1102.";
    String long_name "Cruise Id";
    String units "text";
  }
  station {
    String bcodmo_name "station";
    String description "Station number/name.";
    String long_name "Station";
    String units "integer or text";
  }
  cast {
    Byte _FillValue 127;
    Byte actual_range 1, 41;
    String bcodmo_name "cast";
    String description "CTD drop number.";
    String long_name "Cast";
    String units "integer";
  }
  date {
    String bcodmo_name "date";
    String description "Date of operation in mm/dd/yyyy format.";
    String long_name "Date";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String source_name "date";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 29.5012, 33.5032;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Latitude; positive is North.";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -65.8, -63.3235;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Longitude; positive is East.";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  julian_day {
    Float32 _FillValue NaN;
    Float32 actual_range 55.489, 214.422;
    String bcodmo_name "julian_day";
    String description "Julian day.";
    String long_name "Julian Day";
    String units "decimal day";
  }
  time_local {
    String bcodmo_name "time_local";
    String description "Time (local).";
    String long_name "Time Local";
    String units "HHMM";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 2.9, 1999.33;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Actual depth of niskin fire.";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  depth_nom {
    Float32 _FillValue NaN;
    Float32 actual_range 1.0, 3000.0;
    String bcodmo_name "unknown";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Target depth of niskin fire.";
    String long_name "Depth";
    String standard_name "depth";
    String units "meters";
  }
  niskin_flag {
    Float32 _FillValue NaN;
    Float32 actual_range 1.0, 1.0;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for the niskin bottle fire.";
    String long_name "Niskin Flag";
    String units "dimensionless";
  }
  temp {
    Float32 _FillValue NaN;
    Float32 actual_range 3.63, 28.35;
    String bcodmo_name "temperature";
    String description "Temperature measured by CTD.";
    String long_name "Temperature";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "degrees Celsius";
  }
  sal {
    Float32 _FillValue NaN;
    Float32 actual_range 34.97, 36.95;
    String bcodmo_name "sal";
    String description "Salinity measured by CTD.";
    String long_name "Sal";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PSALST01/";
    String units "parts per thousand (ppt)";
  }
  density {
    Float32 _FillValue NaN;
    Float32 actual_range 23.45, 27.82;
    String bcodmo_name "density";
    String description "Density measured by CTD (kg m-3).";
    String long_name "Density";
    String units "kg per cubic meter";
  }
  chl_a {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 0.25;
    String bcodmo_name "chlorophyll a";
    Float64 colorBarMaximum 30.0;
    Float64 colorBarMinimum 0.03;
    String colorBarScale "Log";
    String description "Chlorohyll-a measured by CTD (ug/L).";
    String long_name "Concentration Of Chlorophyll In Sea Water";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/";
    String units "micrograms per liter";
  }
  O2 {
    Float32 _FillValue NaN;
    Float32 actual_range 142.97, 256.4;
    String bcodmo_name "O2_umol_kg";
    String description "O2 measured by CTD (umol/kg).";
    String long_name "O2";
    String units "micromoles per kilogram";
  }
  beam {
    Float32 _FillValue NaN;
    Float32 actual_range 0.375, 0.539;
    String bcodmo_name "beam_c";
    String description "Beam attenuation (1/m).";
    String long_name "Beam";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ATTNZZ01/";
    String units "reciprocal meters";
  }
  chla_tot_whole {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 0.35;
    String bcodmo_name "unknown";
    Float64 colorBarMaximum 30.0;
    Float64 colorBarMinimum 0.03;
    String colorBarScale "Log";
    String description "Total chlorophyll-a (ug/L).";
    String long_name "Concentration Of Chlorophyll In Sea Water";
    String units "micrograms per liter";
  }
  chla_tot_gt5um {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 0.03;
    String bcodmo_name "unknown";
    Float64 colorBarMaximum 30.0;
    Float64 colorBarMinimum 0.03;
    String colorBarScale "Log";
    String description "Chlorophyll-a (ug/L); fraction greater than 5 um.";
    String long_name "Concentration Of Chlorophyll In Sea Water";
    String units "micrograms per liter";
  }
  bact_prod {
    Float32 _FillValue NaN;
    Float32 actual_range 0.018, 1.866;
    String bcodmo_name "bacterial production by thymidine incorp";
    String description "Small volume bacterial production measured by thymidine incorporation (pmol Thy L-1 h-1)";
    String long_name "Bact Prod";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/UPTHXXXX";
    String units "pmol Thy per liter per hour";
  }
  bact_prod_C {
    Float32 _FillValue NaN;
    Float32 actual_range 0.003, 0.329;
    String bcodmo_name "unknown";
    String description "Bacterial thymidine production converted to C units using conversions in Carlson et al. 1996 (mgC m-3 d-1).";
    String long_name "Bact Prod C";
    String units "milligrams C per cubic meter per day";
  }
  bact_abund {
    Float32 _FillValue NaN;
    Float32 actual_range 200000.0, 1600000.0;
    String bcodmo_name "bact_abundance";
    String description "Bacterial abundance by DAPI staining and epifluorescent counting (cells/mL).";
    String long_name "Bact Abund";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/BNTX";
    String units "cells per milliliter";
  }
  bact_POC {
    Float32 _FillValue NaN;
    Float32 actual_range 0.9, 7.37;
    String bcodmo_name "unknown";
    String description "Bacterial abundance converted to C units using factors in Carlson et al. 1996 (ug/L).";
    String long_name "Bact POC";
    String units "micrograms per liter";
  }
  prochlorococcus {
    Int32 _FillValue 2147483647;
    Int32 actual_range 11, 154830;
    String bcodmo_name "coccus_p";
    String description "Prochlorococcus abundance by flow cytometry (cells/mL).";
    String long_name "Prochlorococcus";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/P701A90Z/";
    String units "cells per milliliter";
  }
  synechococcus {
    Int32 _FillValue 2147483647;
    Int32 actual_range 5, 98033;
    String bcodmo_name "coccus_s";
    String description "Synechococcus abundance by flow cytometry (cells/mL).";
    String long_name "Synechococcus";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/PATX/";
    String units "cells per milliliter";
  }
  peuks {
    Int16 _FillValue 32767;
    Int16 actual_range 4, 5063;
    String bcodmo_name "pico_euks";
    String description "Picoeukaryote abundance by flow cytometry (cells/mL).";
    String long_name "Peuks";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/PNTX";
    String units "cells per milliliter";
  }
  neuks {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 443;
    String bcodmo_name "phyto_e_n";
    String description "Nanoeukaryote abundance by flow cytometry (cells/mL).";
    String long_name "Neuks";
    String units "cells per milliliter";
  }
  prochlor_POC_per_cell {
    Float32 _FillValue NaN;
    Float32 actual_range 12.4, 767.66;
    String bcodmo_name "unknown";
    String description "Average particulate organic carbon (POC) content of Prochlorococcus cells derived from POC vs. flow cytometry based forward angle light scatter (Casey et al. 2013); fg/cell.";
    String long_name "Prochlor POC Per Cell";
    String units "femtograms C per cell";
  }
  synecho_POC_per_cell {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 22981.72;
    String bcodmo_name "unknown";
    String description "Average particulate organic carbon (POC) content of Synechococcus cells derived from POC vs. flow cytometry based forward angle light scatter (Casey et al. 2013); fg/cell";
    String long_name "Synecho POC Per Cell";
    String units "femtograms C per cell";
  }
  peuks_POC_per_cell {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 8565.93;
    String bcodmo_name "unknown";
    String description "Average particulate organic carbon (POC) content of picoeukaryotes derived from POC vs. flow cytometry based forward angle light scatter (Casey et al. 2013); fg/cell.";
    String long_name "Peuks POC Per Cell";
    String units "femtograms C per cell";
  }
  neuks_POC_per_cell {
    Float32 _FillValue NaN;
    Float32 actual_range 10518.33, 21612.0;
    String bcodmo_name "unknown";
    String description "Average particulate organic carbon (POC) content of nanoeukaryotes derived from POC vs. flow cytometry based forward angle light scatter (Casey et al. 2013); fg/cell.";
    String long_name "Neuks POC Per Cell";
    String units "femtograms C per cell";
  }
  prochlor_POC {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 7.74;
    String bcodmo_name "unknown";
    String description "POC (umol/L) for the entire Prochlorococcus population, calculated as POC per cell times cell abundance.";
    String long_name "Prochlor POC";
    String units "micromoles per liter";
  }
  synecho_POC {
    Float32 _FillValue NaN;
    Float32 actual_range -0.23, 8.3;
    String bcodmo_name "unknown";
    String description "POC (umol/L) for the entire Synechococcus population, calculated as POC per cell times cell abundance.";
    String long_name "Synecho POC";
    String units "micromoles per liter";
  }
  peuks_POC {
    Float32 _FillValue NaN;
    Float32 actual_range -0.09, 8.01;
    String bcodmo_name "unknown";
    String description "POC (umol/L) for the entire picoeukaryote population, calculated as POC per cell times cell abundance.";
    String long_name "Peuks POC";
    String units "micromoles per liter";
  }
  neuks_POC {
    Float32 _FillValue NaN;
    Float32 actual_range 0.03, 3.79;
    String bcodmo_name "unknown";
    String description "POC (umol/L)  for the entire nanoeukaryote population, calculated as POC per cell times cell abundance.";
    String long_name "Neuks POC";
    String units "micromoles per liter";
  }
  NO3_NO2 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 4.67;
    String bcodmo_name "NO3_NO2";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Combined nitrate and nitrite concentrations by AutoAnalyzer (umol/L).";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "micromoles per liter";
  }
  NO2 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 0.28;
    String bcodmo_name "NO2";
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String description "Nitrite concentration by AutoAnalyzer (umol/L).";
    String long_name "Mole Concentration Of Nitrite In Sea Water";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRIAAZX/";
    String units "micromoles per liter";
  }
  PO4 {
    Float32 _FillValue NaN;
    Float32 actual_range -0.01, 0.21;
    String bcodmo_name "PO4";
    String description "Phosphate concentration by AutoAnalyzer (umol/L).";
    String long_name "Mass Concentration Of Phosphate In Sea Water";
    String units "micromoles per liter";
  }
  SiOH4 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.37, 1.76;
    String bcodmo_name "SiOH_4";
    String description "Silicate concentration by AutoAnalyzer (umol/L).";
    String long_name "Si OH4";
    String units "micromoles per liter";
  }
  PO4_MAGIC {
    Float32 _FillValue NaN;
    Float32 actual_range 0.5, 236.2;
    String bcodmo_name "unknown";
    String description "High sensitivity phosphate concentration by MAGIC method (umol/L).";
    String long_name "Mass Concentration Of Phosphate In Sea Water";
    String units "micromoles per liter";
  }
  POC {
    Float32 _FillValue NaN;
    Float32 actual_range 0.07, 4.89;
    String bcodmo_name "POC";
    String description "Particulate organic carbon concentration (umol/L).";
    String long_name "Particulate Organic Carbon";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGCAP1/";
    String units "micromoles per liter";
  }
  PON {
    Float32 _FillValue NaN;
    Float32 actual_range 0.01, 0.8;
    String bcodmo_name "PON";
    String description "Particulate organic nitrogen concentration (umol/L).";
    String long_name "PON";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/MDMAP013/";
    String units "micromoles per liter";
  }
  POP {
    Float32 _FillValue NaN;
    Float32 actual_range 0.03, 32.3;
    String bcodmo_name "unknown";
    String description "Particulate organic phosphorus concentration (umol/L).";
    String long_name "POP";
    String units "micromoles per liter";
  }
  TOC {
    Float32 _FillValue NaN;
    Float32 actual_range 53.5, 88.06;
    String bcodmo_name "TOC";
    String description "Total organic carbon concentration (umol/L).";
    String long_name "TOC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGCOTX/";
    String units "micromoles per liter";
  }
  TON {
    Float32 _FillValue NaN;
    Float32 actual_range 3.2, 8.5;
    String bcodmo_name "TON";
    String description "Total organic nitrogen concentration (umol/L).";
    String long_name "TON";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTOTZZZZ/";
    String units "micromoles per liter";
  }
  TDP {
    Float32 _FillValue NaN;
    Float32 actual_range 10.9, 369.3;
    String bcodmo_name "Total Dissolved Phosphorus";
    String description "Total dissolved phosphorus concentration concentration (umol/L).";
    String long_name "TDP";
    String units "micromoles per liter";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson";
    String acquisition_description 
"Methods are summarized below. Detailed methods for all data collected as part
of this study can be found in the publications arising from this study
(references given below).
 
On each BATS cruise, aquasi-lagrangian sampling scheme is employed. An in situ
primary productivity array is deployed from dawn to dusk. The biogeochemistry
and biological parameters reported in this data were measured from Niskin
bottle water samples.
 
Bacterial production was measured using [3H-methyl] thymidine incorporation
and converted to carbon-based bacterial production using standard equations.
Bacterial abundance was determined using DAPI stained epifluorescence
microscopy. Pico-autotrophs were identified as either Synechococcus and
Prochlorococcus.
 
Samples for NO3/NO2, NO2 and PO4 are filtered and frozen (-20 degrees C) in
HDPE bottles until analysis. Total organic carbon (TOC) and total nitrogen
were determined using high temperature combustion techniques. Total phosphorus
concentrations are quantified using a high temperature/persulfateoxidation
technique. Particulate organic carbon (POC) and nitrogen (PON) samples were
filtered on precombusted Whatman GF/F filters and frozen until analysis on an
elemental analyzer. Particulate phosphorus samples were analyzed using an ash-
hydrolysis method with oxidation efficiency and standard recovery checks.
 
Sample QA/QC procedures followed those given in the associated manuscripts. At
the point of collection, any leaking niskin bottles were noted on the master
cast sheets and samples were taken from a different niskin fired at the same
depth as the leaking bottle. No data are reported for leaking Niskin bottles.
During sample analysis, certified standards, where available, were carefully
examined to ensure that they were consistent with expectations for accuracy
and precision. If no obvious error or problem was found, the data were
considered OK and in the range of environmental data that this study hoped to
observe.
 
Sample accuracy was assessed by using certified standards, for those
measurements where standards are available. Certified standards were run with
each analytical run and compared to long term control charts for respective
analyses. For those analyses where there are no standards (e.g., flow
cytometric cell counts) data were assessed for reasonableness based upon
extensive experience of the PI\\u2019s.
 
Detailed information on analyses:  
 Lomas, M.W., Burke, A., Lomas, D.A., Bell, D.W., Shen, C., Ammerman, J.W.,
Dyhrman, S.T. 2010.\\u00a0 Sargasso Sea phosphorus biogeochemistry: An
important role for dissolved organic phosphorus (DOP). Biogeosciences 7:
695-710. doi:
[10.5194/bg-7-695-2010](\\\\\"https://dx.doi.org/10.5194/bg-7-695-2010\\\\\")  
 Lomas, M.W., Bates, N.R., Johnson, R.J., Knap, A.H., Steinberg, D.K.,
Carlson, C.A. 2013. Two decades and counting: overview of 24-years of
sustained open ocean biogeochemical measurements. Deep Sea Research II doi:
[10.1016/j.dsr2.2013.01.008](\\\\\"https://dx.doi.org/10.1016/j.dsr2.2013.01.008\\\\\").
 
References:  
 Casey, J.R., Aucan, J.P., Goldberg, S.R., and Lomas, M.W. 2013. Changes in
partitioning of carbon amongst photosynthetic pico- and nano-plankton groups
in the Sargasso Sea in response to changes in the North Atlantic Oscillation.
Deep Sea Research II doi:
[10.1016/j.dsr2.2013.02.002](\\\\\"https://dx.doi.org/10.1016/j.dsr2.2013.02.002\\\\\")";
    String awards_0_award_nid "54810";
    String awards_0_award_number "OCE-1030149";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1030149";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "David L. Garrison";
    String awards_0_program_manager_nid "50534";
    String cdm_data_type "Other";
    String comment 
"Biogeochemical & Biological data collected on Trophic BATS cruises 
 Project: Trophic BATS 
 Dataset PI: Michael Lomas (Bigelow Laboratory for Ocean Sciences) 
 Version: 20 May 2013";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2013-05-21T15:21:29Z";
    String date_modified "2019-11-06T15:14:22Z";
    String defaultDataQuery "&time<now";
    String doi "10.1575/1912/bco-dmo.3951.1";
    Float64 Easternmost_Easting -63.3235;
    Float64 geospatial_lat_max 33.5032;
    Float64 geospatial_lat_min 29.5012;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -63.3235;
    Float64 geospatial_lon_min -65.8;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 1999.33;
    Float64 geospatial_vertical_min 2.9;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2020-09-18T14:20:40Z (local files)
2020-09-18T14:20:40Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_3951.das";
    String infoUrl "https://www.bco-dmo.org/dataset/3951";
    String institution "BCO-DMO";
    String instruments_0_acronym "Niskin bottle";
    String instruments_0_dataset_instrument_nid "6168";
    String instruments_0_description "A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends.  The bottles can be attached individually on a hydrowire or deployed in 12, 24 or 36 bottle Rosette systems mounted on a frame and combined with a CTD.  Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0412/";
    String instruments_0_instrument_name "Niskin bottle";
    String instruments_0_instrument_nid "413";
    String instruments_0_supplied_name "Niskin bottle";
    String instruments_1_acronym "Nutrient Autoanalyzer";
    String instruments_1_dataset_instrument_description "TechniconAAII and AlpkemFSIV autoanalyzers were used to determine nitrate, nitrite, silicate, and phosphate.";
    String instruments_1_dataset_instrument_nid "6171";
    String instruments_1_description "Nutrient Autoanalyzer is a generic term used when specific type, make and model were not specified.  In general, a Nutrient Autoanalyzer is an automated flow-thru system for doing nutrient analysis (nitrate, ammonium, orthophosphate, and silicate) on seawater samples.";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB04/";
    String instruments_1_instrument_name "Nutrient Autoanalyzer";
    String instruments_1_instrument_nid "558";
    String instruments_1_supplied_name "Nutrient Autoanalyzer";
    String instruments_2_acronym "CHN_EA";
    String instruments_2_dataset_instrument_description "A CE440 CHN elemental analyzer was used to measure POC and PON.";
    String instruments_2_dataset_instrument_nid "6170";
    String instruments_2_description "A CHN Elemental Analyzer is used for the determination of carbon, hydrogen, and  nitrogen content in organic and other types of materials, including  solids, liquids, volatile, and viscous samples.";
    String instruments_2_instrument_name "CHN Elemental Analyzer";
    String instruments_2_instrument_nid "625";
    String instruments_2_supplied_name "CHN Elemental Analyzer";
    String keywords "abund, altimetry, bact, bact_abund, bact_POC, bact_prod, bact_prod_C, bco, bco-dmo, beam, biological, carbon, cast, cell, chemical, chemistry, chl_a, chla_tot_gt5um, chla_tot_whole, chlorophyll, concentration, concentration_of_chlorophyll_in_sea_water, cruise, cruise_id, data, dataset, date, day, density, depth, depth_nom, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, Earth Science > Oceans > Ocean Chemistry > Nitrate, Earth Science > Oceans > Ocean Chemistry > Phosphate, erddap, flag, julian, julian_day, laboratory, latitude, local, longitude, management, mass, mass_concentration_of_phosphate_in_sea_water, mole, mole_concentration_of_nitrate_in_sea_water, mole_concentration_of_nitrite_in_sea_water, n02, neuks, neuks_POC, neuks_POC_per_cell, niskin, niskin_flag, nitrate, nitrite, NO2, no3, NO3_NO2, O2, ocean, oceanography, oceans, office, oh4, organic, oxygen, particulate, per, peuks, peuks_POC, peuks_POC_per_cell, phosphate, po4, PO4_MAGIC, poc, pon, pop, preliminary, prochlor, prochlor_POC, prochlor_POC_per_cell, prochlorococcus, prod, sal, satellite, science, sea, seawater, SiOH4, station, synecho, synecho_POC, synecho_POC_per_cell, synechococcus, tdp, temperature, time, time_local, toc, ton, water";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "https://www.bco-dmo.org/dataset/3951/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/3951";
    Float64 Northernmost_Northing 33.5032;
    String param_mapping "{'3951': {'lat': 'master - latitude', 'depth': 'flag - depth', 'lon': 'master - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/3951/parameters";
    String people_0_affiliation "Bigelow Laboratory for Ocean Sciences";
    String people_0_person_name "Michael W. Lomas";
    String people_0_person_nid "50776";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI BCO-DMO";
    String people_1_person_name "Shannon Rauch";
    String people_1_person_nid "51498";
    String people_1_role "BCO-DMO Data Manager";
    String people_1_role_type "related";
    String project "Trophic BATS";
    String projects_0_acronym "Trophic BATS";
    String projects_0_description 
"Fluxes of particulate carbon from the surface ocean are greatly influenced by the size, taxonomic composition and trophic interactions of the resident planktonic community. Large and/or heavily-ballasted phytoplankton such as diatoms and coccolithophores are key contributors to carbon export due to their high sinking rates and direct routes of export through large zooplankton. The potential contributions of small, unballasted phytoplankton, through aggregation and/or trophic re-packaging, have been recognized more recently. This recognition comes as direct observations in the field show unexpected trends. In the Sargasso Sea, for example, shallow carbon export has increased in the last decade but the corresponding shift in phytoplankton community composition during this time has not been towards larger cells like diatoms. Instead, the abundance of the picoplanktonic cyanobacterium, Synechococccus, has increased significantly. The trophic pathways that link the increased abundance of Synechococcus to carbon export have not been characterized. These observations helped to frame the overarching research question, \"How do plankton size, community composition and trophic interactions modify carbon export from the euphotic zone\". Since small phytoplankton are responsible for the majority of primary production in oligotrophic subtropical gyres, the trophic interactions that include them must be characterized in order to achieve a mechanistic understanding of the function of the biological pump in the oligotrophic regions of the ocean.
This requires a complete characterization of the major organisms and their rates of production and consumption. Accordingly, the research objectives are: 1) to characterize (qualitatively and quantitatively) trophic interactions between major plankton groups in the euphotic zone and rates of, and contributors to, carbon export and 2) to develop a constrained food web model, based on these data, that will allow us to better understand current and predict near-future patterns in export production in the Sargasso Sea.
The investigators will use a combination of field-based process studies and food web modeling to quantify rates of carbon exchange between key components of the ecosystem at the Bermuda Atlantic Time-series Study (BATS) site. Measurements will include a novel DNA-based approach to characterizing and quantifying planktonic contributors to carbon export. The well-documented seasonal variability at BATS and the occurrence of mesoscale eddies will be used as a natural laboratory in which to study ecosystems of different structure. This study is unique in that it aims to characterize multiple food web interactions and carbon export simultaneously and over similar time and space scales. A key strength of the proposed research is also the tight connection and feedback between the data collection and modeling components.
Characterizing the complex interactions between the biological community and export production is critical for predicting changes in phytoplankton species dominance, trophic relationships and export production that might occur under scenarios of climate-related changes in ocean circulation and mixing. The results from this research may also contribute to understanding of the biological mechanisms that drive current regional to basin scale variability in carbon export in oligotrophic gyres.";
    String projects_0_end_date "2014-09";
    String projects_0_geolocation "Sargasso Sea, BATS site";
    String projects_0_name "Plankton Community Composition and Trophic Interactions as Modifiers of Carbon Export in the Sargasso Sea";
    String projects_0_project_nid "2150";
    String projects_0_start_date "2010-10";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 29.5012;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "Biogeochemical and biological data from Niskin bottle samples from R/V Atlantic Explorer cruises AE1102, AE1118, AE1206, AE1219 in the Sargasso Sea, Bermuda Atlantic Time-Series Station from 2011-2012.";
    String title "Biogeochemical and biological data from Niskin bottle samples from R/V Atlantic Explorer cruises AE1102, AE1118, AE1206, AE1219 in the Sargasso Sea, Bermuda Atlantic Time-Series Station from 2011-2012 (Trophic BATS project)";
    String version "1";
    Float64 Westernmost_Easting -65.8;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact