BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [Data Set 1B: Bioavailability of dissolved organic carbon produced by
Thalassiosira weissflogii grown under different pCO2 and temperature
conditions - Experiment OA5] - 1B: Bioavailability of dissolved organic carbon
produced by Thalassiosira weissflogii grown under different pCO2 and
temperature conditions from UCSB Marine Science Institute Passow Lab from 2009
to 2010 (OA - Effects of High CO2 project) (Will high CO2 conditions affect
production, partitioning and fate of organic matter?)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_471701)
Range: longitude = -119.842 to -119.842°E, latitude = 34.4126 to 34.4126°N
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Lab_Id {
    String bcodmo_name "laboratory";
    String description "Lab Id – Lab identifier where experiments were conducted";
    String long_name "Lab Id";
    String units "text";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 34.4126, 34.4126;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Approximate Latitude Position of Lab; South is negative";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -119.842, -119.842;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Approximate Longitude Position of Lab; West is negative";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  Bottle_Num {
    String bcodmo_name "sample";
    String description "PC bottle number sampled";
    String long_name "Bottle Num";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/ACYC/";
    String units "dimensionless";
  }
  Temp {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 15, 20;
    String bcodmo_name "temperature";
    String description "Temperature";
    String long_name "Temperature";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "degrees C";
  }
  pCO2 {
    Int16 _FillValue 32767;
    Int16 actual_range 40, 1000;
    String bcodmo_name "pCO2";
    String description "pCO2 conditions";
    String long_name "P CO2";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PCO2C101/";
    String units "ppm";
  }
  days_post_nut_depletion {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 2, 6;
    String bcodmo_name "days";
    String description "Days post nut depletion";
    String long_name "Days Post Nut Depletion";
    String units "days";
  }
  DOC_T0_0 {
    Float32 _FillValue NaN;
    Float32 actual_range 47.09, 59.76;
    String bcodmo_name "DOC";
    String description "Dissolved Organic Carbon at T0 (0 hrs)";
    String long_name "DOC T0 0";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGZZZX/";
    String units "uM C";
  }
  DOC_T2_70point5 {
    Float32 _FillValue NaN;
    Float32 actual_range 47.06, 57.63;
    String bcodmo_name "DOC";
    String description "Dissolved Organic Carbon at T2 (70.5 hrs)";
    String long_name "DOC T2 70point5";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGZZZX/";
    String units "uM C";
  }
  DOC_T7_195 {
    Float32 _FillValue NaN;
    Float32 actual_range 43.69, 53.36;
    String bcodmo_name "DOC";
    String description "Dissolved Organic Carbon at T7 (195 hrs)";
    String long_name "DOC T7 195";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGZZZX/";
    String units "uM C";
  }
  DOC_T10_284 {
    Float32 _FillValue NaN;
    Float32 actual_range 43.44, 51.14;
    String bcodmo_name "DOC";
    String description "Dissolved Organic Carbon at T10 (284 hrs)";
    String long_name "DOC T10 284";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGZZZX/";
    String units "uM C";
  }
  DOC_TF_968point5 {
    Float32 _FillValue NaN;
    Float32 actual_range 40.28, 45.02;
    String bcodmo_name "DOC";
    String description "Dissolved Organic Carbon at TF (968.5 hrs)";
    String long_name "DOC TF 968point5";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGZZZX/";
    String units "uM C";
  }
  FCM_T0_0 {
    Float32 _FillValue NaN;
    Float32 actual_range 171000.0, 257000.0;
    String bcodmo_name "bact_abundance";
    String description "Bacteria as determined by flow cytometry at T0 (0 hrs)";
    String long_name "FCM T0 0";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/BNTX";
    String units "cells/ml";
  }
  FCM_T1_45 {
    Float32 _FillValue NaN;
    Float32 actual_range 266000.0, 711000.0;
    String bcodmo_name "bact_abundance";
    String description "Bacteria as determined by flow cytometry at T1 45 hrs)";
    String long_name "FCM T1 45";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/BNTX";
    String units "cells/ml";
  }
  FCM_T2_70point5 {
    Float32 _FillValue NaN;
    Float32 actual_range 547000.0, 875000.0;
    String bcodmo_name "bact_abundance";
    String description "Bacteria as determined by flow cytometry at T2 (70.5 hrs)";
    String long_name "FCM T2 70point5";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/BNTX";
    String units "cells/ml";
  }
  FCM_T3_97point5 {
    Float32 _FillValue NaN;
    Float32 actual_range 519000.0, 977000.0;
    String bcodmo_name "bact_abundance";
    String description "Bacteria as determined by flow cytometry at T3 (97.5 hrs)";
    String long_name "FCM T3 97point5";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/BNTX";
    String units "cells/ml";
  }
  FCM_T4_117 {
    Float32 _FillValue NaN;
    Float32 actual_range 307000.0, 1070000.0;
    String bcodmo_name "bact_abundance";
    String description "Bacteria as determined by flow cytometry at T4 (117 hrs)";
    String long_name "FCM T4 117";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/BNTX";
    String units "cells/ml";
  }
  FCM_T5_142pont5 {
    Float32 _FillValue NaN;
    Float32 actual_range 286000.0, 1210000.0;
    String bcodmo_name "bact_abundance";
    String description "Bacteria as determined by flow cytometry at T5 (142.5 hrs)";
    String long_name "FCM T5 142pont5";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/BNTX";
    String units "cells/ml";
  }
  FCM_T6_169point5 {
    Float32 _FillValue NaN;
    Float32 actual_range 371000.0, 996000.0;
    String bcodmo_name "bact_abundance";
    String description "Bacteria as determined by flow cytometry at T6 (169.5 hrs)";
    String long_name "FCM T6 169point5";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/BNTX";
    String units "cells/ml";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson";
    String acquisition_description 
"Treatments:  
 1. 20deg 400ppm 2 days post nutrient depletion  
 2. 20deg 400ppm 4 days post nutrient depletion  
 3. 20deg 400ppm 6 days post nutrient depletion  
 4. 20deg 1000ppm 2 days post nutrient depletion  
 5. 20deg 1000ppm 4 days post nutrient depletion  
 6. 20deg 1000ppm 6 days post nutrient depletion  
 7. 15deg 400ppm 2 days post nutrient depletion  
 8. 15deg 400ppm 4 days post nutrient depletion  
 9. 15deg 400ppm 6 days post nutrient depletion  
 10. 15deg 1000ppm 2 days post nutrient depletion  
 11. 15deg 1000ppm 4 days post nutrient depletion  
 12. 15deg 1000ppm 6 days post nutrient depletion
 
Set-up:  
 Sample:  
 1.4L: 80% 0.22um filtered from Jan Taucher's treatments (collected from
March 9th (20deg 2day post nut depletion) to March 15th (15deg 6day post nut
depletion))
 
0.3L: 20% 1.22um filtered campus point SW (collected 1000 on 03/16/2013)  
 Total volume per 2L PC bottle (treatment) = 1.5L
 
The total volume was combined at 1130 and then each 2L PC bottle (with 1.5L
total volume) was split between duplicate 500ml PC bottles (the remaining
volume was used for T0 sampling)
 
These bottles were then placed in the small incubator in the Chapman lab at 12
deg (same temperature of the innoclum during time of collection)
 
\\u00a0
 
Sampling Schedule:  
 Time point Time (hrs) Date Time Samples Taken From what  
 T0 0 5/14/2013 930 DOC, FCM From 2L PC bottles  
 T1 5/15/2013 1230 FCM all 24  
 T2 5/16/2013 1210 FCM all 24  
 T3 3.5 5/17/2013 1100 DOC, FCM all 24  
 T4 5/18/2013 1400 FCM all 24  
 T5 5/19/2013 1030 FCM all 24  
 T6 148 5/20/2013 1330 FCM all 24  
 T7 160.75 5/21/2013 945 FCM all 24  
 T8 191 5/22/2013 1600 DOC, FCM all 24  
 TF ERH?? 6/6/2013 ERH?? DOC all 24
 
\\u00a0";
    String awards_0_award_nid "55209";
    String awards_0_award_number "OCE-1041038";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward?AWD_ID=1041038&HistoricalAwards=false";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Donald L. Rice";
    String awards_0_program_manager_nid "51467";
    String cdm_data_type "Other";
    String comment 
"OA_Effects_of_HighCO2 
  Version: 21 November 2013 
  PIs: Passow, Carlson, Brzezinski 
  Data Set #1B: Bioavailability of dissolved organic carbon produced by Thalassiosira weissflogii grown under different pCO2 and temperature conditions (Experiment OA5) 
  
  
  Data Set #1B: Bioavailability of dissolved organic carbon produced by Thalassiosira weissflogii grown under different pCO2 and temperature conditions (Experiment OA5) - Data";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2013-11-18T14:33:06Z";
    String date_modified "2020-01-24T18:50:45Z";
    String defaultDataQuery "&time<now";
    String doi "10.1575/1912/bco-dmo.471701.1";
    Float64 Easternmost_Easting -119.842;
    Float64 geospatial_lat_max 34.4126;
    Float64 geospatial_lat_min 34.4126;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -119.842;
    Float64 geospatial_lon_min -119.842;
    String geospatial_lon_units "degrees_east";
    String history 
"2024-10-13T22:36:48Z (local files)
2024-10-13T22:36:48Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_471701.das";
    String infoUrl "https://www.bco-dmo.org/dataset/471701";
    String institution "BCO-DMO";
    String keywords "142pont5, 169point5, 70point5, 968point5, 97point5, bco, bco-dmo, biological, bottle, Bottle_Num, carbon, carbon dioxide, chemical, co2, commerce, data, dataset, days, days_post_nut_depletion, department, depletion, dioxide, dmo, doc, DOC_T0_0, DOC_T10_284, DOC_T2_70point5, DOC_T7_195, DOC_TF_968point5, erddap, fcm, FCM_T0_0, FCM_T1_45, FCM_T2_70point5, FCM_T3_97point5, FCM_T4_117, FCM_T5_142pont5, FCM_T6_169point5, lab, Lab_Id, latitude, longitude, management, num, nut, oceanography, office, pCO2, post, preliminary, t10, Temp, temperature";
    String license "https://www.bco-dmo.org/dataset/471701/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/471701";
    Float64 Northernmost_Northing 34.4126;
    String param_mapping "{'471701': {'Lat': 'flag - latitude', 'Lon': 'flag - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/471701/parameters";
    String people_0_affiliation "University of California-Santa Barbara";
    String people_0_affiliation_acronym "UCSB-MSI";
    String people_0_person_name "Dr Uta Passow";
    String people_0_person_nid "51317";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "University of California-Santa Barbara";
    String people_1_affiliation_acronym "UCSB-MSI";
    String people_1_person_name "Mark A. Brzezinski";
    String people_1_person_nid "50663";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "University of California-Santa Barbara";
    String people_2_affiliation_acronym "UCSB-MSI";
    String people_2_person_name "Craig Carlson";
    String people_2_person_nid "50575";
    String people_2_role "Co-Principal Investigator";
    String people_2_role_type "originator";
    String people_3_affiliation "University of California-Santa Barbara";
    String people_3_affiliation_acronym "UCSB-MSI";
    String people_3_person_name "Ms Anna James";
    String people_3_person_nid "471722";
    String people_3_role "Student";
    String people_3_role_type "related";
    String people_4_affiliation "University of California-Santa Barbara";
    String people_4_affiliation_acronym "UCSB-MSI";
    String people_4_person_name "Dr Uta Passow";
    String people_4_person_nid "51317";
    String people_4_role "Contact";
    String people_4_role_type "related";
    String people_5_affiliation "Woods Hole Oceanographic Institution";
    String people_5_affiliation_acronym "WHOI BCO-DMO";
    String people_5_person_name "Stephen R. Gegg";
    String people_5_person_nid "50910";
    String people_5_role "BCO-DMO Data Manager";
    String people_5_role_type "related";
    String project "OA - Effects of High CO2";
    String projects_0_acronym "OA - Effects of High CO2";
    String projects_0_description 
"From the NSF Award Abstract
Coastal waters are already experiencing episodic exposure to carbonate conditions that were not expected until the end of the century making understanding the response to these episodic events as important as understanding the long-term mean response. Among the most striking examples are those associated with coastal upwelling along the west coast of the US, where the pH of surface waters may drop to 7.6 and pCO2 can reach 1100 uatm. Upwelling systems are responsible for a significant fraction of global carbon export making them prime targets for investigations on how ocean acidification is already affecting the biological pump today.
In this study, researchers at the University of California at Santa Barbara will investigate the potential effects of ocean acidification on the strength of the biological pump under the transient increases in CO2 experienced due to upwelling. Increases in CO2 are expected to alter the path and processing of carbon through marine food webs thereby strengthening the biological pump. Increases in inorganic carbon without proportional increases in nutrients result in carbon over-consumption by phytoplankton. How carbon over-consumption affects the strength of the biological pump will depend on the fate of the extra carbon that is either incorporated into phytoplankton cells forming particulate organic matter (POM), or is excreted as dissolved organic matter (DOM). Results from mesocosm experiments demonstrate that the mechanisms controlling the partitioning of fixed carbon between the particulate and dissolved phases, and the processing of those materials, are obscured when both processes operate simultaneously under natural or semi-natural conditions. Here, POM and DOM production and the heterotrophic processing of these materials will be separated experimentally across a range of CO2 concentrations by conducting basic laboratory culture experiments. In this way the mechanisms whereby elevated CO2 alters the flow of carbon along these paths can be elucidated and better understood for use in mechanistic forecasting models.
Broader Impacts- The need to understand the effects of ocean acidification for the future of society is clear. In addition to research education, both formal and informal, will be important for informing the public. Within this project 1-2 graduate students and 2-3 minority students will be recruited as interns from the CAMP program (California Alliance for Minority Participation). Within the 'Ocean to Classrooms' program run by outreach personnel from UCSB's Marine Science Institute an educational unit for K-12 students will be developed. Advice and support is also given to the Education Coordinator of NOAA, Channel Islands National Marine Sanctuary for the development of an education unit on ocean acidification.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Arnosti C, Grossart H-P, Muehling M, Joint I, Passow U. \"Dynamics of extracellular enzyme activities in seawater under changed atmsopheric pCO2: A mesocosm investigation.,\" Aquatic Microbial Ecology, v.64, 2011, p. 285.
Passow U. \"The Abiotic Formation of TEP under Ocean Acidification Scenarios.,\" Marine Chemistry, v.128-129, 2011, p. 72.
Passow, Uta; Carlson, Craig A.. \"The biological pump in a high CO2 world,\" MARINE ECOLOGY PROGRESS SERIES, v.470, 2012, p. 249-271.
Gaerdes, Astrid; Ramaye, Yannic; Grossart, Hans-Peter; Passow, Uta; Ullrich, Matthias S.. \"Effects of Marinobacter adhaerens HP15 on polymer exudation by Thalassiosira weissflogii at different N:P ratios,\" MARINE ECOLOGY PROGRESS SERIES, v.461, 2012, p. 1-14.
Philip Boyd, Tatiana Rynearson, Evelyn Armstrong, Feixue Fu, Kendra Hayashi, Zhangi Hu, David Hutchins, Raphe Kudela, Elena Litchman, Margaret Mulholland, Uta Passow, Robert Strzepek, Kerry Whittaker, Elizabeth Yu, Mridul Thomas. \"Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters - Outcome of a Scientific Community-Wide Study,\" PLOS One 8, v.8, 2013, p. e63091.
Arnosti, C., B. M. Fuchs, R. Amann, and U. Passow. \"Contrasting extracellular enzyme activities of particle-associated bacteria from distinct provinces of the North Atlantic Ocean,\" Frontiers in Microbiology, v.3, 2012, p. 1.
Koch, B.P., Kattner, G., Witt, M., Passow, U., 2014. Molecular insights into the microbial formation of marine dissolved organic matter: recalcitrant or labile? Biogeosciences Discuss. 11 (2), 3065-3111.
Taucher, J., Brzezinski, M., Carlson, C., James, A., Jones, J., Passow, U., Riebesell, U., submitted. Effects of warming and elevated pCO2 on carbon uptake and partitioning of the marine diatoms Thalassiosira weissflogii and Dactyliosolen fragilissimus. Limnology and Oceanography";
    String projects_0_end_date "2014-09";
    String projects_0_geolocation "Passow Lab, Marine Science Institute, University of California Santa Barbara";
    String projects_0_name "Will high CO2 conditions affect production, partitioning and fate of organic matter?";
    String projects_0_project_nid "2284";
    String projects_0_project_website "http://www.msi.ucsb.edu/people/research-scientists/uta-passow";
    String projects_0_start_date "2010-10";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 34.4126;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "Lab_Id,latitude,longitude";
    String summary "Bioavailability of dissolved organic carbon produced by Thalassiosira weissflogii grown under different pCO2 and temperature conditions from UCSB Marine Science Institute Passow Lab from 2009 to 2010.";
    String title "[Data Set 1B: Bioavailability of dissolved organic carbon produced by Thalassiosira weissflogii grown under different pCO2 and temperature conditions - Experiment OA5] - 1B: Bioavailability of dissolved organic carbon produced by Thalassiosira weissflogii grown under different pCO2 and temperature conditions from UCSB Marine Science Institute Passow Lab from 2009 to 2010 (OA - Effects of High CO2 project) (Will high CO2 conditions affect production, partitioning and fate of organic matter?)";
    String version "1";
    Float64 Westernmost_Easting -119.842;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact