BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  [Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2,
temperature and bacteria: Acclimatization Phase - Cell Counts] - Aggregation of
Thalassiosira weissflogii as a function of pCO2, temperature and bacteria -
Acclimatization Phase - Cell Counts from UCSB MSI Passow Lab from 2009 to
2010 (OA - Ocean Acidification and Aggregation project) (Will Ocean
Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus
Weakening the Biological Pump? )
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_528131)
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Subset | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
   or a List of Values ?
   Maximum ?
 
 Lab_Id (text) ?      
   - +  ?
 latitude (degrees_north) ?      
   - +  ?
  < slider >
 longitude (degrees_east) ?      
   - +  ?
  < slider >
 Temp (Temperature, degrees C) ?          15    20
 pCO2 (text) ?          "Amb"    "Fut 2"
 sampling_date (unitless) ?          20110515    20110523
 day_of_acclimatisation (integer) ?          1.0    8.0
 diatom_cell_count (number) ?          2158    57525
 dilution_factor ((tbd)) ?          1    6
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more information)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Lab_Id {
    String bcodmo_name "laboratory";
    String description "Lab Id – Lab identifier where experiments were conducted";
    String long_name "Lab Id";
    String units "text";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 34.4126, 34.4126;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Approximate Latitude Position of Lab; South is negative";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -119.842, -119.842;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Approximate Longitude Position of Lab; West is negative";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  Temp {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 15, 20;
    String bcodmo_name "temp_incub";
    String description "Treatment - Temperature";
    String long_name "Temperature";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "degrees C";
  }
  pCO2 {
    String bcodmo_name "treatment";
    String description "Treatment - pCO2 conditions";
    String long_name "P CO2";
    String units "text";
  }
  sampling_date {
    Int32 _FillValue 2147483647;
    Int32 actual_range 20110515, 20110523;
    String bcodmo_name "date";
    String description "Sampling times - Sampling date in YYYYMMDD format";
    String long_name "Sampling Date";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String units "unitless";
  }
  day_of_acclimatisation {
    Float32 _FillValue NaN;
    Float32 actual_range 1.0, 8.0;
    String bcodmo_name "days";
    String description "Sampling times - day_of_acclimatisation";
    String long_name "Day Of Acclimatisation";
    String units "integer";
  }
  diatom_cell_count {
    Int32 _FillValue 2147483647;
    Int32 actual_range 2158, 57525;
    String bcodmo_name "count";
    Float64 colorBarMaximum 100.0;
    Float64 colorBarMinimum 0.0;
    String description "Diatom cell count";
    String long_name "Diatom Cell Count";
    String units "number";
  }
  dilution_factor {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 1, 6;
    String bcodmo_name "unknown";
    String description "Dilution factor";
    String long_name "Dilution Factor";
    String units "(tbd)";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson";
    String acquisition_description 
"See: [Series 4: Aggregation of Thalassiosira weissflogii -
Methods](\\\\\"http://bcodata.whoi.edu/Ocean_Acidification_and_Aggregation
/Series4_Seebah-Methods.pdf\\\\\")";
    String awards_0_award_nid "54764";
    String awards_0_award_number "OCE-0926711";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0926711";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Donald L. Rice";
    String awards_0_program_manager_nid "51467";
    String cdm_data_type "Other";
    String comment 
"Ocean Acidification and Aggregation 
  Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature and bacteria 
  Acclimatisation Phase - Cell Counts 
  Version: 05 September 2013 
  PIs: Passow, Seebah";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2014-09-15T13:39:03Z";
    String date_modified "2016-08-20T03:10:46Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/6845";
    Float64 Easternmost_Easting -119.842;
    Float64 geospatial_lat_max 34.4126;
    Float64 geospatial_lat_min 34.4126;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -119.842;
    Float64 geospatial_lon_min -119.842;
    String geospatial_lon_units "degrees_east";
    String history 
"2025-01-06T19:59:29Z (local files)
2025-01-06T19:59:29Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_528131.html";
    String infoUrl "https://www.bco-dmo.org/dataset/528131";
    String institution "BCO-DMO";
    String keywords "acclimatisation, bco, bco-dmo, biological, carbon, carbon dioxide, cell, chemical, co2, count, data, dataset, date, day, day_of_acclimatisation, diatom, diatom_cell_count, dilution, dilution_factor, dioxide, dmo, erddap, factor, lab, Lab_Id, latitude, longitude, management, oceanography, office, pCO2, preliminary, sampling, sampling_date, Temp, temperature";
    String license "https://www.bco-dmo.org/dataset/528131/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/528131";
    Float64 Northernmost_Northing 34.4126;
    String param_mapping "{'528131': {'Lat': 'flag - latitude', 'Lon': 'flag - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/528131/parameters";
    String people_0_affiliation "University of California-Santa Barbara";
    String people_0_affiliation_acronym "UCSB-MSI";
    String people_0_person_name "Dr Uta Passow";
    String people_0_person_nid "51317";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "University of California-Santa Barbara";
    String people_1_affiliation_acronym "UCSB-MSI";
    String people_1_person_name "Shalin Seebah";
    String people_1_person_nid "528318";
    String people_1_role "Student";
    String people_1_role_type "related";
    String people_2_affiliation "University of California-Santa Barbara";
    String people_2_affiliation_acronym "UCSB-MSI";
    String people_2_person_name "Dr Uta Passow";
    String people_2_person_nid "51317";
    String people_2_role "Contact";
    String people_2_role_type "related";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Stephen R. Gegg";
    String people_3_person_nid "50910";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "OA - Ocean Acidification and Aggregation";
    String projects_0_acronym "OA - Ocean Acidification and Aggregation";
    String projects_0_description 
"Will Ocean Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus Weakening the Biological Pump?
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
The pH of the ocean is predicted to decrease by 0.2-0.5 pH units in the next 50 to100 years as a result of increasing atmospheric CO2. To date almost all the research on impending ocean acidification has focused on the impacts to calcifying organisms and the carbonate system. However, ocean acidification will also affect other significant marine processes that are pH dependent.
In this project, researchers at the University of California at Santa Barbara will investigate the impact of ocean acidification on the organic carbon or 'soft tissue' biological pump. They predict that a decline in oceanic pH will result in an increase in the protonation of negatively charged substances, especially of Transparent Exopolymer Particles (TEP), the gel-like particles that provide the matrix of aggregates and bind particles together. A decreased polarity of these highly surface-active particles may reduce their \"stickiness\" resulting in decreased aggregation of organic-rich particles and a decreased ability of aggregates to scavenge and retain heavy ballast minerals. A reduction in aggregation will lower the fraction of POC enclosed in fast-sinking aggregates. Decreased scavenging of minerals by aggregates will result in reduced sinking velocities and consequently a decline in the fraction of material escaping degradation in the water column. Both processes ultimately reduce carbon flux to depth. The resulting weakening of the biological pump will alter pelagic ecology and potentially produce a positive feed-back pathway that further increases atmospheric CO2 concentrations.
The research team will experimentally investigate TEP-production, aggregation rates and aggregate characteristics, mineral scavenging and sinking velocity as a function of ocean acidification, because these parameters are susceptible to pH and central in determining sedimentation rate of organic carbon. They will determine potential changes in the abiotic formation of TEP or in the release rate of TEP or TEP-precursors by phytoplankton that have been adapted to increased CO2 regimes for multiple generations, up to 1000 doublings. Additionally, they will experimentally test potential changes in the aggregation rate of adapted phytoplankton and natural particles, and measure impacts on scavenging rates of ballast minerals by aggregates. Effects of various acidification levels on aggregate characteristics, including size, composition, density, and sinking velocity will also be determined. These results are expected to provide parameterization for a predictive model that will be used to investigate the impact of changing ballasting or aggregation on carbon flux.
Broader impact: Climate and environmental change are a global challenge to society. We need to know if possible positive feed back mechanisms to the biological pump will further increase atmospheric CO2 in order to prepare for and hopefully manage future climate changes.
These data are also available at Pangea

RELATED FILES:
Passow U (2012) The Abiotic Formation of Tep under Ocean Acidification Scenarios. Marine Chemistry 128-129:72-80

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Bathmann U, Passow U. \"Global Erwaermung. Kohlenstoffpumpen im Ozean steuern das Klima.,\" Biologie in unserer Zeit 5, v.5, 2010.
Benner I, Passow U. \"Utilization of organic nutrients by coccolithophores,\" Marine Ecology Progress Series, v.404, 2010, p. 21.
Feng Y, Hare C, Leblanc K, Rose J, Zhang Y, DiTullio G, Lee P, Wilhelm S, Rowe J, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins D. \"Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response,\" Marine Ecology Progress Series, v.388, 2009, p. 13.
Gaerdes A, Iversen MH, Grossart H-P, Passow U, Ullrich M. \"Diatom associated bacteria are required for aggregation of Thalassiosira weissflogii.,\" ISME Journal, 2010, p. 1.
Leblanc K, Hare CE, Feng Y, Berg GM, DiTullio GR, Neeley A, Benner I, Sprengel C, Beck A, Sanudo-Wilhelmy SA, Passow U, Klinck K, Rowe JM, Wilhelm SW, Brown CW, Hutchins DA. \"Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom,\" Biogeosciences, v.6, 2009, p. 2155.
Ploug H, Terbruggen A, Kaufmann A, Wolf-Gladrow D, Passow U. \"A novel method to measure particle sinking velocity in vitro, and its comparison to three other in vitro methods.,\" Limnolgy and Oceanography Methods, v.8, 2010, p. 386.
Passow, U., Rocha, C.L.D.L., Fairfield, C., Schmidt, K., 2014. Aggregation as a function of pCO2 and mineral particles. Limnology and Oceanography 59 (2), 532-547.
De La Rocha, C.L., Passow, U., 2014. The biological pump. In: Turekian, K.K., Holland, H.D. (Eds.), Treatise on Geochemistry. Elsevier, Oxford, pp. 93-122.
Boyd, P., Rynearson, T., Armstrong, E., Fu, F., Hayashi, K., Hu, Z., Hutchins, D., Kudela, R., Litchman, E., Mulholland, M., Passow, U., Strzepek, R., Whittaker, K., Yu, E., Thomas, M., 2013. Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters - Outcome of a Scientific Community-Wide Study. PLoS ONE 8 (5), e63091.
Passow, U., Carlson, C., 2012. The Biological Pump in a High CO2 World. Marine Ecology Progress Series 470, 249-271.";
    String projects_0_end_date "2012-08";
    String projects_0_geolocation "Passow Lab, Marine Science Institute, University of California Santa Barbara";
    String projects_0_name "Will Ocean Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus Weakening the Biological Pump?";
    String projects_0_project_nid "2201";
    String projects_0_project_website "http://www.msi.ucsb.edu/people/research-scientists/uta-passow";
    String projects_0_start_date "2009-09";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 34.4126;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "Lab_Id,latitude,longitude";
    String summary 
"Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2,
temperature and bacteria: Acclimatisation Phase - Cell Counts
 
Related Reference:  
[Aggregation and Sedimentation of Thalassiosira weissflogii (diatom) in a
Warmer and More Acidified Future
Ocean](\\\\http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0112379\\\\)";
    String title "[Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature and bacteria: Acclimatization Phase - Cell Counts] - Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature and bacteria - Acclimatization Phase - Cell Counts from UCSB MSI Passow Lab from 2009 to 2010 (OA - Ocean Acidification and Aggregation project) (Will Ocean Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus Weakening the Biological Pump? )";
    String version "1";
    Float64 Westernmost_Easting -119.842;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact