BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Dataset Title: | [Dissolved O2 and Potential Density] - Dissolved oxygen and potential density measurements from the R/V Atlantis, R/V Ronald Brown, & E/V Nautilus in the Gulf of Mexico & Florida from 2010-2014 (Lophelia OA project) (Physiological and genetic responses of the deep-water coral, Lophelia pertusa, to ongoing ocean acidification in the Gulf of Mexico) |
Institution: | BCO-DMO (Dataset ID: bcodmo_dataset_659040) |
Information: | Summary | License | FGDC | ISO 19115 | Metadata | Background | Files | Make a graph |
Attributes { s { year { Int16 _FillValue 32767; Int16 actual_range 2010, 2014; String bcodmo_name "year"; String description "Year of cruise; YYYY"; String long_name "Year"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/YEARXXXX/"; String units "unitless"; } cruise_id { String bcodmo_name "cruise_id"; String description "Official cruise identification"; String long_name "Cruise Id"; String units "unitless"; } cruise_name { String bcodmo_name "Cruise Name"; String description "Project investigator's cruise name"; String long_name "Cruise Name"; String units "unitless"; } site { String bcodmo_name "site"; String description "Site where samples were taken"; String long_name "Site"; String units "unitless"; } latitude { String _CoordinateAxisType "Lat"; Float64 _FillValue NaN; Float64 actual_range 27.42, 29.16; String axis "Y"; String bcodmo_name "latitude"; Float64 colorBarMaximum 90.0; Float64 colorBarMinimum -90.0; String description "Latitude"; String ioos_category "Location"; String long_name "Latitude"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/"; String standard_name "latitude"; String units "degrees_north"; } longitude { String _CoordinateAxisType "Lon"; Float64 _FillValue NaN; Float64 actual_range -93.6, -88.02; String axis "X"; String bcodmo_name "longitude"; Float64 colorBarMaximum 180.0; Float64 colorBarMinimum -180.0; String description "Longitude"; String ioos_category "Location"; String long_name "Longitude"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/"; String standard_name "longitude"; String units "degrees_east"; } depth { String _CoordinateAxisType "Height"; String _CoordinateZisPositive "down"; Float64 _FillValue NaN; Float64 actual_range 0.382, 649.615; String axis "Z"; String bcodmo_name "depth"; Float64 colorBarMaximum 8000.0; Float64 colorBarMinimum -8000.0; String colorBarPalette "TopographyDepth"; String description "Depth at which sample was taken"; String ioos_category "Location"; String long_name "Depth"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/"; String positive "down"; String standard_name "depth"; String units "m"; } temperature { Float32 _FillValue NaN; Float32 actual_range 1.005, 553.714; String bcodmo_name "temperature"; String description "Temperature at depth"; String long_name "Temperature"; String units "celsius"; } salinity { Float32 _FillValue NaN; Float32 actual_range 23.697, 36.983; String bcodmo_name "sal"; Float64 colorBarMaximum 37.0; Float64 colorBarMinimum 32.0; String description "Salinity of water sample"; String long_name "Sea Water Practical Salinity"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PSALST01/"; String units "practical salinity units (PSU)"; } potential_density { Float32 _FillValue NaN; Float32 actual_range 14.239, 27.393; String bcodmo_name "sigma-t"; String description "Sigma-t density of seawater"; String long_name "Potential Density"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/SIGTEQST/"; String units "kilogram per cubic meter (kg/m^3)"; } DO { Float32 _FillValue NaN; Float32 actual_range 68.982, 262.097; String bcodmo_name "O2_umol_kg"; String description "Dissolved oxygen concentration"; String long_name "DO"; String units "micromoles per kilogram (umol/kg)"; } } NC_GLOBAL { String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson"; String acquisition_description "CTD data (temperature, salinity, pressure, and dissolved oxygen) were collected both as water column data from ship deployments and as bottom\\u2013water data from a vehicle\\u2013mounted CTD. In all years, a SBE 9/11+ CTD was used for water column measurements, while vehicle-mounted CTD usage varied by year: SBE 19 (2010), SBE 37-SI (2012), and SBE 49 (2013, 2014). All dissolved oxygen measurements were collected using a SBE 43 dissolved oxygen sensor.\\u00a0"; String awards_0_award_nid "54992"; String awards_0_award_number "OCE-1220478"; String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward?AWD_ID=1220478"; String awards_0_funder_name "NSF Division of Ocean Sciences"; String awards_0_funding_acronym "NSF OCE"; String awards_0_funding_source_nid "355"; String awards_0_program_manager "David L. Garrison"; String awards_0_program_manager_nid "50534"; String cdm_data_type "Other"; String comment "Dissolved O2 Potential Density E. Cordes & R. Kulathinal, PIs Version 16 September 2016"; String Conventions "COARDS, CF-1.6, ACDD-1.3"; String creator_email "info@bco-dmo.org"; String creator_name "BCO-DMO"; String creator_type "institution"; String creator_url "https://www.bco-dmo.org/"; String data_source "extract_data_as_tsv version 2.3 19 Dec 2019"; String date_created "2016-09-19T18:38:56Z"; String date_modified "2019-06-11T19:39:14Z"; String defaultDataQuery "&time<now"; String doi "10.1575/1912/bco-dmo.659040.1"; Float64 Easternmost_Easting -88.02; Float64 geospatial_lat_max 29.16; Float64 geospatial_lat_min 27.42; String geospatial_lat_units "degrees_north"; Float64 geospatial_lon_max -88.02; Float64 geospatial_lon_min -93.6; String geospatial_lon_units "degrees_east"; Float64 geospatial_vertical_max 649.615; Float64 geospatial_vertical_min 0.382; String geospatial_vertical_positive "down"; String geospatial_vertical_units "m"; String history "2024-11-23T17:12:53Z (local files) 2024-11-23T17:12:53Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_659040.html"; String infoUrl "https://www.bco-dmo.org/dataset/659040"; String institution "BCO-DMO"; String instruments_0_acronym "CTD"; String instruments_0_dataset_instrument_description "Water samples taken from CTD casts"; String instruments_0_dataset_instrument_nid "659050"; String instruments_0_description "The Conductivity, Temperature, Depth (CTD) unit is an integrated instrument package designed to measure the conductivity, temperature, and pressure (depth) of the water column. The instrument is lowered via cable through the water column and permits scientists observe the physical properties in real time via a conducting cable connecting the CTD to a deck unit and computer on the ship. The CTD is often configured with additional optional sensors including fluorometers, transmissometers and/or radiometers. It is often combined with a Rosette of water sampling bottles (e.g. Niskin, GO-FLO) for collecting discrete water samples during the cast. This instrument designation is used when specific make and model are not known."; String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/130/"; String instruments_0_instrument_name "CTD profiler"; String instruments_0_instrument_nid "417"; String instruments_0_supplied_name "CTD"; String instruments_1_acronym "Dissolved Oxygen Sensor"; String instruments_1_dataset_instrument_description "All dissolved oxygen measurements collected using this instrument"; String instruments_1_dataset_instrument_nid "659054"; String instruments_1_description "An electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analyzed"; String instruments_1_instrument_name "Dissolved Oxygen Sensor"; String instruments_1_instrument_nid "705"; String instruments_1_supplied_name "SBE 43 dissolved oxygen sensor"; String instruments_2_acronym "Bottle"; String instruments_2_dataset_instrument_description "Water samples collected by vehicle-mounted bottle"; String instruments_2_dataset_instrument_nid "659051"; String instruments_2_description "A container, typically made of glass or plastic and with a narrow neck, used for storing drinks or other liquids."; String instruments_2_instrument_name "Bottle"; String instruments_2_instrument_nid "542498"; String instruments_2_supplied_name "Vehicle mounted bottle"; String keywords "bco, bco-dmo, biological, chemical, cruise, cruise_id, cruise_name, data, dataset, density, depth, dmo, earth, Earth Science > Oceans > Salinity/Density > Salinity, erddap, latitude, longitude, management, name, ocean, oceanography, oceans, office, potential, potential_density, practical, preliminary, salinity, science, sea, sea_water_practical_salinity, seawater, site, temperature, water, year"; String keywords_vocabulary "GCMD Science Keywords"; String license "https://www.bco-dmo.org/dataset/659040/license"; String metadata_source "https://www.bco-dmo.org/api/dataset/659040"; Float64 Northernmost_Northing 29.16; String param_mapping "{'659040': {'lat': 'master - latitude', 'depth': 'flag - depth', 'lon': 'master - longitude'}}"; String parameter_source "https://www.bco-dmo.org/mapserver/dataset/659040/parameters"; String people_0_affiliation "Temple University"; String people_0_affiliation_acronym "Temple"; String people_0_person_name "Erik E Cordes"; String people_0_person_nid "51539"; String people_0_role "Principal Investigator"; String people_0_role_type "originator"; String people_1_affiliation "Temple University"; String people_1_affiliation_acronym "Temple"; String people_1_person_name "Erik E Cordes"; String people_1_person_nid "51539"; String people_1_role "Contact"; String people_1_role_type "related"; String people_2_affiliation "Woods Hole Oceanographic Institution"; String people_2_affiliation_acronym "WHOI BCO-DMO"; String people_2_person_name "Hannah Ake"; String people_2_person_nid "650173"; String people_2_role "BCO-DMO Data Manager"; String people_2_role_type "related"; String project "Lophelia OA"; String projects_0_acronym "Lophelia OA"; String projects_0_description "The Gulf of Mexico deep water ecosystems are threatened by the persistent threat of ocean acidification. Deep-water corals will be among the first to feel the effects of this process, in particular the deep-water scleractinians that form their skeleton from aragonite. The continued shoaling of the aragonite saturation horizon (the depth below which aragonite is undersaturated) will place many of the known, and as yet undiscovered, deep-water corals at risk in the very near future. The most common deep-water framework-forming scleractinian in the world's oceans is Lophelia pertusa. This coral is most abundant in the North Atlantic, where aragonite saturation states are relatively high, but it also creates extensive reef structures between 300 and 600 m depth in the Gulf of Mexico where aragonite saturation states were previously unknown. Preliminary data indicate that pH at this depth range is between 7.85 and 8.03, and the aragonite saturation state is typically between 1.28 and 1.69. These are the first measurements of aragonite saturation state for the deep Gulf of Mexico, and are among the lowest Aragonite saturation state yet recorded for framework-forming corals in any body of water, at any depth. This project will examine the effects of ocean acidification on L. pertusa, combining laboratory experiments, rigorous oceanographic measurements, the latest genome and transcriptome sequencing platforms, and quantitative PCR and enzyme assays to examine changes in coral gene expression and enzyme activity related to differences in carbonate chemistry. Short-term and long-term laboratory experiments will be performed at Aragonite saturation state of 1.45 and 0.75 and the organismal (e.g., survivorship and calcification rate) and genetic (e.g., transcript abundance) responses of the coral will be monitored. Genomic DNA and RNA will be extracted, total mRNA purified, and comprehensive and quantitative profiles of the transcriptome generated using a combination of 454 and Illumina sequencing technologies. Key genes in the calcification pathways as well as other differentially expressed genes will be targeted for specific qPCR assays to verify the Illumina sequencing results. On a research cruise, L. pertusa will be sampled (preserved at depth) along a natural gradient in carbonate chemistry, and included in the Illumina sequencing and qPCR assays. Water samples will be obtained by submersible-deployed niskin bottles adjacent to the coral collections as well as CTD casts of the water column overlying the sites. Water samples will be analyzed for pH, alkalinity, nitrates and soluble reactive phosphorus. These will be used in combination with historical data in a model to hindcast Aragonite saturation state. This project will provide new physiological and genetic data on an ecologically-significant and anthropogenically-threatened deepwater coral in the Gulf of Mexico. An experimental system, already developed by the PIs, offers controlled conditions to test the effect of Aragonite saturation state on calcification rates in scleractinians and, subsequently, to identify candidate genes and pathways involved in the response to reduced pH and Aragonite saturation state. Both long-term and population sampling experiments will provide additional transcriptomic data and specifically investigate the expression of the candidate genes. These results will contribute to our understanding of the means by which scleractinians may acclimate and acclimatize to low pH, alkalinity, and Aragonite saturation state. Furthermore, the investigators will continue a time series of oceanographic measurements of the carbonate system in the Gulf of Mexico, which will allow the inclusion of this significant body of water in models of past and future ocean acidification scenarios."; String projects_0_end_date "2015-08"; String projects_0_geolocation "Northern Gulf of Mexico"; String projects_0_name "Physiological and genetic responses of the deep-water coral, Lophelia pertusa, to ongoing ocean acidification in the Gulf of Mexico"; String projects_0_project_nid "2224"; String projects_0_start_date "2012-09"; String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)"; String publisher_type "institution"; String sourceUrl "(local files)"; Float64 Southernmost_Northing 27.42; String standard_name_vocabulary "CF Standard Name Table v55"; String summary "Dissolved oxygen and potential density measurements from the R/V Atlantis, R/V Ronald Brown, & E/V Nautilus in the Gulf of Mexico & Florida from 2010-2014 (Lophelia OA project)"; String title "[Dissolved O2 and Potential Density] - Dissolved oxygen and potential density measurements from the R/V Atlantis, R/V Ronald Brown, & E/V Nautilus in the Gulf of Mexico & Florida from 2010-2014 (Lophelia OA project) (Physiological and genetic responses of the deep-water coral, Lophelia pertusa, to ongoing ocean acidification in the Gulf of Mexico)"; String version "1"; Float64 Westernmost_Easting -93.6; String xml_source "osprey2erddap.update_xml() v1.3"; } }
The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.
Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names,
followed by a collection of
constraints (e.g., variable<value),
each preceded by '&' (which is interpreted as "AND").
For details, see the tabledap Documentation.