BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Size-fractionated major and minor particle composition and concentration
collected from RV Thompson (TN303) along the US GEOTRACES EPZT transect in the
Eastern Tropical Pacific during 2013 (US GEOTRACES EPZT project)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_668083)
Range: longitude = -151.99951 to -77.376°E, latitude = -15.999333 to -10.5004°N, time = 2013-10-29T07:15:00Z to 2013-12-18T12:13:00Z
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  cruise_id {
    String bcodmo_name "cruise_id";
    String description "cruise ID";
    String long_name "Cruise Id";
    String units "unitless";
  }
  STNNBR {
    Byte _FillValue 127;
    Byte actual_range 1, 36;
    String bcodmo_name "station";
    String description "Station number";
    String long_name "STNNBR";
    String units "unitless";
  }
  GEOTRC_SAMPNO {
    Int16 _FillValue 32767;
    Int16 actual_range 2083, 10457;
    String bcodmo_name "sample";
    String description "GEOTRACES number - uniquely identifies all samples from that pump";
    String long_name "GEOTRC SAMPNO";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/ACYC/";
    String units "unitless";
  }
  GEOTRC_EVENTNO {
    Int16 _FillValue 32767;
    Int16 actual_range 4013, 4475;
    String bcodmo_name "event";
    String description "GEOTRACES event number";
    String long_name "GEOTRC EVENTNO";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/EVTAGFL/";
    String units "unitless";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.3830309e+9, 1.38736878e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "Date and time of the midpoint of pumping";
    String ioos_category "Time";
    String long_name "ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "ISO_DateTime_UTC";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  CASTNO {
    Byte _FillValue 127;
    Byte actual_range 3, 16;
    String bcodmo_name "cast";
    String description "Cast number";
    String long_name "CASTNO";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range -15.99933333, -10.5004;
    String axis "Y";
    String bcodmo_name "latitude";
    String description "Latitude of pump cast; N is positive";
    String ioos_category "Location";
    String long_name "PUMP LAT";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -151.9995167, -77.376;
    String axis "X";
    String bcodmo_name "longitude";
    String description "Longitude of pump cast; E is positive";
    String ioos_category "Location";
    String long_name "PUMP LON";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  BTMDEPTH {
    Int16 _FillValue 32767;
    Int16 actual_range 122, 5523;
    String bcodmo_name "depth_bottom";
    String description "Water depth at time of cast";
    String long_name "BTMDEPTH";
    String units "meters";
  }
  DEPTH_MAX {
    Int16 _FillValue 32767;
    Int16 actual_range 15, 5500;
    String bcodmo_name "depth_max";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Final depth of pump sample";
    String long_name "Depth";
    String standard_name "depth";
    String units "meters";
  }
  sliters {
    Float64 _FillValue NaN;
    Float64 actual_range 9.4, 754.6;
    String bcodmo_name "vol_filt";
    String description "Volume pumped through the filter holder containing paired Supor filters";
    String long_name "Sliters";
    String units "liters";
  }
  Y_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.010632266, 6.627215278;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate yttrium determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Y SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Mo_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.232037803, 40.41737604;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate molybdenum determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Mo SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Ag_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.11139228, 10.51883533;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate silver determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Ag SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Cd_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.001728211, 110.3192594;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate cadmium determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Cd SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Ba_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 518.2186498;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate barium determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Ba SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Nd_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.002987236, 1.716258076;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate neodymium determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Nd SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Pb_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.010946226, 4.303503248;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate lead determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Pb SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Th_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.083024889, 0.440232686;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate thorium determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Th SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Al_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.986535106, 28290.52015;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate aluminium determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Al SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  P_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 88.88749157, 377356.8738;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate phosphorus determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "P SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Sc_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.003311172, 3.362908903;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate scandium determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Sc SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Ti_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -3.345409268, 1138.631174;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate titanium determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Ti SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  V_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.092670278, 169.1380453;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate vanadium determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "V SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Mn_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 1.332998584, 4153.231866;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate manganese determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Mn SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Fe_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 12.19212229, 34630.70571;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate iron determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Fe SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Co_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.055850165, 14.40346331;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate cobalt determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Co SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Ni_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 284.4110585;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate nickel determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Ni SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Cu_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 2.810439384, 129.8926384;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate copper determined by in situ filtration (pump) collected on a main filter (small particles)";
    String long_name "Cu SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Y_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Y SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Mo_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Mo SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Ag_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ag SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Cd_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Cd SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Ba_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 4, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ba SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Nd_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Nd SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Pb_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Pb SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Th_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Th SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Al_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Al SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  P_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "P SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Sc_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Sc SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Ti_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ti SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  V_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "V SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Mn_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Mn SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Fe_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Fe SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Co_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Co SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Ni_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ni SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Cu_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Cu SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Y_SPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0273, 6.543799;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Y SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Mo_SPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.106801, 2.60889;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Mo SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Ag_SPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0598, 2.381829;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ag SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Cd_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0183, 10.079994;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Cd SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Ba_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.815978, 157.186273;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ba SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Nd_SPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.00386, 0.326352;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Nd SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Pb_SPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0371, 4.381805;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Pb SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Th_SPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.00993, 0.175067;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Th SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Al_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 25.17635, 5047.637578;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Al SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  P_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 47.129312, 41373.54062;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "P SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Sc_SPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.00801, 0.620008;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Sc SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Ti_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 3.1033, 121.591304;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ti SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  V_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.102905, 33.145315;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "V SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Mn_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.70234, 143.184533;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Mn SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Fe_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 26.402595, 1864.371197;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Fe SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Co_SPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0401, 1.075589;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Co SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Ni_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.758992, 32.343388;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ni SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Cu_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 1.291313, 28.064299;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Cu SPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  qliters {
    Float32 _FillValue NaN;
    Float32 actual_range 41.4, 1326.3;
    String bcodmo_name "vol_filt";
    String description "Volume pumped through the filter holder containing paired QMA filters";
    String long_name "Qliters";
    String units "liters";
  }
  Y_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.003821154, 20.8049551;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Y determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Y LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Mo_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.598050749, 468.1171218;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Mo determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Mo LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Ag_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.036779882, 1.124081527;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Ag determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Ag LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Cd_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.007294399, 35.85726509;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Cd determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Cd LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Ba_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.254663553, 285.800896;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Ba determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Ba LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Nd_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.431811414, 9.488955089;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Nd determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Nd LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Pb_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.020240408, 69.24626579;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Pb determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Pb LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Th_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.001247824, 1.612046988;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Th determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Th LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Al_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -15.63561282, 105966.0007;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Al determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Al LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  P_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 2.116238152, 32139.54343;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Pb determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "P LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Sc_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -8.03e-6, 10.1307023;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Sc determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Sc LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Ti_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.40001901, 3030.509478;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Ti determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Ti LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  V_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -1.373755913, 93.61281314;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate V determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "V LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Mn_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.039102095, 2403.499381;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Mn determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Mn LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Fe_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -2.438349889, 16978.77279;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Fe determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Fe LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Co_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -0.12967661, 7.915124907;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Co determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Co LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Ni_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -5.832084992, 754.5313865;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Ni determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Ni LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Cu_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range -12.09519266, 60.0229858;
    String bcodmo_name "trace_metal_conc";
    String description "Concentration of total particulate Cu determined by in situ filtration (pump) collected on a prefilter (large particles)";
    String long_name "Cu LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "picomole per liter";
  }
  Y_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Y LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Mo_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Mo LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Ag_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 4, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ag LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Cd_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Cd LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Ba_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 4, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ba LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Nd_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Nd LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Pb_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Pb LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Th_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Th LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Al_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Al LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  P_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "P LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Sc_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Sc LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Ti_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ti LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  V_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "V LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Mn_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Mn LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Fe_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Fe LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Co_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Co LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Ni_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ni LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Cu_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Cu LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  Y_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.034450961, 1.103678985;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Y LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Mo_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.071137863, 936.2238737;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Mo LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Ag_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.173719982, 5.565333633;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ag LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Cd_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0052872, 0.95672756;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Cd LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Ba_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.33511148, 10.73570908;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ba LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Nd_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.011441901, 0.366555391;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Nd LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Pb_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.022386515, 0.717179586;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Pb LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Th_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 7.46321e-4, 0.023909328;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Th LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Al_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 12.67053274, 405.9161248;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Al LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  P_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 6.563449233, 210.2681816;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "P LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Sc_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.002821206, 0.090380814;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Sc LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Ti_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 2.788872631, 89.3449703;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ti LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  V_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.052679795, 1.68766214;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "V LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Mn_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 1.998263983, 64.01684833;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Mn LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Fe_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 11.85806594, 379.8877503;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Fe LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Co_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.020157941, 0.645784482;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Co LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Ni_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 1.001298023, 32.07781565;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ni LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  Cu_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.872833287, 27.96228958;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Cu LPT CONC PUMP STDEV";
    String units "picomole per liter";
  }
  POM_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 212.014368;
    String bcodmo_name "Particulate Organic Material";
    String description "Particulate organic matter derived from POC for small particles";
    String long_name "POM SPT CONC PUMP";
    String units "ug/L";
  }
  POM_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.369984, 11.868816;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "POM SPT CONC PUMP STDEV";
    String units "ug/L";
  }
  OPAL_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 72.504768;
    String bcodmo_name "Si";
    String description "Opal (hydrated amorphous silica) derived from bSi for small particles";
    String long_name "OPAL SPT CONC PUMP";
    String units "ug/L";
  }
  OPAL_SPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.04032, 1.687392;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "OPAL SPT CONC PUMP STDEV";
    String units "ug/L";
  }
  CaCO3_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 26.5942584;
    String bcodmo_name "CaCO3";
    String description "Calcium carbonate derived from PIC for small particles";
    String long_name "Ca CO3 SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CACO3SED/";
    String units "ug/L";
  }
  CaCO3_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range -1.9555632, 26.5942584;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ca CO3 SPT CONC PUMP STDEV";
    String units "ug/L";
  }
  LITHO_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 9.500547812;
    String bcodmo_name "Al";
    String description "Lithogenic particles derived from Al concentrations using a UCC Al composition for small particles";
    String long_name "LITHO SPT CONC PUMP";
    String units "ug/L";
  }
  LITHO_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.008454744, 1.695102172;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "LITHO SPT CONC PUMP STDEV";
    String units "ug/L";
  }
  FeOH3_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 3.695599318;
    String bcodmo_name "Fe";
    String description "Fe oxyhydroxides derived from Fe and using Al to subtract lithogenic component for small particles";
    String long_name "Fe OH3 SPT CONC PUMP";
    String units "ug/L";
  }
  FeOH3_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.002878787, 0.199304945;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Fe OH3 SPT CONC PUMP STDEV";
    String units "ug/L";
  }
  MnO2_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 0.360858704;
    String bcodmo_name "trace_metal_conc";
    String description "Mn oxides derived from Mn and using Al to subtract lithogenic component for small particles";
    String long_name "Mn O2 SPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "ug/L";
  }
  MnO2_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 8.09e-5, 0.012442747;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Mn O2 SPT CONC PUMP STDEV";
    String units "ug/L";
  }
  POM_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 75.456432;
    String bcodmo_name "Particulate Organic Material";
    String description "Particulate organic matter derived from POC for large particles";
    String long_name "POM LPT CONC PUMP";
    String units "ug/L";
  }
  POM_LPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.015792, 0.59784;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "POM LPT CONC PUMP STDEV";
    String units "ug/L";
  }
  OPAL_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 51.97248;
    String bcodmo_name "Si";
    String description "Opal (hydrated amorphous silica) derived from bSi for large particles";
    String long_name "OPAL LPT CONC PUMP";
    String units "ug/L";
  }
  OPAL_LPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 0.04032, 1.284192;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "OPAL LPT CONC PUMP STDEV";
    String units "ug/L";
  }
  CaCO3_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0080064, 5.8416696;
    String bcodmo_name "CaCO3";
    String description "Calcium carbonate derived from PIC for large particles";
    String long_name "Ca CO3 LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CACO3SED/";
    String units "ug/L";
  }
  CaCO3_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0080064, 5.8416696;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Ca CO3 LPT CONC PUMP STDEV";
    String units "ug/L";
  }
  LITHO_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 35.58559725;
    String bcodmo_name "Al";
    String description "Lithogenic particles derived from Al concentrations using a UCC Al composition for large particles";
    String long_name "LITHO LPT CONC PUMP";
    String units "ug/L";
  }
  LITHO_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.00425503, 0.136315117;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "LITHO LPT CONC PUMP STDEV";
    String units "ug/L";
  }
  FeOH3_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 1.016726132;
    String bcodmo_name "Fe";
    String description "Fe oxyhydroxides derived from Fe and using Al to subtract lithogenic component for large particles";
    String long_name "Fe OH3 LPT CONC PUMP";
    String units "ug/L";
  }
  FeOH3_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.001299326, 0.041625513;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Fe OH3 LPT CONC PUMP STDEV";
    String units "ug/L";
  }
  MnO2_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 0.208839956;
    String bcodmo_name "trace_metal_conc";
    String description "Mn oxides derived from Mn and using Al to subtract lithogenic component for large particles";
    String long_name "Mn O2 LPT CONC PUMP";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P03/current/C035/";
    String units "ug/L";
  }
  MnO2_LPT_CONC_PUMP_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 1.73696e-4, 0.00556457;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "Mn O2 LPT CONC PUMP STDEV";
    String units "ug/L";
  }
  SPM_SPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.799725511, 118.74427;
    String bcodmo_name "SPM";
    String description "Suspended particulate matter derived from POM; OPAL; CaCO3; LITHO; FeOH3; MnO2 in small particles";
    String long_name "SPM SPT CONC PUMP";
    String units "ug/L";
  }
  SPM_SPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.443086028, 18.22216782;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "SPM SPT CONC PUMP STDEV";
    String units "ug/L";
  }
  SPM_LPT_CONC_PUMP {
    Float64 _FillValue NaN;
    Float64 actual_range 0.281964179, 129.1557997;
    String bcodmo_name "SPM";
    String description "Suspended particulate matter derived from POM; OPAL; CaCO3; LITHO; FeOH3; MnO2 in large particles";
    String long_name "SPM LPT CONC PUMP";
    String units "ug/L";
  }
  SPM_LPT_CONC_PUMP_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.05747025, 5.842019307;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "SPM LPT CONC PUMP STDEV";
    String units "ug/L";
  }
  POM_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "POM SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  OPAL_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 4;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "OPAL SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  CaCO3_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 4;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ca CO3 SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  LITHO_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "LITHO SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  FeOH3_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Fe OH3 SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  MnO2_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Mn O2 SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  SPM_SPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "SPM SPT CONC PUMP QV ODV";
    String units "unitless";
  }
  POM_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "POM LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  OPAL_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 4;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "OPAL LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  CaCO3_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 0;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Ca CO3 LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  LITHO_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "LITHO LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  FeOH3_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Fe OH3 LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  MnO2_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "Mn O2 LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  SPM_LPT_CONC_PUMP_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "SPM LPT CONC PUMP QV ODV";
    String units "unitless";
  }
  PIC_SPT_PUMP_CONC {
    Float64 _FillValue NaN;
    Float64 actual_range -0.019538597, 0.265733349;
    String bcodmo_name "PIC";
    String description "Particulate inorganic carbon in small particles";
    String long_name "PIC SPT PUMP CONC";
    String units "umol C/L";
  }
  PIC_LPT_PUMP_CONC {
    Float64 _FillValue NaN;
    Float64 actual_range 7.84e-5, 0.058369347;
    String bcodmo_name "PIC";
    String description "Particulate inorganic carbon in large particles";
    String long_name "PIC LPT PUMP CONC";
    String units "umol C/L";
  }
  PIC_SPT_PUMP_CONC_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.001817713, 0.058232689;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "PIC SPT PUMP CONC STDEV";
    String units "umol C/L";
  }
  PIC_LPT_PUMP_CONC_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 2.1129e-4, 0.00791868;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "PIC LPT PUMP CONC STDEV";
    String units "umol C/L";
  }
  bSi_SPT_PUMP_CONC {
    Float64 _FillValue NaN;
    Float64 actual_range -3.608075913, 1078.944693;
    String bcodmo_name "Si";
    String description "Biogenic silica in small particles";
    String long_name "B Si SPT PUMP CONC";
    String units "nmol Si/L";
  }
  bSi_LPT_PUMP_CONC {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 773.4025085;
    String bcodmo_name "Si";
    String description "Biogenic silica in large particles";
    String long_name "B Si LPT PUMP CONC";
    String units "nmol Si/L";
  }
  bSi_SPT_PUMP_CONC_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.598043785, 25.10638298;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "B Si SPT PUMP CONC STDEV";
    String units "nmol Si/L";
  }
  bSi_LPT_PUMP_CONC_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.596395989, 19.10628019;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "B Si LPT PUMP CONC STDEV";
    String units "nmol Si/L";
  }
  POC_LPT_PUMP_CONC {
    Float64 _FillValue NaN;
    Float64 actual_range -0.011602896, 3.344670505;
    String bcodmo_name "POC";
    String description "Particulate organic carbon in large particles";
    String long_name "POC LPT PUMP CONC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGCAP1/";
    String units "umol C/L";
  }
  POC_LPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "POC LPT PUMP CONC QV ODV";
    String units "unitless";
  }
  PN_LPT_PUMP_CONC {
    Float64 _FillValue NaN;
    Float64 actual_range -6.08449e-4, 0.485294869;
    String bcodmo_name "PON";
    String description "Particulate nitrogen in large particles";
    String long_name "PN LPT PUMP CONC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/MDMAP013/";
    String units "umol N/L";
  }
  PN_LPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "PN LPT PUMP CONC QV ODV";
    String units "unitless";
  }
  POC_SPT_PUMP_CONC {
    Float64 _FillValue NaN;
    Float64 actual_range -0.032873209, 9.397806569;
    String bcodmo_name "POC";
    String description "Particulate organic carbon in small particles";
    String long_name "POC SPT PUMP CONC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGCAP1/";
    String units "umol C/L";
  }
  POC_SPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "POC SPT PUMP CONC QV ODV";
    String units "unitless";
  }
  PN_SPT_PUMP_CONC {
    Float64 _FillValue NaN;
    Float64 actual_range -0.008268217, 1.464031478;
    String bcodmo_name "PON";
    String description "Particulate nitrogen in small particles";
    String long_name "PN SPT PUMP CONC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/MDMAP013/";
    String units "umol N/L";
  }
  PN_SPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "PN SPT PUMP CONC QV ODV";
    String units "unitless";
  }
  d13C_LPT_PUMP_CONC_raw {
    Float32 _FillValue NaN;
    Float32 actual_range -28.3743, -16.5088;
    String bcodmo_name "dC13_POM";
    String description "particulate C-13 isotopic composition; raw; large particles";
    String long_name "D13 C LPT PUMP CONC Raw";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/D13CMOPC/";
    String units "permil";
  }
  d13C_LPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 1, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "D13 C LPT PUMP CONC QV ODV";
    String units "unitless";
  }
  d15N_LPT_PUMP_CONC_raw {
    Float32 _FillValue NaN;
    Float32 actual_range -3.8074, 16.2411;
    String bcodmo_name "dN15_POM";
    String description "particulate N-15 isotopic compostion; raw; large particles";
    String long_name "D15 N LPT PUMP CONC Raw";
    String units "permil";
  }
  d15N_LPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "D15 N LPT PUMP CONC QV ODV";
    String units "unitless";
  }
  d13C_LPT_PUMP_CONC_dbcorr {
    Float64 _FillValue NaN;
    Float64 actual_range -77.64586664, 4.824692391;
    String bcodmo_name "dC13_POM";
    String description "Particulate C-13 isotopic composition; corrected for blank Delta13C; large particles";
    String long_name "D13 C LPT PUMP CONC Dbcorr";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/D13CMOPC/";
    String units "permil";
  }
  d13C_LPT_PUMP_CONC_dbcorr_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 1, 8;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "D13 C LPT PUMP CONC Dbcorr QV ODV";
    String units "unitless";
  }
  d15N_LPT_PUMP_CONC_dbcorr {
    Float64 _FillValue NaN;
    Float64 actual_range -46.77847035, 120.6466739;
    String bcodmo_name "dN15_POM";
    String description "Particulate N-15 isotopic composition; corrected for blank Delta15N; large particles";
    String long_name "D15 N LPT PUMP CONC Dbcorr";
    String units "permil";
  }
  d15N_LPT_PUMP_CONC_dbcorr_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "D15 N LPT PUMP CONC Dbcorr QV ODV";
    String units "unitless";
  }
  POC_LPT_PUMP_CONC_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 6.60147e-4, 0.02649718;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "POC LPT PUMP CONC STDEV";
    String units "umol C/L";
  }
  POC_SPT_PUMP_CONC_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0164227, 0.526121422;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "POC SPT PUMP CONC STDEV";
    String units "umol C/L";
  }
  PN_LPT_PUMP_CONC_STDEV {
    Float32 _FillValue NaN;
    Float32 actual_range 1.69542e-4, 0.00680511;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "PN LPT PUMP CONC STDEV";
    String units "umol N/L";
  }
  PN_SPT_PUMP_CONC_STDEV {
    Float64 _FillValue NaN;
    Float64 actual_range 0.00459805, 0.147304183;
    String bcodmo_name "standard deviation";
    String description "Error estimate";
    String long_name "PN SPT PUMP CONC STDEV";
    String units "umol N/L";
  }
  PIC_SPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 4;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "PIC SPT PUMP CONC QV ODV";
    String units "unitless";
  }
  PIC_LPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 0;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "PIC LPT PUMP CONC QV ODV";
    String units "unitless";
  }
  bSi_SPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 4;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "B Si SPT PUMP CONC QV ODV";
    String units "unitless";
  }
  bSi_LPT_PUMP_CONC_QV_ODV {
    Byte _FillValue 127;
    Byte actual_range 0, 4;
    String bcodmo_name "q_flag";
    String description "Quality control flag; following the ODV convention";
    String long_name "B Si LPT PUMP CONC QV ODV";
    String units "unitless";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"1\\. Sampling:
 
Size-fractionated particles were collected using McLane Research in-situ pumps
(WTS-LV) that had been modified to accommodate two flowpaths (Ohnemus and Lam,
2015). \\u00a0Typically, two casts of 8 pumps each and two filter holders per
pump were deployed to collect a 16-depth profile. \\u00a0At superstations,
three casts were deployed to collect a 24-depth profile. \\u00a0The wire-out
was used to target nominal depths during deployment. A self-recording Seabird
19plus CTD was deployed at the end of the line and used to verify target
depths.\\u00a0
 
Filter holders used were 142 mm-diameter \\u201cmini-MULVFS\\u201d style filter
holders with two stages for two size fractions and multiple baffle systems
designed to ensure even particle distribution and prevent particle loss
(Bishop et al., 2012). \\u00a0One filter holder/flowpath was loaded with a 51um
Sefar polyester mesh prefilter followed by paired Whatman QMA quartz fiber
filters. The other filter holder/flowpath was also loaded with a 51um
prefilter, but followed by paired 0.8um Pall Supor800 polyethersulfone
filters. All filters and filter holders were acid leached prior to use
according to methods recommended in the GEOTRACES sample and sample-handing
Protocols (GEOTRACES, 2010). \\u00a0QMA filters were additionally precombusted
at 450 deg C for four hours.
 
Each cast also had a full set of \\u201cdipped blank\\u201d filters deployed.
\\u00a0In the first half of the cruise, these were the full filters sets (51 um
prefilter followed by paired QMA or paired Supor filters) loaded in mini-
MULVFS filter holders that were mounted on a pump with a specially designed
dipped blank plate to accommodate two extra filter holders not connected to
the pump. \\u00a0A 0.2 um Supor prefilter above the filter set excluded any
particles that may have been present in seawater in the filter holder
headspace. \\u00a0At station 21, the specially designed plate (along with the
filter holders) was lost at sea when the ship lost power, so subsequent dipped
blank filters were the full filter sets sandwiched within a 1um polyester mesh
filter, loaded into acid-leached perforated polypropylene containers, and
attached with plastic cable ties to a pump frame, and deployed. \\u00a0All
dipped blank filters were exposed to seawater for the length of the deployment
and processed and analyzed as regular samples, and thus functioned as full
seawater process blanks. \\u00a0A total of 58 dipped blank filter sets were
collected and used for blank subtraction and determination of uncertainty and
detection limit (Table 1).
 
In this dataset, data reported from the 51um prefilter are referred to with a
LPT suffix to indicate large particulate total concentrations (>51um); data
reported from the main filters (QMA\\u20141-51um\\u2014or Supor\\u20140.8 um-
51um) are from the top filter of the pair only, and are referred to with a SPT
suffix to indicate the small particulate total concentrations.
 
2\\. Analytical Methodology and Data Processing:\\u00a0
 
For all parameters described below, the median dipped blank value (Table 1)
was subtracted. \\u00a0For most parameters, we could not routinely run
replicates, so the reported error is determined from the standard deviation of
dipped blank filters (Table 1), converted to concentrations using volume
filtered. \\u00a0This assumes that the blank subtraction is the largest source
of error. \\u00a0The detection limit was defined as three times the standard
deviation of the dipped blank filters. \\u00a0Values below the detection limit
were flagged as QF=4. The percentage of all samples that fell below the
detection limit is listed in Table 1 for each parameter and size fraction.
\\u00a0Any variations on the methods for blank subtraction or determination of
error are further described for each parameter, as necessary.
 
2.1. Biogenic Silica and Opal
 
2.1.1 Analytical methodology for biogenic silica
 
A 1/16 subsample of the top 0.8um Supor filter, equivalent to ~30L, or of the
51um polyester prefilter above the QMA filter, equivalent to ~60L, was
analyzed for amorphous/biogenic Si concentrations using spectrophotometric
detection of the blue silico-molydate complex following an alkaline (0.2M
NaOH) leach at 85 deg C. \\u00a0Some initial stations were run manually on a
Shimadzu UV-2550 UV-VIS Spectrophotometer at WHOI, but most samples were run
on a Lachat QuikChem 8000 Flow Injection Analyzer at UCSC. \\u00a0The principle
of both methods is the same, except that formation of the silico-molybdate
complex reaction is allowed to run to completion before spectrophotometric
detection in the manual method (WHOI), whereas the reaction occurs online in
the flow injection method (UCSC).
 
A time-series approach was tested for the WHOI leaches, with four timepoints
taken after 1, 2, 3, and 4 hours of leaching. \\u00a0There was little evidence
of a systematic lithogenic contribution, so the mean of the first three
timepoints from the WHOI leaches was taken as the most representative value,
and the standard deviation used in the error estimate. \\u00a0Subsequent
samples at UCSC were leached for 1 hr only.
 
2.1.2 Data Processing
 
Intercomparability of the WHOI and UCSC methods was assessed by checking that
the bSi profiles of stations with samples analyzed at both places were
oceanographically consistent.
 
The median of Supor dipped blank filters were used to correct the SPT data.
\\u00a0For >51 um LPT samples on polyester prefilters, blank corrections were
made using the median failed pump values (pumps that never turned on, or that
shut off after <5% of programmed water volume was filtered) because of
anomalously high prefilter dipped blank values. Anomalously high prefilter
dipped blank bSi values was also observed for the GA03 NAZT section. \\u00a0
 
The reported error was determined as the standard deviation of bSi on the
dipped blank filters, converted to concentrations using volume filtered. For
samples run at WHOI only, the standard deviation of the three timepoints was
also propagated into the error estimate.
 
2.1.3 Derived parameters: OPAL
 
The mass of opal was calculated assuming a hydrated form of silica: SiO2.(0.4
H2O) (Mortlock and Froelich, 1989), or 67.2 g opal/mol bSi:
 
OPAL [ug/L] = bSi [uM] *67.2 [ug opal/umol bSi]
 
2.2 Particulate Organic Carbon (POC), Particulate Nitrogen (PN), POM,
\\u03b413C, and d15N
 
2.2.1 Analytical methodology for POC, PN, \\u03b413C, and d15N
 
Particulate organic carbon and particulate nitrogen were measured by
combustion on an elemental analyzer after fuming with concentrated HCl to
remove particulate inorganic carbon. \\u00a0Briefly, dried filter samples were
exposed to HCl fumes in a dessicator for ~16 hours. After fuming, filters were
dried at 60 deg C in an oven for another ~16 hrs before being pelletized in
tin discs. POC from suspended particles (1-51um; SPT) were measured using a
Flash EA1112 Carbon/Nitrogen Analyzer using a Dynamic Flash Combustion
technique at the WHOI Nutrient Analytical Facility on two 12 mm-diameter
punches from the top QMA filter, representing the equivalent of ~20L of
material. For the >51um size fraction (LPT), particles from the 51um polyester
prefilter above the Supor filter were rinsed at sea with 1um-filtered seawater
onto a 25mm 1.2 um Sterlitech Ag filter and dried at 60 deg C. \\u00a0Half of
the Ag filter containing rinsed LPT particles, typically representing ~200L of
material, was analyzed for POC and PN using either a Carlo Erba 1108 or a CE
Instruments NC2500 elemental analyzer interfaced to a ThermoFinnigan Delta
Plus XP isotope ratio mass spectrometer at the Stable Isotope Laboratory at
UCSC, which also gave the C and N stable isotope composition of the LPT
particles.
 
2.2.2 Data Processing
 
Intercomparability of the WHOI and UCSC datasets was assessed by checking that
a POC_SPT profile that had samples analyzed at both places was
oceanographically consistent.
 
For POC and PN in the small size fraction, the standard deviation of 47 dipped
blank QMA filters used for blank subtraction. \\u00a0For POC and PN in the
large size fractions \\u00a0(>51 um; POC_LPT, PN_LPT), we found that the
variability in the dipped blank increased significantly after station 21
(i.e., after the loss of the dipped blank plate and switching to the
perforated plastic holder for the dipped blanks), especially for the deeper
casts. \\u00a0We therefore use the median and standard deviation of 25 dipped
blanks from before station 21 for blank subtraction and error estimation
(Table 1).\\u00a0
 
The stable isotopic composition of C (\\u03b413C) and N (d15N ) for the large
size fraction LPT particles are given as raw values (*_raw), and corrected for
the dipped blank (*_dbcorr) using the median isotopic composition of the
dipped blanks (Table 1). Measurement precision is 0.2 permil for samples
greater than 20 mg C (1.7 mmol C) or 20 mg N (1.4 mmol N). \\u00a0Only three
samples did not meet this threshold for LPT C, but 77% of LPT samples did not
meet this threshold for N. \\u00a0d15N values for samples below the 20 mg N
threshold were assigned a QF=4.
 
2.2.3 Derived parameters: POM
 
Particulate organic matter (POM) is calculated from POC using a weight ratio
of 1.88 g POM/g POC (Lam et al., 2011).
 
POM [mg/L] = POC [mM] * 12 [mg POC/mmol POC] * 1.88 [g POM/g POC]
 
2.3 Particulate Inorganic Carbon (PIC) and CaCO3
 
2.3.1 Analytical methodology for PIC
 
PIC was measured directly by coulometry (measurement of CO2 following closed-
system conversion of PIC to CO2 upon addition of 1N phosphoric acid (WHOI) or
2 N sulfuric acid (UCSC) to a QMA punch or 1/16 polyester prefilter) (Honjo et
al., 1995)
 
2.3.2 Data Processing
 
Intercomparability of the WHOI and UCSC datasets was assessed by checking that
a PIC_LPT profile that had samples analyzed at both places was
oceanographically consistent. \\u00a0 Blank subtraction, error calculation, and
detection limit determined as described at beginning of section 2.
 
2.3.3 Derived parameters: CaCO3
 
The mass of CaCO3 is calculated stoichiometrically from the mass of PIC:
 
CaCO3 [ug/L] = PIC [umol/L] * 100.08 [mg CaCO3/mmol PIC]
 
2.4 Particulate trace metals (pTM)
 
2.4.1 Analytical methodology for pTMs
 
Total pTM concentrations in the SPT were analyzed from either 1/16 or 1/8
subsamples of the top Supor (0.8um) filter. \\u00a0pTM totals in the LPT were
analyzed from 1/8 subsamples (typically ~150L) of the QMA-side 51um pre-
filter, which were rinsed at sea onto 25mm Supor (0.8um) filter discs using 0
.2um-filtered surface seawater collected using clean techniques from an
underway Fish system (Bruland et al., 2005). \\u00a0Methods for particulate
trace metal (pTM) digestion and analysis followed those described in (Ohnemus
and Lam, 2015). \\u00a0Briefly, the Supor filter matrix was first completely
digested with the strongly oxidizing Piranha solution, a 3:1 mixture of
sulfuric acid and hydrogen peroxide with 1 ppb Rh as a recovery monitor.
\\u00a0After drying down, remaining particles were digested in a mixture of
HCl/HNO3/HF acids (all acids at 4 M) at 135\\u02daC for 4 hrs, then dried down.
Remaining pellet was reacted with 50% HNO3/15% H2O2 to remove any remaining
organics, dried, and resuspended in 5% HNO3\\u00ad with 1 ppb In as an internal
standard for analysis via high-resolution Inductively Coupled Mass
Spectrometetry (HR-ICP-MS) using an Element-XR ICP-MS (Thermo Scientific) with
SC-FAST (Elemental Scientific) sample introduction system and PC3 Peltier
cooled quartz cyclonic spray chamber in the UCSC Plasma Analytical Facility.
ICP-MS (Element XR, Thermo-Finnigan). \\u00a0Elemental concentrations were
standardized using multi-element, external standard curves prepared from NIST
atomic absorption-standards in 5% HNO3\\u00ad. \\u00a0Instrument drift and
matrix effects were corrected using the internal 1ppb In standard and
monitored using a mixed element run standard. \\u00a0Concentrations were
determined using external standard curves of mixed trace elements standards.
 
A subset of samples were repeated in which samples were redigested and/or
rerun.
 
2.4.2 Data processing
 
The reported error is calculated by propagating the two main sources of
uncertainty: uncertainty in the dipped blank subtraction, and the combined
uncertainty due to heterogeneity in particle distribution and variations in
digestion. \\u00a0The former is determined as the standard deviation of the
dipped blank filters. The latter is determined from the maximum of the mean
relative standard deviation of all repeat samples for that element if no
repeats were run, and the actual standard deviation if repeats were run.
\\u00a0For most elements, the uncertainty in the blank subtraction was the
largest source of uncertainty (Figure 1).
 
2.4.3 Derived parameters
 
2.4.3.1 Lithogenic material
 
Al is usually used as a tracer of lithogenic material since it is the third
most abundant element in Earth\\u2019s crust after Si and O. \\u00a0Al has the
added advantage that its concentration does not vary much between upper
continental crust (UCC Al = 8.04% by weight) and bulk continental crust (BCC
Al = 8.41wt%), so the estimate of lithogenic mass is not very sensitive to
lithogenic source regions (Taylor and McLennan, 1995). \\u00a0Slopes of Fe vs
Al (10.3 mol Fe/mol Al) and Fe vs Ti (0.23 mol Fe/mol Ti) for samples
dominated by lithogenic material (Station 1 trench) gave slopes that were very
similar to UCC crustal ratios (Fe/AlUCC=10.0 and Fe/TiUCC-0.21; compare to
Fe/AlBCC=11.2 and Fe/TiBCC-0.41). \\u00a0We therefore use the UCC Al
concentration of 8.04% to calculate lithogenic mass.
 
LITHO \\u00a0[ug/L] = Al [pM] * 27 [pg/pmol] / 0.0804 [ug Al/mg UCC] * [1ug/1e6
pg]
 
2.4.3.2 Fe and Mn oxyhydroxides
 
Fe and Mn in oxyhydroxides were calculated by subtracting Fe and Mn associated
with lithogenic material. \\u00a0Although Ti may be a better tracer for
lithogenic Fe and Mn than Al as the ratios of Fe and Mn to Ti are less
sensitive to source than ratios to Al (Lam et al., 2015), Ti concentrations
were very low and often below the detection limit for this transect. \\u00a0We
verified that the UCC Fe:Al=0.210 mol/mol and Mn:Al=0.00355 mol/mol ratios
(Taylor and McLennan, 1995) compared well with Fe:Al in the most lithogenic-
rich sample in our dataset\\u2014the deepest samples in the Peru Trench, which
had Fe:Al=0.227. \\u00a0We thus used the UCC ratios of Fe and Mn to Al to
remove lithogenic Fe and Mn, We approximate the formulae for Fe and Mn
oxyhydroxides to be Fe(OH)3 (ferrihydrite approximation) and MnO2 (birnessite
approximation), with formula weights 106.9 g Fe(OH)3/mol Fe and 86.9 g
MnO2/mol Mn, respectively. Negative numbers were set to 0.
 
FeOH3 [ug/L] = (Fe [pM] \\u2013 (Al [pM] * 0.210 [pmol Fe/pmol Al]) ) * 106.9
[pg Fe(OH)3/ pmol \\u00a0Fe] * [1ug/1e6 pg])
 
MnO2 [ug/L] = (Mn [pM] \\u2013 (Al [pM] * 0.00367 [pmol Mn/pmol Al]) ) *
 
86.9 [pg MnO2/pmol Mn] * [1ug/1e6 pg])
 
2.5 Suspended particulate mass (SPM)
 
Suspended particulate mass in the sinking (>51um) and suspended (1-51um) size
fractions was estimated as the chemical dry weight of the major particulate
phases, which is the sum of POM, opal, CaCO3, lithogenic material, and Fe and
Mn oxyhydroxides, and is calculated as:
 
SPM [mg/L] = POM [ug/L] + opal [ug/L] + CaCO3 [ug/L] + Litho [ug/L] + Fe(OH)3
[ug/L] + MnO2 [ug/L]
 
Note that the resolution of this data is dictated by the lowest resolution of
the component parts.";
    String awards_0_award_nid "668084";
    String awards_0_award_number "OCE-1518110";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1518110";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Henrietta N Edmonds";
    String awards_0_program_manager_nid "51517";
    String cdm_data_type "Other";
    String comment 
"GEOTRACES EPZT - Particle Composition 
  Phoebe Lam et. al. 
  Version: 24 January 2017 (corrected ISO_DateTime_ISO for events 4013 and 4150) 
    replaces Version 3 January 2017";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2016-12-02T18:02:48Z";
    String date_modified "2020-03-24T16:23:13Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.668083.1";
    Float64 Easternmost_Easting -77.376;
    Float64 geospatial_lat_max -10.5004;
    Float64 geospatial_lat_min -15.99933333;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -77.376;
    Float64 geospatial_lon_min -151.9995167;
    String geospatial_lon_units "degrees_east";
    String history 
"2024-05-03T13:21:51Z (local files)
2024-05-03T13:21:51Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_668083.das";
    String infoUrl "https://www.bco-dmo.org/dataset/668083";
    String institution "BCO-DMO";
    String instruments_0_acronym "CTD Sea-Bird";
    String instruments_0_dataset_instrument_description "Used to for sampling and to verify target depths";
    String instruments_0_dataset_instrument_nid "668435";
    String instruments_0_description "Conductivity, Temperature, Depth (CTD) sensor package from SeaBird Electronics, no specific unit identified. This instrument designation is used when specific make and model are not known. See also other SeaBird instruments listed under CTD. More information from Sea-Bird Electronics.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/130/";
    String instruments_0_instrument_name "CTD Sea-Bird";
    String instruments_0_instrument_nid "447";
    String instruments_0_supplied_name "self-recording Seabird 19plus CTD";
    String instruments_1_acronym "IR Mass Spec";
    String instruments_1_dataset_instrument_description "Used to measure C and N stable isotopes";
    String instruments_1_dataset_instrument_nid "668441";
    String instruments_1_description "The Isotope-ratio Mass Spectrometer is a particular type of mass spectrometer used to measure the relative abundance of isotopes in a given sample (e.g. VG Prism II Isotope Ratio Mass-Spectrometer).";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB16/";
    String instruments_1_instrument_name "Isotope-ratio Mass Spectrometer";
    String instruments_1_instrument_nid "469";
    String instruments_1_supplied_name "ThermoFinnigan Delta Plus XP isotope ratio mass spectrometer";
    String instruments_2_acronym "CHN";
    String instruments_2_dataset_instrument_description "POC was measured";
    String instruments_2_dataset_instrument_nid "668439";
    String instruments_2_description "A unit that accurately determines the carbon and nitrogen concentrations of organic compounds typically by detecting and measuring their combustion products (CO2 and NO).";
    String instruments_2_instrument_name "Particulate Organic Carbon/Nitrogen  Analyzer";
    String instruments_2_instrument_nid "654";
    String instruments_2_supplied_name "Flash EA1112 Carbon/Nitrogen Analyzer";
    String instruments_3_acronym "FIA";
    String instruments_3_dataset_instrument_description "Ran samples";
    String instruments_3_dataset_instrument_nid "668438";
    String instruments_3_description "An instrument that performs flow injection analysis. Flow injection analysis (FIA) is an approach to chemical analysis that is accomplished by injecting a plug of sample into a flowing carrier stream. FIA is an automated method in which a sample is injected into a continuous flow of a carrier solution that mixes with other continuously flowing solutions before reaching a detector. Precision is dramatically increased when FIA is used instead of manual injections and as a result very specific FIA systems have been developed for a wide array of analytical techniques.";
    String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB36/";
    String instruments_3_instrument_name "Flow Injection Analyzer";
    String instruments_3_instrument_nid "657";
    String instruments_3_supplied_name "Lachat QuikChem 8000 Flow Injection Analyzer";
    String instruments_4_acronym "Mass Spec";
    String instruments_4_dataset_instrument_description "Inductively Coupled Mass Spectrometetry (HR-ICP-MS)";
    String instruments_4_dataset_instrument_nid "668442";
    String instruments_4_description "General term for instruments used to measure the mass-to-charge ratio of ions; generally used to find the composition of a sample by generating a mass spectrum representing the masses of sample components.";
    String instruments_4_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB16/";
    String instruments_4_instrument_name "Mass Spectrometer";
    String instruments_4_instrument_nid "685";
    String instruments_4_supplied_name "Element-XR ICP-MS (Thermo Scientific)";
    String instruments_5_acronym "Spectrophotometer";
    String instruments_5_dataset_instrument_description "Used to run samples manually";
    String instruments_5_dataset_instrument_nid "668437";
    String instruments_5_description "An instrument used to measure the relative absorption of electromagnetic radiation of different wavelengths in the near infra-red, visible and ultraviolet wavebands by samples.";
    String instruments_5_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB20/";
    String instruments_5_instrument_name "Spectrophotometer";
    String instruments_5_instrument_nid "707";
    String instruments_5_supplied_name "Shimadzu UV-2550 UV-VIS Spectrophotometer";
    String instruments_6_dataset_instrument_description "Used to collect size-fractioned particles";
    String instruments_6_dataset_instrument_nid "668436";
    String instruments_6_description "A pump is a device that moves fluids (liquids or gases), or sometimes slurries, by mechanical action. Pumps can be classified into three major groups according to the method they use to move the fluid: direct lift, displacement, and gravity pumps";
    String instruments_6_instrument_name "Pump";
    String instruments_6_instrument_nid "726";
    String instruments_6_supplied_name "McLane Research in-situ pumps";
    String instruments_7_dataset_instrument_description "Measured POC and PN";
    String instruments_7_dataset_instrument_nid "668440";
    String instruments_7_description "Instruments that quantify carbon, nitrogen and sometimes other elements by combusting the sample at very high temperature and assaying the resulting gaseous oxides. Usually used for samples including organic material.";
    String instruments_7_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB01/";
    String instruments_7_instrument_name "Elemental Analyzer";
    String instruments_7_instrument_nid "546339";
    String instruments_7_supplied_name "Carlo Erba 1108 or a CE Instruments NC2500 elemental analyzer";
    String keywords "Ag_LPT_CONC_PUMP, Ag_LPT_CONC_PUMP_QV_ODV, Ag_LPT_CONC_PUMP_STDEV, Ag_SPT_CONC_PUMP, Ag_SPT_CONC_PUMP_QV_ODV, Ag_SPT_CONC_PUMP_STDEV, Al_LPT_CONC_PUMP, Al_LPT_CONC_PUMP_QV_ODV, Al_LPT_CONC_PUMP_STDEV, Al_SPT_CONC_PUMP, Al_SPT_CONC_PUMP_QV_ODV, Al_SPT_CONC_PUMP_STDEV, Ba_LPT_CONC_PUMP, Ba_LPT_CONC_PUMP_QV_ODV, Ba_LPT_CONC_PUMP_STDEV, Ba_SPT_CONC_PUMP, Ba_SPT_CONC_PUMP_QV_ODV, Ba_SPT_CONC_PUMP_STDEV, bco, bco-dmo, biological, bSi_LPT_PUMP_CONC, bSi_LPT_PUMP_CONC_QV_ODV, bSi_LPT_PUMP_CONC_STDEV, bSi_SPT_PUMP_CONC, bSi_SPT_PUMP_CONC_QV_ODV, bSi_SPT_PUMP_CONC_STDEV, btmdepth, CaCO3_LPT_CONC_PUMP, CaCO3_LPT_CONC_PUMP_QV_ODV, CaCO3_LPT_CONC_PUMP_STDEV, CaCO3_SPT_CONC_PUMP, CaCO3_SPT_CONC_PUMP_QV_ODV, CaCO3_SPT_CONC_PUMP_STDEV, carbonate, castno, Cd_LPT_CONC_PUMP, Cd_LPT_CONC_PUMP_QV_ODV, Cd_LPT_CONC_PUMP_STDEV, Cd_SPT_CONC_PUMP, Cd_SPT_CONC_PUMP_QV_ODV, Cd_SPT_CONC_PUMP_STDEV, chemical, co3, Co_LPT_CONC_PUMP, Co_LPT_CONC_PUMP_QV_ODV, Co_LPT_CONC_PUMP_STDEV, Co_SPT_CONC_PUMP, Co_SPT_CONC_PUMP_QV_ODV, Co_SPT_CONC_PUMP_STDEV, conc, cruise, cruise_id, Cu_LPT_CONC_PUMP, Cu_LPT_CONC_PUMP_QV_ODV, Cu_LPT_CONC_PUMP_STDEV, Cu_SPT_CONC_PUMP, Cu_SPT_CONC_PUMP_QV_ODV, Cu_SPT_CONC_PUMP_STDEV, d13, d13C_LPT_PUMP_CONC_dbcorr, d13C_LPT_PUMP_CONC_dbcorr_QV_ODV, d13C_LPT_PUMP_CONC_QV_ODV, d13C_LPT_PUMP_CONC_raw, d15, d15N_LPT_PUMP_CONC_dbcorr, d15N_LPT_PUMP_CONC_dbcorr_QV_ODV, d15N_LPT_PUMP_CONC_QV_ODV, d15N_LPT_PUMP_CONC_raw, data, dataset, date, dbcorr, depth, DEPTH_MAX, deviation, dmo, erddap, eventno, Fe_LPT_CONC_PUMP, Fe_LPT_CONC_PUMP_QV_ODV, Fe_LPT_CONC_PUMP_STDEV, Fe_SPT_CONC_PUMP, Fe_SPT_CONC_PUMP_QV_ODV, Fe_SPT_CONC_PUMP_STDEV, FeOH3_LPT_CONC_PUMP, FeOH3_LPT_CONC_PUMP_QV_ODV, FeOH3_LPT_CONC_PUMP_STDEV, FeOH3_SPT_CONC_PUMP, FeOH3_SPT_CONC_PUMP_QV_ODV, FeOH3_SPT_CONC_PUMP_STDEV, geotrc, GEOTRC_EVENTNO, GEOTRC_SAMPNO, iso, litho, LITHO_LPT_CONC_PUMP, LITHO_LPT_CONC_PUMP_QV_ODV, LITHO_LPT_CONC_PUMP_STDEV, LITHO_SPT_CONC_PUMP, LITHO_SPT_CONC_PUMP_QV_ODV, LITHO_SPT_CONC_PUMP_STDEV, lpt, management, Mn_LPT_CONC_PUMP, Mn_LPT_CONC_PUMP_QV_ODV, Mn_LPT_CONC_PUMP_STDEV, Mn_SPT_CONC_PUMP, Mn_SPT_CONC_PUMP_QV_ODV, Mn_SPT_CONC_PUMP_STDEV, MnO2_LPT_CONC_PUMP, MnO2_LPT_CONC_PUMP_QV_ODV, MnO2_LPT_CONC_PUMP_STDEV, MnO2_SPT_CONC_PUMP, MnO2_SPT_CONC_PUMP_QV_ODV, MnO2_SPT_CONC_PUMP_STDEV, Mo_LPT_CONC_PUMP, Mo_LPT_CONC_PUMP_QV_ODV, Mo_LPT_CONC_PUMP_STDEV, Mo_SPT_CONC_PUMP, Mo_SPT_CONC_PUMP_QV_ODV, Mo_SPT_CONC_PUMP_STDEV, model, Nd_LPT_CONC_PUMP, Nd_LPT_CONC_PUMP_QV_ODV, Nd_LPT_CONC_PUMP_STDEV, Nd_SPT_CONC_PUMP, Nd_SPT_CONC_PUMP_QV_ODV, Nd_SPT_CONC_PUMP_STDEV, Ni_LPT_CONC_PUMP, Ni_LPT_CONC_PUMP_QV_ODV, Ni_LPT_CONC_PUMP_STDEV, Ni_SPT_CONC_PUMP, Ni_SPT_CONC_PUMP_QV_ODV, Ni_SPT_CONC_PUMP_STDEV, O2, ocean, oceanography, odv, office, oh3, opal, OPAL_LPT_CONC_PUMP, OPAL_LPT_CONC_PUMP_QV_ODV, OPAL_LPT_CONC_PUMP_STDEV, OPAL_SPT_CONC_PUMP, OPAL_SPT_CONC_PUMP_QV_ODV, OPAL_SPT_CONC_PUMP_STDEV, oxygen, P_LPT_CONC_PUMP, P_LPT_CONC_PUMP_QV_ODV, P_LPT_CONC_PUMP_STDEV, P_SPT_CONC_PUMP, P_SPT_CONC_PUMP_QV_ODV, P_SPT_CONC_PUMP_STDEV, Pb_LPT_CONC_PUMP, Pb_LPT_CONC_PUMP_QV_ODV, Pb_LPT_CONC_PUMP_STDEV, Pb_SPT_CONC_PUMP, Pb_SPT_CONC_PUMP_QV_ODV, Pb_SPT_CONC_PUMP_STDEV, pic, PIC_LPT_PUMP_CONC, PIC_LPT_PUMP_CONC_QV_ODV, PIC_LPT_PUMP_CONC_STDEV, PIC_SPT_PUMP_CONC, PIC_SPT_PUMP_CONC_QV_ODV, PIC_SPT_PUMP_CONC_STDEV, PN_LPT_PUMP_CONC, PN_LPT_PUMP_CONC_QV_ODV, PN_LPT_PUMP_CONC_STDEV, PN_SPT_PUMP_CONC, PN_SPT_PUMP_CONC_QV_ODV, PN_SPT_PUMP_CONC_STDEV, poc, POC_LPT_PUMP_CONC, POC_LPT_PUMP_CONC_QV_ODV, POC_LPT_PUMP_CONC_STDEV, POC_SPT_PUMP_CONC, POC_SPT_PUMP_CONC_QV_ODV, POC_SPT_PUMP_CONC_STDEV, pom, POM_LPT_CONC_PUMP, POM_LPT_CONC_PUMP_QV_ODV, POM_LPT_CONC_PUMP_STDEV, POM_SPT_CONC_PUMP, POM_SPT_CONC_PUMP_QV_ODV, POM_SPT_CONC_PUMP_STDEV, preliminary, princeton, pump, PUMP_LAT, PUMP_LON, qliters, raw, sampno, Sc_LPT_CONC_PUMP, Sc_LPT_CONC_PUMP_QV_ODV, Sc_LPT_CONC_PUMP_STDEV, Sc_SPT_CONC_PUMP, Sc_SPT_CONC_PUMP_QV_ODV, Sc_SPT_CONC_PUMP_STDEV, sliters, spm, SPM_LPT_CONC_PUMP, SPM_LPT_CONC_PUMP_QV_ODV, SPM_LPT_CONC_PUMP_STDEV, SPM_SPT_CONC_PUMP, SPM_SPT_CONC_PUMP_QV_ODV, SPM_SPT_CONC_PUMP_STDEV, spt, standard, standard deviation, stdev, stnnbr, Th_LPT_CONC_PUMP, Th_LPT_CONC_PUMP_QV_ODV, Th_LPT_CONC_PUMP_STDEV, Th_SPT_CONC_PUMP, Th_SPT_CONC_PUMP_QV_ODV, Th_SPT_CONC_PUMP_STDEV, Ti_LPT_CONC_PUMP, Ti_LPT_CONC_PUMP_QV_ODV, Ti_LPT_CONC_PUMP_STDEV, Ti_SPT_CONC_PUMP, Ti_SPT_CONC_PUMP_QV_ODV, Ti_SPT_CONC_PUMP_STDEV, time, v, V_LPT_CONC_PUMP, V_LPT_CONC_PUMP_QV_ODV, V_LPT_CONC_PUMP_STDEV, V_SPT_CONC_PUMP, V_SPT_CONC_PUMP_QV_ODV, V_SPT_CONC_PUMP_STDEV, view, Y_LPT_CONC_PUMP, Y_LPT_CONC_PUMP_QV_ODV, Y_LPT_CONC_PUMP_STDEV, Y_SPT_CONC_PUMP, Y_SPT_CONC_PUMP_QV_ODV, Y_SPT_CONC_PUMP_STDEV";
    String license "https://www.bco-dmo.org/dataset/668083/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/668083";
    Float64 Northernmost_Northing -10.5004;
    String param_mapping "{'668083': {'PUMP_LON': 'master - longitude', 'PUMP_LAT': 'master - latitude', 'ISO_DateTime_UTC': 'master - time'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/668083/parameters";
    String people_0_affiliation "University of California-Santa Cruz";
    String people_0_affiliation_acronym "UC Santa Cruz";
    String people_0_person_name "Phoebe J. Lam";
    String people_0_person_nid "51146";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_10_affiliation "Woods Hole Oceanographic Institution";
    String people_10_affiliation_acronym "WHOI BCO-DMO";
    String people_10_person_name "Hannah Ake";
    String people_10_person_nid "650173";
    String people_10_role "BCO-DMO Data Manager";
    String people_10_role_type "related";
    String people_1_affiliation "University of California-Santa Cruz";
    String people_1_affiliation_acronym "UC Santa Cruz";
    String people_1_person_name "Phoebe J. Lam";
    String people_1_person_nid "51146";
    String people_1_role "Contact";
    String people_1_role_type "related";
    String people_2_affiliation "University of California-Santa Cruz";
    String people_2_affiliation_acronym "UC Santa Cruz";
    String people_2_person_name "Colin Carney";
    String people_2_person_nid "668101";
    String people_2_role "Analyst";
    String people_2_role_type "related";
    String people_3_affiliation "Ifremer";
    String people_3_affiliation_acronym "Ifremer";
    String people_3_person_name "Dr Maija I Heller";
    String people_3_person_nid "668102";
    String people_3_role "Analyst";
    String people_3_role_type "related";
    String people_4_affiliation "Woods Hole Oceanographic Institution";
    String people_4_affiliation_acronym "WHOI";
    String people_4_person_name "Paul B. Henderson";
    String people_4_person_nid "51039";
    String people_4_role "Analyst";
    String people_4_role_type "related";
    String people_5_affiliation "University of Massachusetts Amherst";
    String people_5_person_name "Ulrich Kakou";
    String people_5_person_nid "668098";
    String people_5_role "Analyst";
    String people_5_role_type "related";
    String people_6_affiliation "University of California-Santa Cruz";
    String people_6_affiliation_acronym "UC Santa Cruz";
    String people_6_person_name "Jong-Mi Lee";
    String people_6_person_nid "644619";
    String people_6_role "Analyst";
    String people_6_role_type "related";
    String people_7_affiliation "Woods Hole Oceanographic Institution";
    String people_7_affiliation_acronym "WHOI";
    String people_7_person_name "Steven Manganini";
    String people_7_person_nid "50634";
    String people_7_role "Analyst";
    String people_7_role_type "related";
    String people_8_affiliation "University of California-Santa Cruz";
    String people_8_affiliation_acronym "UC Santa Cruz";
    String people_8_person_name "Sanjin Mehic";
    String people_8_person_nid "668099";
    String people_8_role "Analyst";
    String people_8_role_type "related";
    String people_9_affiliation "University of California-Santa Cruz";
    String people_9_affiliation_acronym "UC Santa Cruz";
    String people_9_person_name "Yang Xiang";
    String people_9_person_nid "668100";
    String people_9_role "Analyst";
    String people_9_role_type "related";
    String project "U.S. GEOTRACES EPZT,EPZT Particle Geochemistry";
    String projects_0_acronym "U.S. GEOTRACES EPZT";
    String projects_0_description 
"From the NSF Award Abstract
The mission of the International GEOTRACES Program (www.geotraces.org), of which the U.S. chemical oceanography research community is a founding member, is \"to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to establish the sensitivity of these distributions to changing environmental conditions\" (GEOTRACES Science Plan, 2006). In the United States, ocean chemists are currently in the process of organizing a zonal transect in the eastern tropical South Pacific (ETSP) from Peru to Tahiti as the second cruise of the U.S.GEOTRACES Program. This Pacific section includes a large area characterized by high rates of primary production and particle export in the eastern boundary associated with the Peru Upwelling, a large oxygen minimum zone that is a major global sink for fixed nitrogen, and a large hydrothermal plume arising from the East Pacific Rise. This particular section was selected as a result of open planning workshops in 2007 and 2008, with a final recommendation made by the U.S.GEOTRACES Steering Committee in 2009. It is the first part of a two-stage plan that will include a meridional section of the Pacific from Tahiti to Alaska as a subsequent expedition.
This award provides funding for management of the U.S.GEOTRACES Pacific campaign to a team of scientists from the University of Southern California, Old Dominion University, and the Woods Hole Oceanographic Institution. The three co-leaders will provide mission leadership, essential support services, and management structure for acquiring the trace elements and isotopes samples listed as core parameters in the International GEOTRACES Science Plan, plus hydrographic and nutrient data needed by participating investigators. With this support from NSF, the management team will (1) plan and coordinate the 52-day Pacific research cruise described above; (2) obtain representative samples for a wide variety of trace metals of interest using conventional CTD/rosette and GEOTRACES Sampling Systems; (3) acquire conventional JGOFS/WOCE-quality hydrographic data (CTD, transmissometer, fluorometer, oxygen sensor, etc) along with discrete samples for salinity, dissolved oxygen (to 1 uM detection limits), plant pigments, redox tracers such as ammonium and nitrite, and dissolved nutrients at micro- and nanomolar levels; (4) ensure that proper QA/QC protocols are followed and reported, as well as fulfilling all GEOTRACES Intercalibration protocols; (5) prepare and deliver all hydrographic-type data to the GEOTRACES Data Center (and US data centers); and (6) coordinate cruise communications between all participating investigators, including preparation of a hydrographic report/publication.
Broader Impacts: The project is part of an international collaborative program that has forged strong partnerships in the intercalibration and implementation phases that are unprecedented in chemical oceanography. The science product of these collective missions will enhance our ability to understand how to interpret the chemical composition of the ocean, and interpret how climate change will affect ocean chemistry. Partnerships include contributions to the infrastructure of developing nations with overlapping interests in the study area, in this case Peru. There is a strong educational component to the program, with many Ph.D. students carrying out thesis research within the program.
Figure 1. The 2013 GEOTRACES EPZT Cruise Track. [click on the image to view a larger version]";
    String projects_0_end_date "2015-06";
    String projects_0_geolocation "Eastern Tropical Pacific - Transect from Peru to Tahiti";
    String projects_0_name "U.S. GEOTRACES East Pacific Zonal Transect";
    String projects_0_project_nid "499723";
    String projects_0_project_website "http://www.geotraces.org/";
    String projects_0_start_date "2012-06";
    String projects_1_acronym "EPZT Particle Geochemistry";
    String projects_1_description 
"NSF Award Abstract:
Particles play essential roles in the cycling and distribution of trace elements and isotopes (TEI). For instance scavenging onto particles and removal by particle export is a major sink for many TEIs. However the driving factors affecting the spatial extent and temporal variability of TEI scavenging remain largely unknown. The U.S. GEOTRACES East Pacific Zonal Transect between Peru and Tahiti will cross three biogeochemically important areas, setting the stage for researchers to constrain unknowns surrounding particle scavenging.
Scientists from Woods Hole Oceanographic Institution and University of Minnesota-Twin Cities will address fundamental questions on the location of particle formation, particle-dissolved species interactions, dominant particle phases, and the evolution of particle phases during transport. As regards particle phases, the researchers will measure particulate organic carbon (POC), calcium carbonate, opal, lithogenics, and oxyhydroxides, as well as the trace element compositions of size fractionated particles covering three distinct zones: large lateral productivity gradients, a major oxygen deficient zone off the coast of Peru, and a world renowned hydrothermal plume emanating from the southern East Pacific Rise. Furthermore, since previous results suggest particle type affects scavenging, investigators will specifically measure acid-leachable trace metals, particle concentration, and major particle composition. These combined measurements will allow them to disentangle the relative importance of hydrothermal particles, benthic nepheloid layers, and high productivity margins for scavenging of TEIs. The cruise transect will also offer unique opportunities to examine the speciation of Fe and POC in hydrothermal particles away from the vent field and the effects of aggregation and POC coatings on TEI partitioning.
As regards broader impacts, the researchers plan to create an educational module on particulate trace metals in the ocean which would become part of a five part GEOTRACES webinar series developed by Dr. Benjamin Twining at the Bigelow Laboratory for Ocean Sciences in collaboration with the Center for Ocean Sciences Education Excellence-Ocean Systems at the University of Maine. One graduate student from Woods Hole Oceanographic Institution and one graduate student from the University of Minnesota, Twin Cities, would be supported and trained as part of this project. In addition, an undergraduate student would participate in the research during the summer month as part of the Woods Hole Diversity Initiative Partnership in Education program.";
    String projects_1_end_date "2017-02";
    String projects_1_name "Collaborative Research: GEOTRACES Pacific Section: The Geochemistry of Size-fractionated Suspended Particles Collected by In-situ Filtration";
    String projects_1_project_nid "668085";
    String projects_1_start_date "2013-03";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing -15.99933333;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "cruise_id,CaCO3_LPT_CONC_PUMP_QV_ODV,PIC_LPT_PUMP_CONC_QV_ODV";
    String summary "Size-fractionated major and minor particle composition and concentration collected from RV Thompson (TN303) along the US GEOTRACES EPZT transect in the Eastern Tropical Pacific during 2013 (US GEOTRACES EPZT project)";
    String time_coverage_end "2013-12-18T12:13:00Z";
    String time_coverage_start "2013-10-29T07:15:00Z";
    String title "Size-fractionated major and minor particle composition and concentration collected from RV Thompson (TN303) along the US GEOTRACES EPZT transect in the Eastern Tropical Pacific during 2013 (US GEOTRACES EPZT project)";
    String version "1";
    Float64 Westernmost_Easting -151.9995167;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact