Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  Offspring growth rate from experiments testing for local adaptation in thermal
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_704653)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Files | Make a graph
Variable ?   Optional
Constraint #1 ?
Constraint #2 ?
   Minimum ?
   Maximum ?
 population (unitless) ?          1    3
 p_temp (celsius) ?          26    32
 o_temp (celsius) ?          26    32
 t_day (unitless) ?          7    30
 pf_length (millimeters) ?          4.242352941    4.934482759
 growth_rate (millimeters per day) ?          0.269488536    0.502240896
 st_dev (unitless) ?          0.012001041    0.04419105
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more info)

(Documentation / Bypass this form ? )
(Please be patient. It may take a while to get the data.)


The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  population {
    Byte _FillValue 127;
    Byte actual_range 1, 3;
    String bcodmo_name "site";
    String description "Code for the origin of sampled population;: 1 - South Carolina; 2 - Maryland; 3 - Connecticut";
    String long_name "Population";
    String units "unitless";
  p_temp {
    Byte _FillValue 127;
    Byte actual_range 26, 32;
    String bcodmo_name "temperature";
    String description "Parent temperature";
    String long_name "P Temp";
    String units "celsius";
  o_temp {
    Byte _FillValue 127;
    Byte actual_range 26, 32;
    String bcodmo_name "temperature";
    String description "Offspring temperature";
    String long_name "O Temp";
    String units "celsius";
  t_day {
    Byte _FillValue 127;
    Byte actual_range 7, 30;
    String bcodmo_name "day_start";
    String description "Date of parental exposure on new temperature (26C or 32C) from 24C";
    String long_name "T Day";
    String units "unitless";
  pf_length {
    Float64 _FillValue NaN;
    Float64 actual_range 4.242352941, 4.934482759;
    String bcodmo_name "fish_len";
    String description "Mean length in parents";
    String long_name "Pf Length";
    String units "millimeters";
  growth_rate {
    Float64 _FillValue NaN;
    Float64 actual_range 0.269488536, 0.502240896;
    String bcodmo_name "mean";
    String description "Mean growth rate";
    String long_name "Growth Rate";
    String units "millimeters per day";
  st_dev {
    Float64 _FillValue NaN;
    Float64 actual_range 0.012001041, 0.04419105;
    String bcodmo_name "standard deviation";
    String description "Standard deviation of growth rate";
    String long_name "St Dev";
    String units "unitless";
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv";
    String acquisition_description 
"We caught wild juvenile sheepshead minnows (Cyprinodon\\u00a0variegatus) from
South Carolina (SC), Maryland (MD) and Connecticut (CT) in 2014. All fish were
transferred to acclimation aquaria at 24 deg C at the NOAA Fisheries Science
Center, Santa Cruz, California. Daily care followed standard protocols (Cripe
et al. 2009, Salinas and Munch 2012), including ad libitum feeding of TetraMin
flakes (Tetra Holding, Blacksburg, VA, USA). Salinity was maintained at
20\\u00a0ppt,\\u00a0but was reduced to 10 ppt for two days prior to egg
collection. The photoperiod was 14L:10D. Each day we changed 10% of the total
volume of water.
For the experiments of thermal transgenerational plasticity, all eggs were
divided in half and transferred to either same temperature with parent or
different temperature with parent: for example, if we collected eggs from 26
deg C parents, then a half of eggs were at 26 deg C and another half of eggs
were at 32 deg C. Upon hatching we randomly selected up to four larvae from
each treatment group. We measured standard body length from photographs of the
fish obtained with a Canon 40D digital camera with Image J (Rasband 2016). At
the end of the experiment, we measured wet-mass, and then removed and weighted
the testes and gonad.";
    String awards_0_award_nid "564428";
    String awards_0_award_number "OCE-1130483";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1130483";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "David L. Garrison";
    String awards_0_program_manager_nid "50534";
    String cdm_data_type "Other";
    String comment 
"Local Adaptation and TGP 
  M. Mangel, S. Munch, and S. Sogard, PIs 
  Version 9 June 2017";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2017-06-09T20:12:05Z";
    String date_modified "2020-02-06T20:59:26Z";
    String defaultDataQuery "&time<now";
    String doi "10.1575/1912/bco-dmo.704653.1";
    String history 
"2020-07-13T02:26:18Z (local files)
2020-07-13T02:26:18Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_704653.html";
    String infoUrl "https://www.bco-dmo.org/dataset/704653";
    String institution "BCO-DMO";
    String instruments_0_acronym "camera";
    String instruments_0_dataset_instrument_description "Photographs used to determine fish body length";
    String instruments_0_dataset_instrument_nid "704759";
    String instruments_0_description "All types of photographic equipment including stills, video, film and digital systems.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/311/";
    String instruments_0_instrument_name "Camera";
    String instruments_0_instrument_nid "520";
    String instruments_0_supplied_name "Canon 40D digital camera with Image J";
    String instruments_1_acronym "Aquarium";
    String instruments_1_dataset_instrument_description "Used to acclimate juvenile sheepshead minnows";
    String instruments_1_dataset_instrument_nid "704758";
    String instruments_1_description "Aquarium - a vivarium consisting of at least one transparent side in which water-dwelling plants or animals are kept";
    String instruments_1_instrument_name "Aquarium";
    String instruments_1_instrument_nid "711";
    String instruments_1_supplied_name "Aquarium";
    String keywords "bco, bco-dmo, biological, chemical, data, dataset, day, dev, dmo, erddap, growth, growth_rate, length, management, o_temp, oceanography, office, p_temp, pf_length, population, preliminary, rate, st_dev, t_day, temperature";
    String license "https://www.bco-dmo.org/dataset/704653/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/704653";
    String param_mapping "{'704653': {}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/704653/parameters";
    String people_0_affiliation "University of California-Santa Cruz";
    String people_0_affiliation_acronym "UC Santa Cruz";
    String people_0_person_name "Dr Marc Mangel";
    String people_0_person_nid "564431";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "National Oceanic and Atmospheric Administration";
    String people_1_affiliation_acronym "NOAA";
    String people_1_person_name "Dr Stephan Munch";
    String people_1_person_nid "564434";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "National Oceanic and Atmospheric Administration";
    String people_2_affiliation_acronym "NOAA";
    String people_2_person_name "Susan Sogard";
    String people_2_person_nid "516020";
    String people_2_role "Co-Principal Investigator";
    String people_2_role_type "originator";
    String people_3_affiliation "National Oceanic and Atmospheric Administration";
    String people_3_affiliation_acronym "NOAA";
    String people_3_person_name "Dr Stephan Munch";
    String people_3_person_nid "564434";
    String people_3_role "Contact";
    String people_3_role_type "related";
    String people_4_affiliation "Woods Hole Oceanographic Institution";
    String people_4_affiliation_acronym "WHOI BCO-DMO";
    String people_4_person_name "Hannah Ake";
    String people_4_person_nid "650173";
    String people_4_role "BCO-DMO Data Manager";
    String people_4_role_type "related";
    String project "ThermalTGP";
    String projects_0_acronym "ThermalTGP";
    String projects_0_description 
"Description from NSF award abstract:
Many marine species are currently undergoing significant range shifts and exceedingly rapid changes in phenotype driven, potentially, by warming, ocean acidification, and human-induced evolution. Dramatic shifts in body size and maturation have been observed in many marine fishes worldwide. There is considerable debate over whether these changes are the result of rapid evolution or physiological responses to changes in environmental variables. Attempts to address these issues typically assume that thermal physiology is fixed or slow to evolve. Transgenerational plasticity (TGP) occurs when the environment experienced by the parents directly translates, without any changes in DNA sequences, into significant changes in offspring. TGP in thermal performance provides a mechanism for a rapid response to climate change that has, to date, been demonstrated only in terrestrial plants. This project will provide the first test of thermal TGP in marine systems and will explore its implications for forecasting responses to human-induced evolution and climate change. First, the PIs will test for thermal TGP in four taxonomically distinct fishes. Then, using sheepshead minnows as a model, they will study the dependence of transgenerational responses on the predictability of the thermal environment and test whether disparate thermal environments select for different levels of TGP. With these data they will develop the first stochastic population model including TGP and use it to understand life history evolution and predict responses to climate change.
The existence of thermal TGP poses a serious challenge to the idea that changes in thermal physiology are slow to evolve and can safely be ignored in modeling population responses to climate change or harvest selection. By extension, virtually all field estimates of heritability and physiological measurements will need to be reconsidered in light of thermal TGP, as will conclusions regarding rapid evolution in shifting environments. The research team has made significant contributions to theoretical and empirical work on the evolutionary, behavioral, and physiological ecology of growth in many different species and environments. Together, the team has substantial prior experience in all aspects of the proposed research and has worked together successfully for many years.";
    String projects_0_end_date "2016-08";
    String projects_0_geolocation "Nearshore waters of Florida, South Carolina, Maryland, & Connecticut";
    String projects_0_name "Beyond maternal effects: Transgenerational plasticity in thermal performance";
    String projects_0_project_nid "564429";
    String projects_0_start_date "2011-09";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "Offspring growth rate from experiments testing for local adaptation in thermal TGP";
    String title "Offspring growth rate from experiments testing for local adaptation in thermal TGP";
    String version "1";
    String xml_source "osprey2erddap.update_xml() v1.3";


Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
For example,
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.

ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact