BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [Amino acid isotopes from mussels] - Amino acid isotopes from mussels along
the California margin from 2009-2013 (Amino Acid Sediment 15N project) (The Use
of Nitrogen Isotopes of Amino Acids To Understand Marine Sedimentary 15N
Records)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_713831)
Range: longitude = -124.467 to -117.267°E, latitude = 32.85 to 42.717°N
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Site {
    String bcodmo_name "site";
    String description "Site where sampling occurred";
    String long_name "Site";
    String units "unitless";
  }
  Identifier {
    String bcodmo_name "unknown";
    String description "Sample ID";
    String long_name "Identifier";
    String units "unitless";
  }
  Habitat_Type {
    String bcodmo_name "site_descrip";
    String description "Description of habitat";
    String long_name "Habitat Type";
    String units "unitless";
  }
  n {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 3, 6;
    String bcodmo_name "count";
    String description "Number of samples analyzed";
    String long_name "N";
    String units "count";
  }
  Latitude_degMin {
    String bcodmo_name "latitude";
    String description "Latitude in degree minutes";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "Degree minutes";
  }
  Longitude_degMin {
    String bcodmo_name "longitude";
    String description "Longitude in degree minutes";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "Degree minutes";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 32.85, 42.717;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Latitude in decimal degrees";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -124.467, -117.267;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Longitude in decimal degress";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  element {
    String bcodmo_name "element";
    String description "Isotopic element; Nitrogen AA or Carbon AA";
    String long_name "Element";
    String units "unitless";
  }
  Bulk_d15N {
    Float32 _FillValue NaN;
    Float32 actual_range 7.41, 11.52;
    String bcodmo_name "d15N";
    String description "15N/14N isotopic ratio";
    String long_name "Bulk D15 N";
    String units "per mil";
  }
  Bulk_d15N_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 0.5;
    String bcodmo_name "d15N";
    String description "Standard deviation of isotopic ratio";
    String long_name "Bulk D15 N Stdev";
    String units "per mil";
  }
  Bulk_d13C {
    Float32 _FillValue NaN;
    Float32 actual_range -17.3, -13.5;
    String bcodmo_name "d13C";
    String description "13C/12C isotopic ratio";
    String long_name "Bulk D13 C";
    String units "per mil";
  }
  Bulk_d13C_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 0.9;
    String bcodmo_name "d13C";
    String description "Standard deviation of isotopic ratio";
    String long_name "Bulk D13 C Stdev";
    String units "per mil";
  }
  Average_Trophic {
    Float32 _FillValue NaN;
    Float32 actual_range 10.31, 15.94;
    String bcodmo_name "unknown";
    String description "Average d15N values of [ Alanine, Aspartic Acid, Glutamic Acid, Leucine, Isoleucine, Proline, Valine ]";
    String long_name "Average Trophic";
    String units "per mil";
  }
  Average_Source {
    Float32 _FillValue NaN;
    Float32 actual_range 5.06, 10.27;
    String bcodmo_name "unknown";
    String description "Average d15N values of [ Glycine, Lysine, Phenylalanine, Serine, Tyrosine ]";
    String long_name "Average Source";
    String units "per mil";
  }
  Trophic_Position {
    Float32 _FillValue NaN;
    Float32 actual_range 0.98, 1.8;
    String bcodmo_name "unknown";
    String description "Trophic Position; { [ (d15N Glutamic Acid - d15N Phenylalanine) - 3.4 ] / 7.6 } + 1";
    String long_name "Trophic Position";
    String units "unitless";
  }
  Ala {
    String bcodmo_name "Ala";
    String description "Alanine 15N or 13C value";
    String long_name "Ala";
    String units "per mil";
  }
  Ala_stdev {
    String bcodmo_name "Ala";
    String description "Alanine standard deviation";
    String long_name "Ala Stdev";
    String units "per mil";
  }
  Asx {
    Float32 _FillValue NaN;
    Float32 actual_range -21.0, 14.32;
    String bcodmo_name "amino_conc";
    String description "Asn+Asp 15N or 13C peak values";
    String long_name "Asx";
    String units "per mil";
  }
  Asx_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 0.9;
    String bcodmo_name "amino_conc";
    String description "Asx standard deviation";
    String long_name "Asx Stdev";
    String units "per mil";
  }
  Glx {
    Float32 _FillValue NaN;
    Float32 actual_range -25.8, 17.42;
    String bcodmo_name "amino_conc";
    String description "Gln+Glu 15N or 13C peak values";
    String long_name "GLX";
    String units "per mil";
  }
  Glx_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 1.3;
    String bcodmo_name "amino_conc";
    String description "Glx standard deviation";
    String long_name "Glx Stdev";
    String units "per mil";
  }
  Gly {
    Float32 _FillValue NaN;
    Float32 actual_range -50.6, 11.1;
    String bcodmo_name "Gly";
    String description "Glycine 15N or 13C value";
    String long_name "GLY";
    String units "per mil";
  }
  Gly_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 1.2;
    String bcodmo_name "Gly";
    String description "Glycine standard deviation";
    String long_name "Gly Stdev";
    String units "per mil";
  }
  Ile {
    Float32 _FillValue NaN;
    Float32 actual_range -16.2, 16.01;
    String bcodmo_name "Ile";
    String description "Isoleucine 15N or 13 C value";
    String long_name "Ile";
    String units "per mil";
  }
  Ile_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 0.9;
    String bcodmo_name "Ile";
    String description "Isoleucine standard deviation";
    String long_name "Ile Stdev";
    String units "per mil";
  }
  Leu {
    Float32 _FillValue NaN;
    Float32 actual_range -30.1, 16.73;
    String bcodmo_name "Leu";
    String description "Leucine 15N or 13C value";
    String long_name "Leu";
    String units "per mil";
  }
  Leu_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 1.3;
    String bcodmo_name "Leu";
    String description "Leucine standard deviation";
    String long_name "Leu Stdev";
    String units "per mil";
  }
  Lys {
    String bcodmo_name "Lys";
    String description "Lysine 15N or 13C value";
    String long_name "LYS";
    String units "per mil";
  }
  Lys_stdev {
    String bcodmo_name "Lys";
    String description "Lysine standard deviation";
    String long_name "Lys Stdev";
    String units "per mil";
  }
  Phe {
    Float32 _FillValue NaN;
    Float32 actual_range -28.4, 10.66;
    String bcodmo_name "p_Ala";
    String description "Phenylalanine 15N or 13C value";
    String long_name "Phe";
    String units "per mil";
  }
  Phe_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 1.4;
    String bcodmo_name "p_Ala";
    String description "Phenylalanine standard deviation";
    String long_name "Phe Stdev";
    String units "per mil";
  }
  Pro {
    String bcodmo_name "amino_conc";
    String description "Proline 15N or 13C value";
    String long_name "Pro";
    String units "per mil";
  }
  Pro_stdev {
    String bcodmo_name "amino_conc";
    String description "Proline standard deviation";
    String long_name "Pro Stdev";
    String units "per mil";
  }
  Ser {
    Float32 _FillValue NaN;
    Float32 actual_range -3.1, 9.87;
    String bcodmo_name "Ser";
    String description "Serine 15N or 13C value";
    String long_name "Ser";
    String units "per mil";
  }
  Ser_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 1.0;
    String bcodmo_name "Ser";
    String description "Serine standard deviation";
    String long_name "Ser Stdev";
    String units "per mil";
  }
  Thr {
    Float32 _FillValue NaN;
    Float32 actual_range -23.5, 3.16;
    String bcodmo_name "Thr";
    String description "Threonine 15N or 13C value";
    String long_name "THR";
    String units "per mil";
  }
  Thr_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 0.8;
    String bcodmo_name "Thr";
    String description "Threonine standard deviation";
    String long_name "Thr Stdev";
    String units "per mil";
  }
  Tyr {
    String bcodmo_name "Tyr";
    String description "Tyrosine 15N or 13C value";
    String long_name "TYR";
    String units "per mil";
  }
  Tyr_stdev {
    String bcodmo_name "Tyr";
    String description "Tyrosine standard deviation";
    String long_name "Tyr Stdev";
    String units "per mil";
  }
  Val {
    Float32 _FillValue NaN;
    Float32 actual_range -22.2, 16.54;
    String bcodmo_name "Val";
    String description "Valine 15N or 13C value";
    String long_name "Val";
    String units "per mil";
  }
  Val_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 1.3;
    String bcodmo_name "Val";
    String description "Valine standard deviation";
    String long_name "Val Stdev";
    String units "per mil";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson";
    String acquisition_description 
"Sampling
 
Mussels were collected in the winter (Dec \\u2013 Feb) of 2009\\u20132010. Sites
were chosen to be approximately evenly distributed along the CA coastline,
with ,80 km geographic separation between each
 
sampling site. Our main goal here was to sample mussels from a wide geographic
range across the CCS, although for observing finer scale local or regional
variations, a finer-scale sampling strategy would like be required. Typically
5 individual mussels were collected from each site, all between 30\\u201340 mm
maximum shell length, which were immediately placed on dry ice until further
preparation. The adductor muscle of each individual was dissected for
analysis. This tissue was selected because isotopic values in muscle tissue
have shown relatively long turnover times; based on past growth data, mussels
of this size would be expected to integrate approximately annual variability
in suspended food source isotopic values for each location sampled.
 
The dissected adductor tissue was carefully separated from other tissue types,
rinsed with deionized water, refrozen, and then freeze-dried for 48 hrs.
Lipids were removed \\u00a0using petroleum ether in a Dionex Accelerated
Solvent Extractor (Bannockburn, IL). Finally, in preparation for CSI-AA,
composite samples were made from a subset of 13 collection sites. For each
location chosen for CSI-AA (based on the bulk d15N record), 160.05 mg of
lyophilized tissue was weighed and combined for each individual mussel (n =
5).
 
Elemental and Bulk Isotopic Analyses
 
Stable carbon (d13C) and nitrogen (d15N) isotope ratios were determined via
elemental analyzer isotope ratio mass spectrometry (EA-IRMS) at the University
of California, Santa Cruz, Stable Isotope Laboratory (UCSC-SIL;
[http://emerald.ucsc.edu/~silab/](\\\\\"http://emerald.ucsc.edu/~silab/\\\\\")).
Approximately 1 mg of each dry isolated DOM sample was weighed into tin
capsules (Costec, 5 x 9 mm) for analysis. EA-IRMS analysis was conducted using
a Carlo Erba CHNS-O EA1108-elemental analyzer interfaced via a ConFlo III
device with a ThermoFinnigan Delta Plus XP isotope ratio mass spectrometer
(Thermo Fisher Scientific). \\u00a0Standards, EA-IRMS protocols, and correction
routines followed standard UCSC-SIL protocols. Analytical uncertainties of n=3
replicate measurements of isotopic standards ranged from \\u00b1 0.05 to
0.1\\u2030 for both d13C and d15N. Carbon to nitrogen elemental ratios were
similarly determined by elemental analysis. The presented ratios are atomic
ratios (C/N)a normalized to the mass of C and N, but have been abbreviated as
C/N throughout.
 
Compound-specific amino acid Isotopic 13C Analyses
 
Individual AA d13C values were measured as trifluoroacetyl isopropyl ester
(TFA-IP) AA derivatives, after acid hydrolysis. Samples were hydrolyzed by
adding 2.5 mg homogenized composite muscle tissue to 1 ml of 6 N HCl, and
heating for 20 h at 110 deg C under nitrogen. After drying, AA isopropyl
esters were prepared with a 1:5 mixture of AcCl:2-propanol (110 deg C, 60 min)
and then acylated using a 1:3 mixture of di chloro - methane (DCM) and
trifluoroacetic anhydride (TFAA) (100 deg C, 15 min). Derivatized AAs were
dissolved in DCM to a final ratio of approximately 2.5 mg of original tissue
to 250 ul DCM for injection on the gas chromatograph IRMS (GC-IRMS) system.
 
Isotopic analysis was conducted on a Thermo Trace GC Ultra with inline
oxidation and reduction furnaces, coupled to a ThermoFinnigan Delta Plus XP
IRMS, equipped with a CTC Analytics autosampler.Derivatives (1 ul) were
injected (250 deg C constant temperature) onto an Agilent DB-5 column (50 m
\\u00d7 0.32 mm ID \\u00d7 0.52 um film thickness), with a He carrier flow rate
of 2 ml min\\u22121 (constant flow). Separations were achieved with a 4-ramp
oven program: 52 deg C, 2 min hold; ramp 1 = 15 deg C min\\u22121 to 75 deg C,
hold for 2 min; ramp 2 = 4 deg C min\\u22121 to 185 deg C, hold for 2 min; ramp
3 = 4 deg C min\\u22121 to 200 deg C; ramp 4 = 30 deg C min\\u22121 to 240 deg
C, hold for 5 min.
 
This method allowed for d13C determination of the following AAs in mussel
tissue: non-essential AAs alanine (Ala), aspartic acid + asparagine (Asp),
glutamic acid + glutamine (Glu), glycine (Gly), proline (Pro), serine (Ser),
and tyrosine Tyr); and essential AAs leucine (Leu), isoleucine (Ile), valine
(Val), phenylalanine (Phe), and threonine (Thr). Acid hydrolysis destroys
tryptophan and cystine, so these were not detected, and it also deaminates\\\\\\
asparagine to aspartic acid, and glutamine to glutamic acid. While the
abbreviations Glx and Asx\\\\\\ are sometimes used to denote the combined Gln+Glu
and Asn+Asp peaks, in order to correspond better with extant CSI-AA
literature, we have elected to simply use Asp and Glu abbreviations, as
defined above.
 
All samples were analyzed on the GC-IRMS in triplicate, and measured AA d13C
values were corrected for the C added during derivatization, following the
approach of Silfer et al. (1991). Reproducibility for tissue samples was
typically less than <0.3\\u2030 (n = 3). The average mean deviation for all
tissue sample replicates was 0.4\\u2030.
 
Compound-specific amino acid Isotopic 15N Analyses
 
Amino acid d15N values were measured as Trifluoroacetyl isopropyl ester (TFA-
IP) AA derivatives, following protocols described in detail elsewhere (e.g.,.
Briefly, samples were hydrolyzed (6 N HCl, 20 hr at 110uC) under nitrogen, and
TFA derivatives subsequently prepared from free AA using a modified version of
the protocol described by Silfer (Silfer et al. 1991): isopropyl esters were
made with a 1:5 mixture of Acetyl Chloride (AcCl):2-propanol (110uC, 60
minutes), and then acylated using a 1:3 mixture of
Dichloromethane:Trifluroacetyl acetate (DCM:TFAA) (100uC, 15 minutes).
Derivatized AAs were dissolved in DCM to a final ratio of approximately 4 mg
of original tissue to 250 ml DCM. After derivatization, samples were analyzed
by a Varian gaschromatograph coupled to a Finnegan Delta-Plus isotope
ratiomass spectrometer (GC-IRMS). AAs were separated using a 50 m, 0.32 ID
Hewlett Packard Ultra-1 column with 1 mm film thickness. Under our analytical
conditions, d15N values could be reproducibly measured for alanine (Ala),
aspartic acid + asparagine (Asp), glutamic acid + glutamine (Glu), leucine
(Leu), isoleucine (Ile), proline (Pro), valine (Val), glycine (Gly), lysine
(Lys), serine (Ser), phenylalanine (Phe), threonine (Thr), and tyrosine (Tyr)
(Fig. S4). Most AAs were measured with a standard error of ,1.0% (based on n =
4 injections), and the average mean deviations for individual AA d15N
measurements across all tissue sample replicates was 0.5%.";
    String awards_0_award_nid "704683";
    String awards_0_award_number "OCE-1131816";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1131816";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Candace O. Major";
    String awards_0_program_manager_nid "51690";
    String cdm_data_type "Other";
    String comment 
"Mussel Data 
  M. McCarthy, PI 
  Version 24 August 2017";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2017-08-24T21:04:20Z";
    String date_modified "2019-06-11T17:24:45Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.713831.1";
    Float64 Easternmost_Easting -117.267;
    Float64 geospatial_lat_max 42.717;
    Float64 geospatial_lat_min 32.85;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -117.267;
    Float64 geospatial_lon_min -124.467;
    String geospatial_lon_units "degrees_east";
    String history 
"2024-09-14T00:41:27Z (local files)
2024-09-14T00:41:27Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_713831.das";
    String infoUrl "https://www.bco-dmo.org/dataset/713831";
    String institution "BCO-DMO";
    String instruments_0_acronym "IR Mass Spec";
    String instruments_0_dataset_instrument_description "Used with Trace GC, interfaced via a ConFlo III and GCC device";
    String instruments_0_dataset_instrument_nid "714013";
    String instruments_0_description "The Isotope-ratio Mass Spectrometer is a particular type of mass spectrometer used to measure the relative abundance of isotopes in a given sample (e.g. VG Prism II Isotope Ratio Mass-Spectrometer).";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB16/";
    String instruments_0_instrument_name "Isotope-ratio Mass Spectrometer";
    String instruments_0_instrument_nid "469";
    String instruments_0_supplied_name "hermoFinnigan Delta Plus XP isotope ratio mass spectrometer (Thermo Fisher Scientific)";
    String instruments_1_acronym "Gas Chromatograph";
    String instruments_1_dataset_instrument_description "Used with with a ThermoFinnigan Delta Plus XP isotope ratio mass spectrometer (Thermo Fisher Scientific)";
    String instruments_1_dataset_instrument_nid "714012";
    String instruments_1_description "Instrument separating gases, volatile substances, or substances dissolved in a volatile solvent by transporting an inert gas through a column packed with a sorbent to a detector for assay. (from SeaDataNet, BODC)";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB02/";
    String instruments_1_instrument_name "Gas Chromatograph";
    String instruments_1_instrument_nid "661";
    String instruments_1_supplied_name "Trace GC, interfaced via a ConFlo III and GCC device";
    String instruments_2_dataset_instrument_description "Interfaced via a ConFlo III device with a ThermoFinnigan Delta Plus XP isotope ratio mass spectrometer (Thermo Fisher Scientific)";
    String instruments_2_dataset_instrument_nid "714000";
    String instruments_2_description "Instruments that quantify carbon, nitrogen and sometimes other elements by combusting the sample at very high temperature and assaying the resulting gaseous oxides. Usually used for samples including organic material.";
    String instruments_2_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB01/";
    String instruments_2_instrument_name "Elemental Analyzer";
    String instruments_2_instrument_nid "546339";
    String instruments_2_supplied_name "Carlo Erba CHNS-O EA1108-elemental analyzer";
    String keywords "ala, Ala_stdev, asx, Asx_stdev, average, Average_Source, Average_Trophic, bco, bco-dmo, biological, bulk, Bulk_d13C, Bulk_d13C_stdev, Bulk_d15N, Bulk_d15N_stdev, chemical, d13, d15, data, dataset, deviation, dmo, element, erddap, glx, Glx_stdev, gly, Gly_stdev, habitat, Habitat_Type, identifier, ile, Ile_stdev, latitude, Latitude_degMin, leu, Leu_stdev, longitude, Longitude_degMin, lys, Lys_stdev, management, oceanography, office, phe, Phe_stdev, position, preliminary, pro, Pro_stdev, ser, Ser_stdev, site, source, standard, standard deviation, stdev, thr, Thr_stdev, trophic, Trophic_Position, type, tyr, Tyr_stdev, val, Val_stdev";
    String license "https://www.bco-dmo.org/dataset/713831/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/713831";
    Float64 Northernmost_Northing 42.717;
    String param_mapping "{'713831': {'lat': 'master - latitude', 'lon': 'master - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/713831/parameters";
    String people_0_affiliation "University of California-Santa Cruz";
    String people_0_affiliation_acronym "UC Santa Cruz";
    String people_0_person_name "Matthew D. McCarthy";
    String people_0_person_nid "557245";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI BCO-DMO";
    String people_1_person_name "Hannah Ake";
    String people_1_person_nid "650173";
    String people_1_role "BCO-DMO Data Manager";
    String people_1_role_type "related";
    String project "Amino Acid Sediment 15N";
    String projects_0_acronym "Amino Acid Sediment 15N";
    String projects_0_description 
"The bioavailability of nutrients plays a crucial role in oceanic biological productivity, the carbon cycle, and climate change. The global ocean inventory of nitrogen (N) is determined by the balance of N-fixation (sources) and denitrification (sinks). In this three-year project, a researcher from the University of California, Santa Cruz, will focus on developing compound-specific N isotope (d15N) analysis of amino acids as a new tool for understanding N source and transformation of organic matter in paleo-reservoirs. The offsets in the isotopic ratios of individual amino acid groups may yield information about trophic transfer, heterotrophic microbial reworking, and autotrophic versus heterotrophic sources. By measuring and comparing the bulk and amino acid d15N in size-fractioned samples from plankton tows, sediments traps, and multi-cores in oxic and suboxic depositional environments, the researcher will: (1) Provide a proxy of the d15N of average exported photoautotrophic organic matter; and (2) Provide a new level of detail into sedimentary organic N degradation and preservation.
Broader impacts:
This project will improve understanding of the fundamental underpinnings and behaviors of d15N amino acid patterns and how they behave in contrasting sedimentary environments, while also developing a potential paleoceanographic proxy. Funding will support a graduate student and undergraduate research at the institution. The researcher will also conduct community outreach in the form of a workshop/tutorial on the proxy development.";
    String projects_0_end_date "2016-09";
    String projects_0_geolocation "California Margin , Santa Barbara Basin , CA current system,  Eastern Tropical Pacific";
    String projects_0_name "The Use of Nitrogen Isotopes of Amino Acids To Understand Marine Sedimentary 15N Records";
    String projects_0_project_nid "704684";
    String projects_0_start_date "2011-10";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 32.85;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "Amino acid isotopes from mussels along the California margin from 2009-2013 (Amino Acid Sediment 15N project)";
    String title "[Amino acid isotopes from mussels] - Amino acid isotopes from mussels along the California margin from 2009-2013 (Amino Acid Sediment 15N project) (The Use of Nitrogen Isotopes of Amino Acids To Understand Marine Sedimentary 15N Records)";
    String version "1";
    Float64 Westernmost_Easting -124.467;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact