Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  CTD data and analyses of bottles from CTD rosette samples collected on R/V
Hugh R. Sharp cruise HRS1415 in August 2014
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_717687)
Range: longitude = -76.4093 to -72.7283°E, latitude = 38.2493 to 39.4967°N, depth = 1.125 to 9091.0m, time = 2014-08-18T14:19:00Z to (now?)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
Graph Type:  ?
X Axis: 
Y Axis: 
Constraints ? Optional
Constraint #1 ?
Constraint #2 ?
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
Graph Settings
Marker Type:   Size: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
(Please be patient. It may take a while to get the data.)
Then set the File Type: (File Type information)
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Time range:    |<   -       
[The graph you specified. Please be patient.]


Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Cast {
    Byte _FillValue 127;
    Byte actual_range 1, 30;
    String bcodmo_name "cast";
    String description "Cast identifier";
    String long_name "Cast";
    String units "unitless";
  Station {
    Byte _FillValue 127;
    Byte actual_range 1, 12;
    String bcodmo_name "station";
    String description "Station identifier";
    String long_name "Station";
    String units "unitless";
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 38.2493, 39.4967;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Latitude; positive values = North";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -76.4093, -72.7283;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Longitude; positive values = East";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  date {
    String bcodmo_name "date";
    String description "Date of sampling formatted as m/dd/yyyy";
    String long_name "Date";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String units "unitless";
  time_local {
    String bcodmo_name "time";
    String description "Time of sampling (local time zone) formatted as HH:MM";
    String long_name "Time Local";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  time_GMT {
    String bcodmo_name "time";
    String description "Time of sampling (GMT) formatted as HH:MM";
    String long_name "Time GMT";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.40837154e+9, NaN;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "Date and time of sampling formatted to ISO8601 standard (yyyy-mm-ddTHH:MM); constructed using original date and time_GMT fields.";
    String ioos_category "Time";
    String long_name "ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  Description {
    String bcodmo_name "comment";
    String description "Description and/or notes related to the sampling location or event";
    String long_name "Description";
    String units "unitless";
  Bottle_Num {
    String bcodmo_name "bottle";
    String description "Bottle number";
    String long_name "Bottle Num";
    String units "unitless";
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 1.125, 9091.0;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Sample depth";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  temp {
    Float32 _FillValue NaN;
    Float32 actual_range 2.8165, 25.907;
    String bcodmo_name "temperature";
    String description "Water temperature";
    String long_name "Temperature";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "degrees Celsius";
  sal {
    Float32 _FillValue NaN;
    Float32 actual_range 0.6265, 35.7921;
    String bcodmo_name "sal";
    String description "Salinity";
    String long_name "Sal";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PSALST01/";
    String units "unitless";
  CTD_O2 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.969, 271.388;
    String bcodmo_name "dissolved Oxygen";
    String description "Oxygen measured by CTD";
    String long_name "CTD O2";
    String units "micromolar (uM)";
  O2_sat_100pcnt {
    Float32 _FillValue NaN;
    Float32 actual_range 210.54, 333.98;
    String bcodmo_name "O2sat";
    String description "100% oxygen saturation";
    String long_name "O2 Sat 100pcnt";
    String units "micromolar (uM)";
  O2_sat {
    Float32 _FillValue NaN;
    Float32 actual_range 0.417, 113.082;
    String bcodmo_name "O2_sat_pcnt";
    String description "Percent oxygen saturation";
    String long_name "O2 Sat";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/OXYSZZ01/";
    String units "unitless (percent)";
  fluor_chla {
    String bcodmo_name "fluor voltage";
    String description "Chlorophyll fluorescence. Reported in voltage (from the RV Sharp fluorometer sensor).";
    String long_name "Fluor Chla";
    String units "volts";
  TA {
    Float32 _FillValue NaN;
    Float32 actual_range 911.9, 2360.6;
    String bcodmo_name "TALK";
    String description "Total alkalinity mesaured by open cell Gran titration with semi-automatic AS-ALK2 Apollo Scitech titrator";
    String long_name "TA";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/MDMAP014/";
    String units "microles per kilogram (uM/kg)";
  DIC {
    Float32 _FillValue NaN;
    Float32 actual_range 966.3, 2215.0;
    String bcodmo_name "DIC";
    String description "Dissolved inorganic carbon measured by infrared CO2 analyzer (AS-C3, Apollo Scitech)";
    String long_name "DIC";
    String units "microles per kilogram (uM/kg)";
  pH {
    Float32 _FillValue NaN;
    Float32 actual_range 7.601, 8.777;
    String bcodmo_name "pH";
    Float64 colorBarMaximum 9.0;
    Float64 colorBarMinimum 7.0;
    String description "pH (primary) measured by glass electrode, NBS buffers";
    String long_name "Sea Water Ph Reported On Total Scale";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/";
    String units "unitless (pH scale)";
  Particulate_MnOx {
    String bcodmo_name "unknown";
    String description "Particulate Manganese oxide (MnOx). DL= 0.01 uM or 10 nM.";
    String long_name "Particulate Mn Ox";
    String units "micromolar (uM)";
  Particulate_MnOx_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.01, 0.3;
    String bcodmo_name "unknown";
    String description "Standard deviation of Particulate Manganese oxide";
    String long_name "Particulate Mn Ox Stdev";
    String units "micromolar (uM)";
  Dissolved_Mn2plus {
    Float32 _FillValue NaN;
    Float32 actual_range 0.041, 148.109;
    String bcodmo_name "Mn";
    String description "Dissolved Mn2+";
    String long_name "Dissolved Mn2plus";
    String units "micromolar (uM)";
  Dissolved_Mn2plus_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 2.764;
    String bcodmo_name "Mn";
    String description "Standard deviation of dissolved Mn2+";
    String long_name "Dissolved Mn2plus Stdev";
    String units "micromolar (uM)";
  Dissolved_Mn3plus {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 121.013;
    String bcodmo_name "Mn";
    String description "Dissolved Mn3+ where Mn3+ = [MnT - Mn2+]";
    String long_name "Dissolved Mn3plus";
    String units "micromolar (uM)";
  Dissolved_Mn3plus_stdev {
    Float64 _FillValue NaN;
    String bcodmo_name "Mn";
    String description "Standard deviation of dissolved Mn3+";
    String long_name "Dissolved Mn3plus Stdev";
    String units "micromolar (uM)";
  Dissolved_MnT {
    Float32 _FillValue NaN;
    Float32 actual_range 0.029, 269.122;
    String bcodmo_name "Mn";
    String description "Dissolved MnT";
    String long_name "Dissolved Mn T";
    String units "micromolar (uM)";
  Dissolved_MnT_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 2.482;
    String bcodmo_name "Mn";
    String description "Standard deviation of dissolved MnT";
    String long_name "Dissolved Mn T Stdev";
    String units "micromolar (uM)";
  Dissolved_sulfide {
    String bcodmo_name "sulfide";
    String description "Dissolved sulfide";
    String long_name "Dissolved Sulfide";
    String units "micromolar (uM)";
  Dissolved_filtered_Fe2plus {
    Float32 _FillValue NaN;
    Float32 actual_range 0.39, 3.43;
    String bcodmo_name "Fe";
    String description "Dissolved filtered Fe2+. DL for Fe is 0.100 micromolar.";
    String long_name "Dissolved Filtered Fe2plus";
    String units "micromolar (uM)";
  Dissolved_filtered_Fe2plus_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.011, 3.18;
    String bcodmo_name "Fe";
    String description "Standard deviation of dissolved filtered Fe2+";
    String long_name "Dissolved Filtered Fe2plus Stdev";
    String units "micromolar (uM)";
  Particulate_unfiltered_Fe2plus {
    Float32 _FillValue NaN;
    Float32 actual_range 0.006, 3.65;
    String bcodmo_name "Fe";
    String description "Particulate unfiltered Fe2+";
    String long_name "Particulate Unfiltered Fe2plus";
    String units "micromolar (uM)";
  Particulate_unfiltered_Fe2plus_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 3.0e-4, 0.18;
    String bcodmo_name "Fe";
    String description "Standard deviation of particulate unfiltered Fe2+";
    String long_name "Particulate Unfiltered Fe2plus Stdev";
    String units "micromolar (uM)";
  Dissolved_filtered_Fe3plus {
    String bcodmo_name "Fe";
    String description "Dissolved filtered Fe3+";
    String long_name "Dissolved Filtered Fe3plus";
    String units "micromolar (uM)";
  Dissolved_filtered_Fe3plus_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0051, 0.0404;
    String bcodmo_name "Fe";
    String description "Standard deviation of dissolved filtered Fe3+";
    String long_name "Dissolved Filtered Fe3plus Stdev";
    String units "micromolar (uM)";
  Particulate_unfiltered_Fe3plus {
    String bcodmo_name "Fe";
    String description "Particulate unfiltered Fe3+";
    String long_name "Particulate Unfiltered Fe3plus";
    String units "micromolar (uM)";
  Particulate_unfiltered_Fe3plus_stdev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.006, 0.064;
    String bcodmo_name "Fe";
    String description "Standard deviation of particulate unfiltered Fe3+";
    String long_name "Particulate Unfiltered Fe3plus Stdev";
    String units "micromolar (uM)";
  pH_secondary {
    Float32 _FillValue NaN;
    Float32 actual_range 7.17, 7.69;
    String bcodmo_name "pH";
    String description "pH (secondary) measured by glass electrode, NBS buffers";
    String long_name "P H Secondary";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/";
    String units "unitless (pH scale)";
  nanoparticulate_S0 {
    String bcodmo_name "sulfide";
    String description "Nanoparticulate S(0) (";
    String long_name "Nanoparticulate S0";
    String units "micromolar (uM)";
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"Description/methods for parameters measured:  
 C parameters performed by Dr. Wei-Jun Cai\\u2019s group for:  
 TA - Open cell Gran titration with semi-automatic\\u00a0AS-ALK2 Apollo
Scitech titrator;  
 pH - glass electrode, NBS buffers;  
 DIC - infrared CO2 analyzer (AS-C3, Apollo Scitech).  
 Use Dickson CRM for calibration. DIC/TA samples were filtered (0.45um) and
fixed with 100 ul of saturated mercury bichloride.  
 Use the methods of Gran (1952) and Huang, et al. (2012).
Fe parameters:  
 The method of Stookey (1972) is used to determine dissolved Fe(II) and on
addition if hydroxylamine Fe total. Fe(III) is determined by difference.
Modified and calibrated by many including Lewis et al (2007) and MacDonald et
al (2014). Typically, triplicate measurements performed.
Dissolved Mn parameters:  
 The porphyrin spectrophotometric method of Madison et al (2011) measures
dissolved Mn(II), Mn(III) bound to weaker ligands and total Mn. Method
includes calibration and intercomparison of totals with other instrumentation
(ICP, AA).\\u00a0 Detection limit is 0.050 micromolar. Detection limit (DL) is
50 micromolar with a 1 cm path length cell.
Modification of Madison for Mn(III) bound to strong ligands by adding a
reducing agent to a separate subsample with the porphyrin to obtain total Mn.
Mn(III) bound to strong ligand complexes is determined by difference.
Typically, triplicate measurements performed. Detection limit is 3.0
MnOx on unfiltered samples:  
 The leucoberbelein blue method is that of Altmann (1972) and Krumblein and
Altmann (1973) in 1 cm cells, but can be modified for longer path length
S parameters:  
 O2, H2S and polysulfides by the voltammetry method of Luther et al (2008).  
 A flow cell was also used to collect in situ O2 and H2S data as well as some
additional samples. Analysis by voltammetry (Luther et al, 2008).  
 Solid and nanoparticulate S8 (Y\\u00fccel et al 2010 and Findlay et al 2014).  
 Typically, triplicate measurements performed.\\u00a0
Methods papers used in this project:  
 Dissolved Mn speciation parameters:  
 Madison, A., B. M. Tebo, G. W. Luther, III. 2011. Simultaneous determination
of soluble manganese(III), manganese(II) and total manganese in natural
(pore)waters. Talanta 84, 374-381.
Madison, A. S, B. M. Tebo, A. Mucci, B. Sundby and G. W. Luther, III. 2013.
Abundant Mn(III) in porewaters is a major component of the sedimentary redox
system. Science 341, 875-878.\\u00a0
Oldham, V. O., S. M. Owings, M. Jones, B. M. Tebo and G. W. Luther, III. 2015.
Evidence for the presence of strong Mn(III)-binding ligands in the water
column of the Chesapeake Bay. Marine Chemistry 171, 58-66.
Oldham, V. O., A. Mucci, B. M. Tebo and G.W. Luther III. 2017. Soluble
Mn(III)-L complexes are ubiquitous in oxygenated waters and stabilized by
humic ligands. Geochimica Cosmochimica Acta 199, 238-246.
 [[\\u00a0Here, we modified the method of Madison et al. (2011) for water
column samples to achieve a detection limit of 3.0 nM (3 times the standard
deviation of a blank) by using a 100-cm liquid waveguide capillary cell and
the addition of a heating step as well as a strong reducing agent for Mn
Speciation [Mn3+ = MnT \\u2013 Mn2+]. See Table 1 in this paper for recovery
tests. As weak Mn(III)-L complexes could not be measured in our previous work
(Oldham et al, 2015; paper above), this method was used throughout this
cruise. ]]
MnOX solids:  
 Altmann, H.H., 1972. Bestimmung von inWasser gel\\u00f6stem Sauerstoffmit
Leukoberbelinblau I. \\u00a0Fresenius' Z. Anal. Chem. 6, 97\\u201399.
Krumbein, W. E., and H. J. Altmann. 1973. \\u2018A New Method for the Detection
and Enumeration of Manganese Oxidizing and Reducing Microorganisms\\u2019.
Helgol\\u00e4nder Wissenschaftliche Meeresuntersuchungen 25 (2-3): 347\\u201356.
Dissolved Fe speciation parameters:  
 Stookey L.L. 1970. Ferrozine- A New Spectrophotometric Reagent for Iron.
Anal. Chem. 42, 779-781.
Lewis, B. L., B. T. Glazer, P. J. Montbriand, G. W. Luther, III, D. B. Nuzzio,
T. Deering, S. Ma, and S. Theberge. 2007. Short-term and interannual
variability of redox-sensitive chemical parameters in hypoxic/anoxic bottom
waters of the Chesapeake Bay. Marine Chemistry 105, 296-308.
O2 and H2S, polysulfides:  
 Luther, III, G. W., B. T. Glazer, S. Ma, R. E. Trouwborst, T. S. Moore, E.
Metzger, C. Kraiya, T. J. Waite, G. Druschel, B. Sundby, M. Taillefert, D. B.
Nuzzio, T. M. Shank, B. L. Lewis and P. J. Brendel. 2008. Use of voltammetric
solid-state (micro)electrodes for studying biogeochemical processes:
laboratory measurements to real time measurements with an in situ
electrochemical analyzer (ISEA). Marine Chemistry 108, 221-235.
Luther, G. W., III, and A. S. Madison. 2013. Determination of Dissolved
Oxygen, Hydrogen Sulfide, Iron(II), and Manganese(II) in Wetland Pore Waters.
In: Methods in Biogeochemistry of Wetlands, R.D. DeLaune, K.R. Reddy, C.J.
Richardson, and J.P. Megonigal, editors. SSSA Book Series, no. 10. SSSA,
Madison, WI. p. 87-106.
 Y\\u00fccel, M., S. K. Konovalov, T. S. Moore, C. P. Janzen and G. W. Luther,
III. 2010. Sulfur speciation in the upper Black Sea sediments. Chemical
Geology 269, 364-375.
pH and inorganic carbon parameters:  
 Gran G. 1952. Determination of the equivalence point in potentiometric
titrations, Part II. Analyst, 77: 661-671.
Huang W.-J., Wang Y., and Cai W.-J. 2012. Assessment of sample storage
techniques for total alkalinity and dissolved inorganic carbon in seawater.
Limnology and Oceanography: Methods, 10: 711-717.";
    String awards_0_award_nid "636519";
    String awards_0_award_number "OCE-1155385";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1155385";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Donald L. Rice";
    String awards_0_program_manager_nid "51467";
    String cdm_data_type "Other";
    String comment 
"CTD Rosette Bottle Data 
  Cruise HRS1415 (140818GL) - August 2014 
 PI: George W. Luther (University of Delaware) 
 Co-PI: Bradley M. Tebo (Oregon Health and Science University) 
 Version: 06 November 2017 
   duplicate bottles at each depth 
   MnOx LOD = 0.193 
   BDL = below detection limit; NA = not analyzed 
   not_detected = not detected; NM = sensor not available; nd = no data/not measured";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2017-10-25T17:48:19Z";
    String date_modified "2020-01-14T17:05:32Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.717687.1";
    Float64 Easternmost_Easting -72.7283;
    Float64 geospatial_lat_max 39.4967;
    Float64 geospatial_lat_min 38.2493;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -72.7283;
    Float64 geospatial_lon_min -76.4093;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 9091.0;
    Float64 geospatial_vertical_min 1.125;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2020-12-01T15:39:37Z (local files)
2020-12-01T15:39:37Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_717687.das";
    String infoUrl "https://www.bco-dmo.org/dataset/717687";
    String institution "BCO-DMO";
    String instruments_0_acronym "Niskin bottle";
    String instruments_0_dataset_instrument_nid "718694";
    String instruments_0_description "A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends.  The bottles can be attached individually on a hydrowire or deployed in 12, 24 or 36 bottle Rosette systems mounted on a frame and combined with a CTD.  Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0412/";
    String instruments_0_instrument_name "Niskin bottle";
    String instruments_0_instrument_nid "413";
    String instruments_1_acronym "CTD Sea-Bird";
    String instruments_1_dataset_instrument_description "Samples were collected using R/V Sharp's Sea-Bird CTD.";
    String instruments_1_dataset_instrument_nid "718689";
    String instruments_1_description "Conductivity, Temperature, Depth (CTD) sensor package from SeaBird Electronics, no specific unit identified. This instrument designation is used when specific make and model are not known. See also other SeaBird instruments listed under CTD. More information from Sea-Bird Electronics.";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/130/";
    String instruments_1_instrument_name "CTD Sea-Bird";
    String instruments_1_instrument_nid "447";
    String instruments_2_acronym "CTD-fluorometer";
    String instruments_2_dataset_instrument_description "R/V Sharp's CTD fluorometer";
    String instruments_2_dataset_instrument_nid "718690";
    String instruments_2_description "A CTD-fluorometer is an instrument package designed to measure hydrographic information (pressure, temperature and conductivity) and chlorophyll fluorescence.";
    String instruments_2_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/113/";
    String instruments_2_instrument_name "CTD-fluorometer";
    String instruments_2_instrument_nid "580";
    String instruments_3_acronym "Automatic titrator";
    String instruments_3_dataset_instrument_nid "717805";
    String instruments_3_description "Instruments that incrementally add quantified aliquots of a reagent to a sample until the end-point of a chemical reaction is reached.";
    String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB12/";
    String instruments_3_instrument_name "Automatic titrator";
    String instruments_3_instrument_nid "682";
    String instruments_3_supplied_name "AS-ALK2 Apollo Scitech titrator";
    String instruments_4_acronym "Dissolved Oxygen Sensor";
    String instruments_4_dataset_instrument_description "O2 sensor equipped on R/V Sharp's CTD rosette";
    String instruments_4_dataset_instrument_nid "718691";
    String instruments_4_description "An electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analyzed";
    String instruments_4_instrument_name "Dissolved Oxygen Sensor";
    String instruments_4_instrument_nid "705";
    String instruments_5_acronym "CO2 Analyzer";
    String instruments_5_dataset_instrument_nid "717806";
    String instruments_5_description "Measures atmospheric carbon dioxide (CO2) concentration.";
    String instruments_5_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/382/";
    String instruments_5_instrument_name "CO2 Analyzer";
    String instruments_5_instrument_nid "491476";
    String instruments_5_supplied_name "AS-C3, Apollo Scitech infrared CO2 analyzer";
    String keywords "100pcnt, altimetry, bco, bco-dmo, biological, bottle, Bottle_Num, cast, chemical, chemistry, chla, chlorophyll, chlorophyll-a, conductivity, ctd, CTD_O2, data, dataset, date, depth, description, deviation, dic, dissolved, Dissolved_filtered_Fe2plus, Dissolved_filtered_Fe2plus_stdev, Dissolved_filtered_Fe3plus, Dissolved_filtered_Fe3plus_stdev, Dissolved_Mn2plus, Dissolved_Mn2plus_stdev, Dissolved_Mn3plus, Dissolved_Mn3plus_stdev, Dissolved_MnT, Dissolved_MnT_stdev, Dissolved_sulfide, dmo, earth, Earth Science > Oceans > Ocean Chemistry > pH, erddap, fe2plus, fe3plus, filtered, fluor, fluor_chla, iso, ISO_DateTime_UTC, laboratory, latitude, local, longitude, management, mn2plus, mn3plus, nanoparticulate, nanoparticulate_S0, num, O2, O2_sat, O2_sat_100pcnt, ocean, oceanography, oceans, office, oxygen, particulate, Particulate_MnOx, Particulate_MnOx_stdev, Particulate_unfiltered_Fe2plus, Particulate_unfiltered_Fe2plus_stdev, Particulate_unfiltered_Fe3plus, Particulate_unfiltered_Fe3plus_stdev, pH_secondary, preliminary, reported, sal, sat, satellite, scale, science, sea, sea_water_ph_reported_on_total_scale, seawater, secondary, sonde, standard, standard deviation, station, stdev, sulfide, temperature, time, time_GMT, time_local, total, unfiltered, water";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "https://www.bco-dmo.org/dataset/717687/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/717687";
    Float64 Northernmost_Northing 39.4967;
    String param_mapping "{'717687': {'lat': 'master - latitude', 'depth': 'flag - depth', 'lon': 'master - longitude', 'ISO_DateTime_UTC': 'flag - time'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/717687/parameters";
    String people_0_affiliation "University of Delaware";
    String people_0_person_name "George W. Luther";
    String people_0_person_nid "50547";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Oregon Health & Science University";
    String people_1_affiliation_acronym "IEH/OHSU";
    String people_1_person_name "Bradley M. Tebo";
    String people_1_person_nid "527496";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI BCO-DMO";
    String people_2_person_name "Shannon Rauch";
    String people_2_person_nid "51498";
    String people_2_role "BCO-DMO Data Manager";
    String people_2_role_type "related";
    String project "Soluble ManganeseIII";
    String projects_0_acronym "Soluble ManganeseIII";
    String projects_0_description 
"Description from NSF award abstract:
The research conducted by investigators in the School of Marine Science and Policy at the University of Delaware and within the Department of Environmental and Biomolecular Systems of Oregon Health and Science University will examine the importance of soluble Mn(III) in the biogeochemical cycling of Mn. To date, most studies of Mn in marine environments have not considered Mn(III), the intermediate oxidation state between the soluble reduced state (Mn(II)) and the more insoluble oxidized state (Mn(IV)). The presence and stability of Mn(III) in marine systems, especially those where oxygen levels are reduced, changes the dynamics and stability, solubility and fate and transport of Mn in these locations, and at interfaces between oxic and low oxygen environments. This is not understood at present and the proposed research is poised to provide new information concerning the Mn cycle and is potentially transformative research. The PIs have developed new methods to examine Mn(III) levels in the environment and this capability will bolster the successful accomplishment of the project's goals. The studies will not only focus on understanding the cycling of Mn between its various oxidation states but will determine the concentration and distribution of Mn(III) in stratified coastal ocean waters and in sediment porewaters. The study will also examine the potentially important role of Mn(III) in mediating and influencing the biogeochemical cycling of Mn with that of Fe and S, which are both important components of the major ocean chemical cycles. A better understanding of the biogeochemistry of Mn will inform not only scientists interested in metal cycling in the ocean but also those focused on studies across redox transition zones. The proposed research has an international component and the investigators have developed plans to broadly disseminate their results to students at all levels and to the community. The Principal Investigators have a strong history in education and graduate student and post-doctoral support and mentoring and this will continue under the current grant.";
    String projects_0_end_date "2016-01";
    String projects_0_geolocation "Chesapeake Bay and coastal Atlantic Ocean";
    String projects_0_name "The role of soluble Mn(III) in the biogeochemical coupling of the Mn, Fe and sulfur cycles";
    String projects_0_project_nid "636520";
    String projects_0_start_date "2012-02";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 38.2493;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "Dissolved_Mn3plus_stdev";
    String summary "CTD data and analyses of bottles from CTD rosette samples collected on cruise HRS1415.";
    String time_coverage_start "2014-08-18T14:19:00Z";
    String title "CTD data and analyses of bottles from CTD rosette samples collected on R/V Hugh R. Sharp cruise HRS1415 in August 2014";
    String version "1";
    Float64 Westernmost_Easting -76.4093;
    String xml_source "osprey2erddap.update_xml() v1.3";


Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
For example,
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.

ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact