BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Dataset Title: | [In situ pCO2 manipulation experiments 2010-2011] - Rates of primary and bacterial production measured in situ under ambient and elevated pCO2 (750 µ atm) from the Hawaiian Ocean Time Series near Station ALOHA from 2010- 2011. (Oceanic diazotroph community structure and activities in a high carbon dioxide world) |
Institution: | BCO-DMO (Dataset ID: bcodmo_dataset_726341) |
Information: | Summary | License | FGDC | ISO 19115 | Metadata | Background | Subset | Files | Make a graph |
Attributes { s { cruise_id { String bcodmo_name "cruiseid"; String description "cruise identification number"; String long_name "Cruise Id"; String units "no units"; } station { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 2, 5; String bcodmo_name "station"; String description "station number"; String long_name "Station"; String units "text"; } cast { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 5, 20; String bcodmo_name "cast"; String description "cast number"; String long_name "Cast"; String units "unitless"; } date { Int32 _FillValue 2147483647; Int32 actual_range 20100821, 20110316; String bcodmo_name "date"; String description "date sampling began; format: YYYYMMDD"; String long_name "Date"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/"; String units "unitless"; } year { Int16 _FillValue 32767; Int16 actual_range 2010, 2011; String bcodmo_name "year"; String description "year of sample; format: YYYY"; String long_name "Year"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/YEARXXXX/"; String units "unitless"; } month { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 8; String bcodmo_name "month"; String description "month of sample; format: MM"; String long_name "Month"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/MNTHXXXX/"; String units "unitless"; } day { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 14, 28; String bcodmo_name "day"; String description "day of sample; format: DD"; String long_name "Day"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DAYXXXXX/"; String units "unitless"; } time2 { Int32 _FillValue 2147483647; Int32 actual_range 1059, 70018; String bcodmo_name "time"; String description "time of sampling; format: hhmm"; String long_name "Time"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/"; String units "unitless"; } latitude { String _CoordinateAxisType "Lat"; Float64 _FillValue NaN; Float64 actual_range 22.7485, 25.4193; String axis "Y"; String bcodmo_name "latitude"; Float64 colorBarMaximum 90.0; Float64 colorBarMinimum -90.0; String description "latitude"; String ioos_category "Location"; String long_name "Latitude"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/"; String standard_name "latitude"; String units "degrees_north"; } longitude { String _CoordinateAxisType "Lon"; Float64 _FillValue NaN; Float64 actual_range -160.7528, -157.9648; String axis "X"; String bcodmo_name "longitude"; Float64 colorBarMaximum 180.0; Float64 colorBarMinimum -180.0; String description "longitude"; String ioos_category "Location"; String long_name "Longitude"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/"; String standard_name "longitude"; String units "degrees_east"; } depth { String _CoordinateAxisType "Height"; String _CoordinateZisPositive "down"; Float64 _FillValue NaN; Float64 actual_range 5.0, 125.0; String axis "Z"; String bcodmo_name "depth"; Float64 colorBarMaximum 8000.0; Float64 colorBarMinimum -8000.0; String colorBarPalette "TopographyDepth"; String description "depth from which sample was collected"; String ioos_category "Location"; String long_name "Depth"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/"; String positive "down"; String standard_name "depth"; String units "m"; } PP_mean_10um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.52; String bcodmo_name "Primary Production"; String description "mean 14C-Primary Production rate from 10 micron filters"; String long_name "PP Mean 10um"; String units "micromol C/liter/day"; } PP_std_dev_10um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.11; String bcodmo_name "standard deviation"; String description "standard deviation of 14C-Primary Production rate from 10 micron filters"; String long_name "PP Std Dev 10um"; String units "micromol C/liter/day"; } PP_num_obs_10um { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "numb_obs"; String description "number of samples used in calculation of PP rate mean and standard deviation"; String long_name "PP Num Obs 10um"; String units "unitless"; } PP_mean_750uatm_pco2_10um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.54; String bcodmo_name "Primary Production"; String description "mean 14C-Primary Production rate from 10 micron filters incubated at 750 microatm pCO2"; String long_name "PP Mean 750uatm Pco2 10um"; String units "micromol C/liter/day"; } PP_std_dev_750uatm_pco2_10um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.07; String bcodmo_name "standard deviation"; String description "standard deviation of 14C-Primary Production rate from 10 micron filters incubated at 750 microatm pCO2"; String long_name "PP Std Dev 750uatm Pco2 10um"; String units "micromol C/liter/day"; } PP_num_obs_750uatm_pco2_10um { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "numb_obs"; String description "number of samples used in calculation of PP rate mean and standard deviation"; String long_name "PP Num Obs 750uatm Pco2 10um"; String units "unitless"; } PP_mean_2um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.17; String bcodmo_name "Primary Production"; String description "mean 14C-Primary Production rate from 2 micron filters"; String long_name "PP Mean 2um"; String units "micromol C/liter/day"; } PP_std_dev_2um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.02; String bcodmo_name "standard deviation"; String description "standard deviation of 14C-Primary Production rate from 2 micron filters"; String long_name "PP Std Dev 2um"; String units "micromol C/liter/day"; } PP_num_obs_2um { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "numb_obs"; String description "number of samples used in calculation of PP rate mean and standard deviation"; String long_name "PP Num Obs 2um"; String units "unitless"; } PP_mean_750uatm_pco2_2um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.2; String bcodmo_name "Primary Production"; String description "mean 14C-Primary Production rate from 2 micron filters incubated at 750 microatm pCO2"; String long_name "PP Mean 750uatm Pco2 2um"; String units "micromol C/liter/day"; } PP_std_dev_750uatm_pco2_2um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.04; String bcodmo_name "standard deviation"; String description "standard deviation of 14C-Primary Production rate from 2 micron filters incubated at 750 microatm pCO2"; String long_name "PP Std Dev 750uatm Pco2 2um"; String units "micromol C/liter/day"; } PP_num_obs_750uatm_pco2_2um { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "numb_obs"; String description "number of samples used in calculation of PP rate mean and standard deviation"; String long_name "PP Num Obs 750uatm Pco2 2um"; String units "unitless"; } PP_mean_0pt2um { Float32 _FillValue NaN; Float32 actual_range 0.03, 0.33; String bcodmo_name "Primary Production"; String description "mean 14C-Primary Production rate from 0.2 micron filters"; String long_name "PP Mean 0pt2um"; String units "micromol C/liter/day"; } PP_std_dev_0pt2um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.07; String bcodmo_name "standard deviation"; String description "standard deviation of 14C-Primary Production rate from 0.2 micron filters"; String long_name "PP Std Dev 0pt2um"; String units "micromol C/liter/day"; } PP_num_obs_0pt2um { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "Primary Production"; String description "number of samples used in calculation of PP rate mean and standard deviation"; String long_name "PP Num Obs 0pt2um"; String units "unitless"; } PP_mean_750uatm_pco2_0pt2um { Float32 _FillValue NaN; Float32 actual_range 0.03, 0.29; String bcodmo_name "Primary Production"; String description "mean 14C-Primary Production rate from 0.2 micron filters incubated at 750 microatm pCO2"; String long_name "PP Mean 750uatm Pco2 0pt2um"; String units "micromol C/liter/day"; } PP_std_dev_750uatm_pco2_0pt2um { Float32 _FillValue NaN; Float32 actual_range 0.0, 0.07; String bcodmo_name "standard deviation"; String description "standard deviation of 14C-Primary Production rate from 0.2 micron filters incubated at 750 microatm pCO2"; String long_name "PP Std Dev 750uatm Pco2 0pt2um"; String units "micromol C/liter/day"; } PP_num_obs_750uatm_pco2_0pt2um { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "Primary Production"; String description "number of samples used in calculation of PP rate mean and standard deviation"; String long_name "PP Num Obs 750uatm Pco2 0pt2um"; String units "unitless"; } dissolved_inorganic_carbon { Float32 _FillValue NaN; Float32 actual_range 1992.65, 2045.7; String bcodmo_name "DIC"; String description "dissolved inorganic carbon of seawater used for PP and 3H_leuc incubations at ambient conditions"; String long_name "Dissolved Inorganic Carbon"; String units "micromol/kilogram seawater"; } dissolved_inorganic_carbon_750uatm_pco2 { Float32 _FillValue NaN; Float32 actual_range 2135.3, 2293.1; String bcodmo_name "DIC"; String description "dissolved inorganic carbon of seawater used for PP and 3H_leuc incubations at 750 microatm pCO2"; String long_name "Dissolved Inorganic Carbon 750uatm Pco2"; String units "micromol/kilogram seawater"; } total_alkalinity { Float32 _FillValue NaN; Float32 actual_range 2300.68, 2347.57; String bcodmo_name "TALK"; String description "total alkalinity of seawater used for PP and 3H_leuc incubations at ambient conditions"; String long_name "Total Alkalinity"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/MDMAP014/"; String units "microequivalents/kilogram seawater"; } total_alkalinity_750uatm_pco2 { Float32 _FillValue NaN; Float32 actual_range 2318.1, 2417.1; String bcodmo_name "TALK"; String description "total alkalinity of seawater used for PP and 3H_leuc incubations at 750 microatm pCO2"; String long_name "Total Alkalinity 750uatm Pco2"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/MDMAP014/"; String units "microequivalents/kilogram seawater"; } chlorophyll { Float32 _FillValue NaN; Float32 actual_range 0.06, 0.33; String bcodmo_name "chlorophyll a"; Float64 colorBarMaximum 30.0; Float64 colorBarMinimum 0.03; String colorBarScale "Log"; String description "chlorophyll a"; String long_name "Concentration Of Chlorophyll In Sea Water"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/"; String units "micrograms/liter"; } leuc_3H_light_incorp_mean { Float32 _FillValue NaN; Float32 actual_range 1.56, 21.35; String bcodmo_name "leuc_incorp"; String description "mean 3H-Leucine (light incubated) incorporation rates"; String long_name "Leuc 3 H Light Incorp Mean"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/UPLERIP4/"; String units "picomol leucine/liter/hour"; } leuc_3H_light_incorp_std_dev { Float32 _FillValue NaN; Float32 actual_range 0.02, 1.63; String bcodmo_name "standard deviation"; String description "standard deviation 3H-Leucine (light incubated) incorporation rates"; String long_name "Leuc 3 H Light Incorp Std Dev"; String units "picomol leucine/liter/hour"; } leuc_3H_light_num_obs { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "numb_obs"; String description "number of samples used in calculation of 3H-leucine incorporation rate mean and standard deviation"; String long_name "Leuc 3 H Light Num Obs"; String units "unitless"; } leuc_3H_light_incorp_mean_750uatm_pco2 { Float32 _FillValue NaN; Float32 actual_range 1.28, 21.22; String bcodmo_name "leuc_incorp"; String description "mean 3H-Leucine (light incubated) incorporation rates at 750 microatm pCO2"; String long_name "Leuc 3 H Light Incorp Mean 750uatm Pco2"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/UPLERIP4/"; String units "picomol leucine/liter/hour"; } leuc_3H_light_incorp_std_dev_750uatm_pco2 { Float32 _FillValue NaN; Float32 actual_range 0.03, 1.01; String bcodmo_name "standard deviation"; String description "standard deviation 3H-Leucine (light incubated) incorporation rates at 750 microatm pCO2"; String long_name "Leuc 3 H Light Incorp Std Dev 750uatm Pco2"; String units "picomol leucine/liter/hour"; } leuc_3H_light_num_obs_750uatm_pco2 { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "leuc_incorp"; String description "number of samples used in calculation of 3H-leucine incorporation rate mean and standard deviation"; String long_name "Leuc 3 H Light Num Obs 750uatm Pco2"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/UPLERIP4/"; String units "unitless"; } leuc_3H_dark_incorp_mean { Float32 _FillValue NaN; Float32 actual_range 0.67, 16.57; String bcodmo_name "leuc_incorp"; String description "Mean 3H-Leucine (dark incubated) incorporation rates"; String long_name "Leuc 3 H Dark Incorp Mean"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/UPLERIP4/"; String units "picomol leucine/liter/hour"; } leuc_3H_dark_incorp_std_dev { Float32 _FillValue NaN; Float32 actual_range 0.02, 1.56; String bcodmo_name "standard deviation"; String description "standard deviation 3H-Leucine (dark incubated) incorporation rates"; String long_name "Leuc 3 H Dark Incorp Std Dev"; String units "picomol leucine/liter/hour"; } leuc_3H_dark_num_obs { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "numb_obs"; String description "number of samples used in calculation of 3H-leucine incorporation rate mean and standard deviation"; String long_name "Leuc 3 H Dark Num Obs"; String units "unitless"; } leuc_3H_dark_incorp_mean_750uatm_pco2 { Float32 _FillValue NaN; Float32 actual_range 0.62, 18.91; String bcodmo_name "leuc_incorp"; String description "mean 3H-Leucine (dark incubated) incorporation rates at 750 microatm pCO2"; String long_name "Leuc 3 H Dark Incorp Mean 750uatm Pco2"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/UPLERIP4/"; String units "picomol leucine/liter/hour"; } leuc_3H_dark_incorp_std_dev_750uatm_pco2 { Float32 _FillValue NaN; Float32 actual_range 0.02, 1.4; String bcodmo_name "standard deviation"; String description "standard deviation 3H-Leucine dark incubated) incorporation rates at 750 microatm pCO2"; String long_name "Leuc 3 H Dark Incorp Std Dev 750uatm Pco2"; String units "picomol leucine/liter/hour"; } leuc_3H_dark_num_obs_750uatm_pco2 { Byte _FillValue 127; String _Unsigned "false"; Byte actual_range 3, 3; String bcodmo_name "numb_obs"; String description "number of samples used in calculation of 3H-leucine incorporation rate mean and standard deviation"; String long_name "Leuc 3 H Dark Num Obs 750uatm Pco2"; String units "unitless"; } } NC_GLOBAL { String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson"; String acquisition_description "Rates of primary production were assessed using the 14C-bicarbonate incorporation technique. Rates of bacterial production were assessed using incorporation of 3H-leucine. Whole seawater samples from six discrete depths (5, 25, 45, 75, 100, and 125 m) were collected into duplicate acid-washed 20 L carboys. Control carboys were unamended; 43 mL of 1.0 N HCl and 4 mmol sodium bicarbonate were added to a treatment carboy at each depth, to increase the pCO2 to ~750 \\u00b5atm, while minimizing changes to total alkalinity. Water from control and treatment carboys were then each subsampled into acid washed 500 mL polycarbonate bottles, with triplicate bottles per depth and treatment. To each bottle, was then added ~1.85 MBq 14C-bicarbonate. Water from each depth and treatment was also added to acid-cleaned 40 mL polycarbonate centrifuge tubes, each tube was then inoculated with 3H-leucine to a final concentration of 20 nmol L-1. For each depth and treatment, there was a dark (in a opaque cloth bag) and light incubation. Time zero blanks were immediately subsampled from each tube, by aliquoting 1.5 mL of seawater into 2 mL microcentrifuge tubes each containing 100 \\u00b5L of 100% TCA. Following addition of radioactive substrates, the bottles and tubes were affixed to a free-drifting array and incubated\\u00a0in situ\\u00a0at the original depth of sample collection from dawn to dusk. Upon recovery of the array, the total radioactivity added to each primary production sample bottle was determined by subsampling 250 \\u00b5L aliquots of seawater into scintillation vials containing 500 \\u00b5L of \\u03b2-phenylethylamine. 400 mL from each 500 mL sample bottle was filtered at low vacuum (<50 mm Hg) onto 25 mm diameter, 10 \\u00b5m porosity polycarbonate membrane filters. The filtrate was collected and filtered onto 25 mm diameter 2 \\u00b5m porosity polycarbonate membrane filters. 100 mL of that filtrate was then filtered onto 25 mm diameter 0.2 \\u00b5m porosity polycarbonate membrane filters.\\u00a0 Filters were stored frozen in 20 mL scintillation vials until analysis. Analysis consisted of acidification via addition of 1 mL of 2 N hydrochloric acid, and passively venting at least 24 hours in a fume hood to remove all inorganic 14C. Addition of 10 mL Ultima Gold LLT liquid scintillation cocktail and counting on a Perkin Elmer 2600 liquid scintillation counter completed the primary production analysis. Upon recovery of the array, triplicate 1.5 mL subsamples were removed from each polycarbonate tube for bacterial production rate measurements, and aliquoted into 2 mL microcentrifuge tubes containing 100 \\u00b5L of 100% TCA. The microcentrifuge tubes were frozen (-20\\u00b0C) for subsequent processing, following the procedures described in Smith and Azam 1992. Samples for the determination of dissolved inorganic carbon and total alkalinity were collected from each carboy and analyzed according to the protocols of the Hawaii Ocean Time-series (Dore et al. 2009; Winn et al. 1998). DIC and TA samples were collected into precombusted 300 mL borosilicate bottles. Care was taken to avoid introduction of air bubbles into samples during filling; bottles were allowed to overflow three times during filling. Once filled, samples were immediately fixed with 100 \\u00b5L of a saturated solution of mercuric chloride; bottles were capped with a grease seal, and stored in the dark for later analysis. Samples for measurement of fluorometric chlorophyll\\u00a0a\\u00a0were collected according to the protocols of the Hawaii Ocean Time-series; analysis was performed following Letelier et al. (1996)."; String awards_0_award_nid "54679"; String awards_0_award_number "OCE-0850827"; String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0850827"; String awards_0_funder_name "NSF Division of Ocean Sciences"; String awards_0_funding_acronym "NSF OCE"; String awards_0_funding_source_nid "355"; String awards_0_program_manager "David L. Garrison"; String awards_0_program_manager_nid "50534"; String cdm_data_type "Other"; String comment "pCO2 manipulation experiments (in situ) 2010-2011 PI's: Church M., Letelier R., Viviani D. Dataset ID: 726341 Version: 1 Last updated: 2018-03-15"; String Conventions "COARDS, CF-1.6, ACDD-1.3"; String creator_email "info@bco-dmo.org"; String creator_name "BCO-DMO"; String creator_type "institution"; String creator_url "https://www.bco-dmo.org/"; String data_source "extract_data_as_tsv version 2.3 19 Dec 2019"; String date_created "2018-02-06T19:34:30Z"; String date_modified "2019-06-12T19:22:13Z"; String defaultDataQuery "&time<now"; String doi "10.1575/1912/bco-dmo.726341.1"; Float64 Easternmost_Easting -157.9648; Float64 geospatial_lat_max 25.4193; Float64 geospatial_lat_min 22.7485; String geospatial_lat_units "degrees_north"; Float64 geospatial_lon_max -157.9648; Float64 geospatial_lon_min -160.7528; String geospatial_lon_units "degrees_east"; Float64 geospatial_vertical_max 125.0; Float64 geospatial_vertical_min 5.0; String geospatial_vertical_positive "down"; String geospatial_vertical_units "m"; String history "2024-11-08T06:01:37Z (local files) 2024-11-08T06:01:37Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_726341.html"; String infoUrl "https://www.bco-dmo.org/dataset/726341"; String institution "BCO-DMO"; String instruments_0_acronym "CTD"; String instruments_0_dataset_instrument_nid "732001"; String instruments_0_description "The Conductivity, Temperature, Depth (CTD) unit is an integrated instrument package designed to measure the conductivity, temperature, and pressure (depth) of the water column. The instrument is lowered via cable through the water column and permits scientists observe the physical properties in real time via a conducting cable connecting the CTD to a deck unit and computer on the ship. The CTD is often configured with additional optional sensors including fluorometers, transmissometers and/or radiometers. It is often combined with a Rosette of water sampling bottles (e.g. Niskin, GO-FLO) for collecting discrete water samples during the cast. This instrument designation is used when specific make and model are not known."; String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/130/"; String instruments_0_instrument_name "CTD profiler"; String instruments_0_instrument_nid "417"; String instruments_1_acronym "LSC"; String instruments_1_dataset_instrument_nid "730944"; String instruments_1_description "Liquid scintillation counting is an analytical technique which is defined by the incorporation of the radiolabeled analyte into uniform distribution with a liquid chemical medium capable of converting the kinetic energy of nuclear emissions into light energy. Although the liquid scintillation counter is a sophisticated laboratory counting system used the quantify the activity of particulate emitting (ß and a) radioactive samples, it can also detect the auger electrons emitted from 51Cr and 125I samples."; String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB21/"; String instruments_1_instrument_name "Liquid Scintillation Counter"; String instruments_1_instrument_nid "624"; String instruments_1_supplied_name "Perkin Elmer 2600 liquid scintillation counter"; String keywords "0pt2um, 10um, 2um, 750uatm, alkalinity, bco, bco-dmo, biological, carbon, cast, chemical, chemistry, chlorophyll, concentration, concentration_of_chlorophyll_in_sea_water, cruise, cruise_id, dark, data, dataset, date, day, depth, dev, dissolved, dissolved_inorganic_carbon, dissolved_inorganic_carbon_750uatm_pco2, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, erddap, incorp, inorganic, latitude, leuc, leuc_3H_dark_incorp_mean, leuc_3H_dark_incorp_mean_750uatm_pco2, leuc_3H_dark_incorp_std_dev, leuc_3H_dark_incorp_std_dev_750uatm_pco2, leuc_3H_dark_num_obs, leuc_3H_dark_num_obs_750uatm_pco2, leuc_3H_light_incorp_mean, leuc_3H_light_incorp_mean_750uatm_pco2, leuc_3H_light_incorp_std_dev, leuc_3H_light_incorp_std_dev_750uatm_pco2, leuc_3H_light_num_obs, leuc_3H_light_num_obs_750uatm_pco2, light, longitude, management, mean, month, num, obs, observations, ocean, oceanography, oceans, office, pco2, PP_mean_0pt2um, PP_mean_10um, PP_mean_2um, PP_mean_750uatm_pco2_0pt2um, PP_mean_750uatm_pco2_10um, PP_mean_750uatm_pco2_2um, PP_num_obs_0pt2um, PP_num_obs_10um, PP_num_obs_2um, PP_num_obs_750uatm_pco2_0pt2um, PP_num_obs_750uatm_pco2_10um, PP_num_obs_750uatm_pco2_2um, PP_std_dev_0pt2um, PP_std_dev_10um, PP_std_dev_2um, PP_std_dev_750uatm_pco2_0pt2um, PP_std_dev_750uatm_pco2_10um, PP_std_dev_750uatm_pco2_2um, preliminary, profiler, salinity, salinity-temperature-depth, science, sea, seawater, station, std, temperature, time, time2, total, total_alkalinity, total_alkalinity_750uatm_pco2, water, year"; String keywords_vocabulary "GCMD Science Keywords"; String license "https://www.bco-dmo.org/dataset/726341/license"; String metadata_source "https://www.bco-dmo.org/api/dataset/726341"; Float64 Northernmost_Northing 25.4193; String param_mapping "{'726341': {'lat': 'flag - latitude', 'depth': 'flag - depth', 'lon': 'flag - longitude'}}"; String parameter_source "https://www.bco-dmo.org/mapserver/dataset/726341/parameters"; String people_0_affiliation "University of Hawaii"; String people_0_person_name "Matthew J. Church"; String people_0_person_nid "50675"; String people_0_role "Principal Investigator"; String people_0_role_type "originator"; String people_1_affiliation "Oregon State University"; String people_1_affiliation_acronym "OSU-CEOAS"; String people_1_person_name "Dr Ricardo Letelier"; String people_1_person_nid "50769"; String people_1_role "Co-Principal Investigator"; String people_1_role_type "originator"; String people_2_affiliation "University of Hawaii"; String people_2_person_name "Donn Viviani"; String people_2_person_nid "727509"; String people_2_role "Contact"; String people_2_role_type "related"; String people_3_affiliation "Woods Hole Oceanographic Institution"; String people_3_affiliation_acronym "WHOI BCO-DMO"; String people_3_person_name "Megan Switzer"; String people_3_person_nid "708683"; String people_3_role "BCO-DMO Data Manager"; String people_3_role_type "related"; String project "DIAZOTROPHS-CO2"; String projects_0_acronym "DIAZOTROPHS-CO2"; String projects_0_description "The North Pacific Subtropical Gyre (NPSG) is the largest ocean ecosystem on Earth, playing a prominent role in global carbon cycling and forming an important reservoir of marine biodiversity. Nitrogen (N2) fixing bacteria (termed diazotrophs) provide a major source of new nitrogen to the oligotrophic waters of the NPSG, thereby exerting direct control on the carbon cycle. Oceanic uptake of CO2 causes long-term changes in the partial pressure of CO2 (pCO2) in the seawater of this ecosystem. Therefore, understanding how carbon system perturbations may influence ocean biogeochemistry is an important and timely undertaking. In this project, the investigators will examine how natural assemblages of N2 fixing microorganisms respond to perturbations in seawater carbon chemistry. Laboratory and field-based experiments will be placed in the context of monthly time series measurements on the activities and abundances of N2 fixing microorganism abundances. Together, the project will provide insight into the dependence of N2 fixing microorganism physiology on variations in CO2. The broad objectives of the research are: (1) Quantify the responses and consequences of changes in seawater pCO2 on the growth and community structure of naturally-occurring assemblages of ocean diazotrophs; (2) Identify why and how changes in seawater pCO2 influence the growth and carbon acquisition strategies of two model marine diazotrophs (Trichodesmium and Crocosphaera); and (3) Quantify temporal variability in diazotroph community structure and activities at Station ALOHA. This is a Collaborative Research award."; String projects_0_end_date "2012-06"; String projects_0_name "Oceanic diazotroph community structure and activities in a high carbon dioxide world"; String projects_0_project_nid "2102"; String projects_0_start_date "2009-07"; String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)"; String publisher_type "institution"; String sourceUrl "(local files)"; Float64 Southernmost_Northing 22.7485; String standard_name_vocabulary "CF Standard Name Table v55"; String subsetVariables "PP_num_obs_10um,PP_num_obs_750uatm_pco2_10um,PP_num_obs_2um,PP_num_obs_750uatm_pco2_2um,PP_num_obs_0pt2um,PP_num_obs_750uatm_pco2_0pt2um,leuc_3H_light_num_obs_750uatm_pco2,leuc_3H_dark_num_obs,leuc_3H_dark_num_obs_750uatm_pco2"; String summary "Rates of primary and bacterial production measured in situ under ambient and elevated pCO2 (750 \\u00b5atm) from the Hawaiian Ocean Time Series near Station ALOHA from 2010-2011."; String title "[In situ pCO2 manipulation experiments 2010-2011] - Rates of primary and bacterial production measured in situ under ambient and elevated pCO2 (750 µatm) from the Hawaiian Ocean Time Series near Station ALOHA from 2010-2011. (Oceanic diazotroph community structure and activities in a high carbon dioxide world)"; String version "1"; Float64 Westernmost_Easting -160.7528; String xml_source "osprey2erddap.update_xml() v1.3"; } }
The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.
Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names,
followed by a collection of
constraints (e.g., variable<value),
each preceded by '&' (which is interpreted as "AND").
For details, see the tabledap Documentation.