BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Concentrations of ultrapure water soluble aerosol trace elements collected
from bulk aerosol samples on the 2015 US GEOTRACES Western Arctic Transect on
USCGC Healy (HLY1502) August to October 2015
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_728472)
Range: longitude = -176.7522 to 174.9595°E, latitude = 56.0743 to 89.9413°N, time = 2015-08-10T17:53Z to 2015-10-07T18:40Z
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Station_ID {
    Float64 _FillValue NaN;
    String bcodmo_name "station";
    String description "Station number; not applicable";
    String long_name "Station ID";
    String units "unitless";
  }
  Start_Date_UTC {
    String bcodmo_name "date";
    String description "Sampling start day (UTC); format: MM/DD/YY";
    String long_name "Start Date UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String units "unitless";
  }
  Start_Time_UTC {
    String bcodmo_name "time";
    String description "Sampling start time (UTC); format: hh:mm";
    String long_name "Start Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.43922918e+9, 1.4442432e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "Sampling start date/time (UTC) formatted to ISO8601 standard: YYYY-MM-DDThh:mmz";
    String ioos_category "Time";
    String long_name "Start ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "Start_ISO_DateTime_UTC";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  End_Date_UTC {
    String bcodmo_name "date";
    String description "Sampling end day (UTC); format: MM/DD/YY";
    String long_name "End Date UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String units "unitless";
  }
  End_Time_UTC {
    String bcodmo_name "time";
    String description "Sampling end time (UTC); format: hh:mm";
    String long_name "End Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  End_ISO_DateTime_UTC {
    String bcodmo_name "ISO_DateTime_UTC";
    String description "Sampling end date/time (UTC) formatted to ISO8601 standard: YYYY-MM-DDThh:mmz";
    String long_name "End ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String time_precision "1970-01-01T00:00Z";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 56.0743, 89.9413;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Sampling start latitude";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String source_name "Start_Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -176.7522, 174.9595;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Sampling start longitude";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String source_name "Start_Longitude";
    String standard_name "longitude";
    String units "degrees_east";
  }
  End_Latitude {
    Float32 _FillValue NaN;
    Float32 actual_range 65.9503, 89.9447;
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Sampling end latitude";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "decimal degrees North";
  }
  End_Longitude {
    Float32 _FillValue NaN;
    Float32 actual_range -176.6365, 174.9528;
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Sampling end longitude";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "decimal degrees East";
  }
  Event_ID {
    Int16 _FillValue 32767;
    Int16 actual_range 6060, 6495;
    String bcodmo_name "event";
    String description "GEOTRACES event number";
    String long_name "Event ID";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/EVTAGFL/";
    String units "unitless";
  }
  Sample_ID {
    Int16 _FillValue 32767;
    Int16 actual_range 10900, 12315;
    String bcodmo_name "sample";
    String description "GEOTRACES sample number";
    String long_name "Sample ID";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/ACYC/";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    String axis "Z";
    String bcodmo_name "depth";
    String description "Sample depth; not applicable";
    String ioos_category "Location";
    String long_name "Sample Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  Al_A_SMLH2O_CONC_HIVOL_pgewna {
    Float32 _FillValue NaN;
    Float32 actual_range 2.3, 191.3;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Aluminum (Al) concentration; detection limit: 1.17 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "Al A SMLH2 O CONC HIVOL Pgewna";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_Al_A_SMLH2O_CONC_HIVOL_pgewna {
    Float32 _FillValue NaN;
    Float32 actual_range 0.6, 105.1;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of Al_A_SMLH2O_CONC_HIVOL_pgewna";
    String long_name "SD1 Al A SMLH2 O CONC HIVOL Pgewna";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_Al_A_SMLH2O_CONC_HIVOL_pgewna {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Al_A_SMLH2O_CONC_HIVOL_pgewna";
    String long_name "Flag Al A SMLH2 O CONC HIVOL Pgewna";
    String units "None";
  }
  Cd_A_SMLH2O_CONC_HIVOL_eptd5x {
    Float32 _FillValue NaN;
    Float32 actual_range 0.017, 6.102;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Cadmium (Cd) concentration; detection limit: 0.00065 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "Cd A SMLH2 O CONC HIVOL Eptd5x";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_Cd_A_SMLH2O_CONC_HIVOL_eptd5x {
    Float32 _FillValue NaN;
    Float32 actual_range 0.003, 1.423;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of Cd_A_SMLH2O_CONC_HIVOL_eptd5x";
    String long_name "SD1 Cd A SMLH2 O CONC HIVOL Eptd5x";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_Cd_A_SMLH2O_CONC_HIVOL_eptd5x {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Cd_A_SMLH2O_CONC_HIVOL_eptd5x";
    String long_name "Flag Cd A SMLH2 O CONC HIVOL Eptd5x";
    String units "None";
  }
  Co_A_SMLH2O_CONC_HIVOL_ehznjw {
    Float32 _FillValue NaN;
    Float32 actual_range 0.001, 0.054;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Cobalt (Co) concentration; detection limit: 0.002 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "Co A SMLH2 O CONC HIVOL Ehznjw";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_Co_A_SMLH2O_CONC_HIVOL_ehznjw {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 0.01;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of Co_A_SMLH2O_CONC_HIVOL_ehznjw";
    String long_name "SD1 Co A SMLH2 O CONC HIVOL Ehznjw";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_Co_A_SMLH2O_CONC_HIVOL_ehznjw {
    Byte _FillValue 127;
    Byte actual_range 1, 6;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Co_A_SMLH2O_CONC_HIVOL_ehznjw";
    String long_name "Flag Co A SMLH2 O CONC HIVOL Ehznjw";
    String units "None";
  }
  Cu_A_SMLH2O_CONC_HIVOL_2cnllt {
    Float32 _FillValue NaN;
    Float32 actual_range 0.066, 7.069;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Copper (Cu) concentration; detection limit: 0.1238 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "Cu A SMLH2 O CONC HIVOL 2cnllt";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_Cu_A_SMLH2O_CONC_HIVOL_2cnllt {
    Float32 _FillValue NaN;
    Float32 actual_range 0.036, 2.603;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of Cu_A_SMLH2O_CONC_HIVOL_2cnllt";
    String long_name "SD1 Cu A SMLH2 O CONC HIVOL 2cnllt";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_Cu_A_SMLH2O_CONC_HIVOL_2cnllt {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Cu_A_SMLH2O_CONC_HIVOL_2cnllt";
    String long_name "Flag Cu A SMLH2 O CONC HIVOL 2cnllt";
    String units "None";
  }
  Fe_A_SMLH2O_CONC_HIVOL_scryoi {
    Float32 _FillValue NaN;
    Float32 actual_range 0.1, 9.64;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Iron (Fe) concentration; detection limit: 0.71 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "Fe A SMLH2 O CONC HIVOL Scryoi";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_Fe_A_SMLH2O_CONC_HIVOL_scryoi {
    Float32 _FillValue NaN;
    Float32 actual_range 0.01, 2.23;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of Fe_A_SMLH2O_CONC_HIVOL_scryoi";
    String long_name "SD1 Fe A SMLH2 O CONC HIVOL Scryoi";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_Fe_A_SMLH2O_CONC_HIVOL_scryoi {
    Byte _FillValue 127;
    Byte actual_range 1, 6;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Fe_A_SMLH2O_CONC_HIVOL_scryoi";
    String long_name "Flag Fe A SMLH2 O CONC HIVOL Scryoi";
    String units "None";
  }
  Mn_A_SMLH2O_CONC_HIVOL_tvrtax {
    Float32 _FillValue NaN;
    Float32 actual_range 0.015, 3.416;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Manganese (Mn) concentration; detection limit: 0.016 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "Mn A SMLH2 O CONC HIVOL Tvrtax";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_Mn_A_SMLH2O_CONC_HIVOL_tvrtax {
    Float32 _FillValue NaN;
    Float32 actual_range 0.004, 0.671;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of Mn_A_SMLH2O_CONC_HIVOL_tvrtax";
    String long_name "SD1 Mn A SMLH2 O CONC HIVOL Tvrtax";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_Mn_A_SMLH2O_CONC_HIVOL_tvrtax {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Mn_A_SMLH2O_CONC_HIVOL_tvrtax";
    String long_name "Flag Mn A SMLH2 O CONC HIVOL Tvrtax";
    String units "None";
  }
  Ni_A_SMLH2O_CONC_HIVOL_xyzhfj {
    Float32 _FillValue NaN;
    Float32 actual_range 0.02, 1.357;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Nickel (Ni) concentration; detection limit: 0.069 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "Ni A SMLH2 O CONC HIVOL Xyzhfj";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_Ni_A_SMLH2O_CONC_HIVOL_xyzhfj {
    Float32 _FillValue NaN;
    Float32 actual_range 0.015, 0.924;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of SD1_Ni_A_SMLH2O_CONC_HIVOL_xyzhfj";
    String long_name "SD1 Ni A SMLH2 O CONC HIVOL Xyzhfj";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_Ni_A_SMLH2O_CONC_HIVOL_xyzhfj {
    Byte _FillValue 127;
    Byte actual_range 1, 6;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for SD1_Ni_A_SMLH2O_CONC_HIVOL_xyzhfj";
    String long_name "Flag Ni A SMLH2 O CONC HIVOL Xyzhfj";
    String units "None";
  }
  Pb_A_SMLH2O_CONC_HIVOL_6hludc {
    Float32 _FillValue NaN;
    Float32 actual_range 0.016, 1.664;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Lead (Pb) concentration; detection limit: 0.00042 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "Pb A SMLH2 O CONC HIVOL 6hludc";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_Pb_A_SMLH2O_CONC_HIVOL_6hludc {
    Float32 _FillValue NaN;
    Float32 actual_range 0.005, 0.397;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of Pb_A_SMLH2O_CONC_HIVOL_6hludc";
    String long_name "SD1 Pb A SMLH2 O CONC HIVOL 6hludc";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_Pb_A_SMLH2O_CONC_HIVOL_6hludc {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Pb_A_SMLH2O_CONC_HIVOL_6hludc";
    String long_name "Flag Pb A SMLH2 O CONC HIVOL 6hludc";
    String units "None";
  }
  V_A_SMLH2O_CONC_HIVOL_akpost {
    Float32 _FillValue NaN;
    Float32 actual_range 0.002, 0.554;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Vanadium (V) concentration; detection limit: 0.0028 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "V A SMLH2 O CONC HIVOL Akpost";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_V_A_SMLH2O_CONC_HIVOL_akpost {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 0.028;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of V_A_SMLH2O_CONC_HIVOL_akpost";
    String long_name "SD1 V A SMLH2 O CONC HIVOL Akpost";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_V_A_SMLH2O_CONC_HIVOL_akpost {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for V_A_SMLH2O_CONC_HIVOL_akpost";
    String long_name "Flag V A SMLH2 O CONC HIVOL Akpost";
    String units "None";
  }
  Zn_A_SMLH2O_CONC_HIVOL_wpsnkf {
    Float32 _FillValue NaN;
    Float32 actual_range 0.42, 45.88;
    String bcodmo_name "metal_conc_air";
    String description "Total particulate aerosol Zinc (Zn) concentration; detection limit: 0.529 pmol/m3 (detection limit air volume = 200 m3)";
    String long_name "Zn A SMLH2 O CONC HIVOL Wpsnkf";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  SD1_Zn_A_SMLH2O_CONC_HIVOL_wpsnkf {
    Float32 _FillValue NaN;
    Float32 actual_range 0.07, 27.46;
    String bcodmo_name "metal_conc_air";
    String description "One standard deviation of Zn_A_SMLH2O_CONC_HIVOL_wpsnkf";
    String long_name "SD1 Zn A SMLH2 O CONC HIVOL Wpsnkf";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/MTAT/";
    String units "picomoles per cubic meter (pmol/m3)";
  }
  Flag_Zn_A_SMLH2O_CONC_HIVOL_wpsnkf {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Zn_A_SMLH2O_CONC_HIVOL_wpsnkf";
    String long_name "Flag Zn A SMLH2 O CONC HIVOL Wpsnkf";
    String units "None";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"A total of fourteen 3-4 day integrated aerosol samples were collected during
the US GEOTRACES Western Arctic research cruise (hereafter known as GN01),
which took place from 9th August to 12th October 2015 on the USCGC Healy
(cruise HLY1502). The cruise track consisted of a northward transect from
Dutch Harbor, Alaska, across the Bering Sea, through the Bering Strait and
across the Makarov Basin to the North Pole, followed by a return transect
across the Canada Basin and back across the Bering Sea to Dutch Harbor.
 
Bulk aerosol samples for multiple trace element analyses were collected using
one of five Tisch Environmental high-volume (~1 m\\u00b3 air min\\u207b\\u00b9)
aerosol samplers (model 5170V-BL). For each deployment, 12 replicate 47 mm
diameter Whatman 41 filters were loaded on open-face filter holders (Advantec
MFS) installed on the aerosol sampler on a PVC adaptor plate (Shelley et al.,
2015). Filters were acid-washed before use to reduce trace element blanks,
following the procedure described by Morton et al. (2013). The samplers were
deployed on the ship\\u2019s flying bridge, ~23 m above sea level, to minimize
the influence of sea spray on samples. Samplers were controlled by wind speed
and direction, through a Campbell Scientific CR800 data-logger interfaced with
an anemometer and wind vane set up in close proximity to the samplers, in
order to eliminate contamination from the ship's stack exhaust. This setup was
used to restrict sampling to periods when relative wind speed and direction
were >0.5 m s\\u207b\\u00b9 and from within \\u00b160\\u00b0 of the bow of the
ship, respectively, for at least five continuous minutes.
 
The soluble aerosol fraction was measured using a variation of the flow-
through extraction technique described in Buck et al. (2006). The aerosol-
laden filter was placed in a Teflon filter holder over a 0.2 um polycarbonate
backing filter. While under vacuum, 100 mL of ultrapure deionized water (>18
M\\u2126\\u2219cm) was poured over the filter and the leachate solution
collected in a 100 mL LDPE bottle. Following acidification with Teflon-
distilled hydrochloric acid, the samples were analyzed for trace element
concentration by a quadrupole inductively coupled mass spectrometer (Perkin
Elmer Nexion 300D) coupled with a SeaFAST3 sample introduction and
preconcentration system (Elemental Scientific) at the Skidaway Institute of
Oceanography.";
    String awards_0_award_nid "726074";
    String awards_0_award_number "OCE-1438047";
    String awards_0_data_url "https://www.nsf.gov/awardsearch/showAward?AWD_ID=1438047";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Henrietta N Edmonds";
    String awards_0_program_manager_nid "51517";
    String awards_1_award_nid "726075";
    String awards_1_award_number "OCE-1435871";
    String awards_1_data_url "https://www.nsf.gov/awardsearch/showAward?AWD_ID=1435871";
    String awards_1_funder_name "NSF Division of Ocean Sciences";
    String awards_1_funding_acronym "NSF OCE";
    String awards_1_funding_source_nid "355";
    String awards_1_program_manager "Henrietta N Edmonds";
    String awards_1_program_manager_nid "51517";
    String awards_2_award_nid "726076";
    String awards_2_award_number "OCE-1437266";
    String awards_2_data_url "https://www.nsf.gov/awardsearch/showAward?AWD_ID=1437266";
    String awards_2_funder_name "NSF Division of Ocean Sciences";
    String awards_2_funding_acronym "NSF OCE";
    String awards_2_funding_source_nid "355";
    String awards_2_program_manager "Henrietta N Edmonds";
    String awards_2_program_manager_nid "51517";
    String cdm_data_type "Other";
    String comment 
"Ultrapure Water Soluble Aerosol Concentrations 
   US GEOTRACES Arctic 
  PI: Clifton Buck (Skidaway Institute of Oceanography) 
  Co-PIs: William Landing (Florida State University) & Yuan Gao (Rutgers) 
  Version history:  
   04 June 2020 - replaced with GEOTRACES-DOoR format (revised nomenclature); 
   27 February 2018 - original.";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String dataset_current_state "Final and no updates";
    String date_created "2018-02-27T20:50:57Z";
    String date_modified "2020-06-10T20:10:02Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.26008/1912/bco-dmo.728472.2";
    Float64 Easternmost_Easting 174.9595;
    Float64 geospatial_lat_max 89.9413;
    Float64 geospatial_lat_min 56.0743;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max 174.9595;
    Float64 geospatial_lon_min -176.7522;
    String geospatial_lon_units "degrees_east";
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2024-04-19T23:07:48Z (local files)
2024-04-19T23:07:48Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_728472.das";
    String infoUrl "https://www.bco-dmo.org/dataset/728472";
    String institution "BCO-DMO";
    String instruments_0_acronym "ICP Mass Spec";
    String instruments_0_dataset_instrument_description "Soluble aerosol trace element measurements were analyzed by ICP-MS.";
    String instruments_0_dataset_instrument_nid "728479";
    String instruments_0_description "An ICP Mass Spec is an instrument that passes nebulized samples into an inductively-coupled gas plasma (8-10000 K) where they are atomized and ionized. Ions of specific mass-to-charge ratios are quantified in a quadrupole mass spectrometer.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB15/";
    String instruments_0_instrument_name "Inductively Coupled Plasma Mass Spectrometer";
    String instruments_0_instrument_nid "530";
    String instruments_0_supplied_name "Perkin Elmer Nexion 300D ICP-Mass Spectrometer";
    String instruments_1_acronym "Aerosol_Sampler";
    String instruments_1_dataset_instrument_description "Bulk aerosol samples for multiple trace element analyses were collected using one of five Tisch Environmental high-volume (~1 m3 air min-1) aerosol samplers (model 5170V-BL).";
    String instruments_1_dataset_instrument_nid "728478";
    String instruments_1_description "A device that collects a sample of aerosol (dry particles or liquid droplets) from the atmosphere.";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/13/";
    String instruments_1_instrument_name "Aerosol Sampler";
    String instruments_1_instrument_nid "691";
    String instruments_1_supplied_name "Tisch Environmental high-volume aerosol samplers";
    String keywords "2cnllt, 6hludc, akpost, Al_A_SMLH2O_CONC_HIVOL_pgewna, bco, bco-dmo, biological, Cd_A_SMLH2O_CONC_HIVOL_eptd5x, chemical, Co_A_SMLH2O_CONC_HIVOL_ehznjw, conc, Cu_A_SMLH2O_CONC_HIVOL_2cnllt, data, dataset, date, depth, dmo, ehznjw, end, End_Date_UTC, End_ISO_DateTime_UTC, End_Latitude, End_Longitude, End_Time_UTC, eptd5x, erddap, event, Event_ID, Fe_A_SMLH2O_CONC_HIVOL_scryoi, flag, Flag_Al_A_SMLH2O_CONC_HIVOL_pgewna, Flag_Cd_A_SMLH2O_CONC_HIVOL_eptd5x, Flag_Co_A_SMLH2O_CONC_HIVOL_ehznjw, Flag_Cu_A_SMLH2O_CONC_HIVOL_2cnllt, Flag_Fe_A_SMLH2O_CONC_HIVOL_scryoi, Flag_Mn_A_SMLH2O_CONC_HIVOL_tvrtax, Flag_Ni_A_SMLH2O_CONC_HIVOL_xyzhfj, Flag_Pb_A_SMLH2O_CONC_HIVOL_6hludc, Flag_V_A_SMLH2O_CONC_HIVOL_akpost, Flag_Zn_A_SMLH2O_CONC_HIVOL_wpsnkf, hivol, iso, latitude, longitude, management, Mn_A_SMLH2O_CONC_HIVOL_tvrtax, Ni_A_SMLH2O_CONC_HIVOL_xyzhfj, oceanography, office, Pb_A_SMLH2O_CONC_HIVOL_6hludc, pgewna, preliminary, sample, Sample_Depth, Sample_ID, scryoi, sd1, SD1_Al_A_SMLH2O_CONC_HIVOL_pgewna, SD1_Cd_A_SMLH2O_CONC_HIVOL_eptd5x, SD1_Co_A_SMLH2O_CONC_HIVOL_ehznjw, SD1_Cu_A_SMLH2O_CONC_HIVOL_2cnllt, SD1_Fe_A_SMLH2O_CONC_HIVOL_scryoi, SD1_Mn_A_SMLH2O_CONC_HIVOL_tvrtax, SD1_Ni_A_SMLH2O_CONC_HIVOL_xyzhfj, SD1_Pb_A_SMLH2O_CONC_HIVOL_6hludc, SD1_V_A_SMLH2O_CONC_HIVOL_akpost, SD1_Zn_A_SMLH2O_CONC_HIVOL_wpsnkf, smlh2, start, Start_Date_UTC, Start_Time_UTC, station, Station_ID, time, tvrtax, v, V_A_SMLH2O_CONC_HIVOL_akpost, wpsnkf, xyzhfj, Zn_A_SMLH2O_CONC_HIVOL_wpsnkf";
    String license "https://www.bco-dmo.org/dataset/728472/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/728472";
    Float64 Northernmost_Northing 89.9413;
    String param_mapping "{'728472': {'Start_ISO_DateTime_UTC': 'flag - time', 'Sample_Depth': 'master - depth', 'Start_Longitude': 'flag - longitude', 'Start_Latitude': 'flag - latitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/728472/parameters";
    String people_0_affiliation "Skidaway Institute of Oceanography";
    String people_0_affiliation_acronym "SkIO";
    String people_0_person_name "Clifton S. Buck";
    String people_0_person_nid "51301";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Rutgers University";
    String people_1_person_name "Yuan Gao";
    String people_1_person_nid "50717";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Florida State University";
    String people_2_affiliation_acronym "FSU - EOAS";
    String people_2_person_name "William M. Landing";
    String people_2_person_nid "51302";
    String people_2_role "Co-Principal Investigator";
    String people_2_role_type "originator";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Shannon Rauch";
    String people_3_person_nid "51498";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "U.S. GEOTRACES Arctic,GEOTRACES Arctic Atmospheric Deposition";
    String projects_0_acronym "U.S. GEOTRACES Arctic";
    String projects_0_description 
"Description from NSF award abstract:
In pursuit of its goal \"to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to establish the sensitivity of these distributions to changing environmental conditions\", in 2015 the International GEOTRACES Program will embark on several years of research in the Arctic Ocean. In a region where climate warming and general environmental change are occurring at amazing speed, research such as this is important for understanding the current state of Arctic Ocean geochemistry and for developing predictive capability as the regional ecosystem continues to warm and influence global oceanic and climatic conditions. The three investigators funded on this award, will manage a large team of U.S.scientists who will compete through the regular NSF proposal process to contribute their own unique expertise in marine trace metal, isotopic, and carbon cycle geochemistry to the U.S. effort. The three managers will be responsible for arranging and overseeing at-sea technical services such as hydrographic measurements, nutrient analyses, and around-the-clock management of on-deck sampling activites upon which all participants depend, and for organizing all pre- and post-cruise technical support and scientific meetings. The management team will also lead educational outreach activities for the general public in Nome and Barrow, Alaska, to explain the significance of the study to these communities and to learn from residents' insights on observed changes in the marine system. The project itself will provide for the support and training of a number of pre-doctoral students and post-doctoral researchers. Inasmuch as the Arctic Ocean is an epicenter of global climate change, findings of this study are expected to advance present capability to forecast changes in regional and globlal ecosystem and climate system functioning.
As the United States' contribution to the International GEOTRACES Arctic Ocean initiative, this project will be part of an ongoing multi-national effort to further scientific knowledge about trace elements and isotopes in the world ocean. This U.S. expedition will focus on the western Arctic Ocean in the boreal summer of 2015. The scientific team will consist of the management team funded through this award plus a team of scientists from U.S. academic institutions who will have successfully competed for and received NSF funds for specific science projects in time to participate in the final stages of cruise planning. The cruise track segments will include the Bering Strait, Chukchi shelf, and the deep Canada Basin. Several stations will be designated as so-called super stations for intense study of atmospheric aerosols, sea ice, and sediment chemistry as well as water-column processes. In total, the set of coordinated international expeditions will involve the deployment of ice-capable research ships from 6 nations (US, Canada, Germany, Sweden, UK, and Russia) across different parts of the Arctic Ocean, and application of state-of-the-art methods to unravel the complex dynamics of trace metals and isotopes that are important as oceanographic and biogeochemical tracers in the sea.";
    String projects_0_end_date "2017-06";
    String projects_0_geolocation "Arctic Ocean; Sailing from Dutch Harbor to Dutch Harbor";
    String projects_0_name "U.S. Arctic GEOTRACES Study";
    String projects_0_project_nid "638812";
    String projects_0_start_date "2014-07";
    String projects_1_acronym "GEOTRACES Arctic Atmospheric Deposition";
    String projects_1_description 
"NSF Award Abstract:
In this project, a group of investigators participating in the 2015 U.S. GEOTRACES Arctic Ocean expedition will study the distribution of a variety of trace elements in seawater, sea ice, and marine air. It is important to understand where they are and how they move in the Arctic because some trace elements are essential to life, others are known biological toxins, and still others are important because they can be used as tracers of a variety of physical, chemical, and biological processes in the sea. In common with other multinational initiatives in the International GEOTRACES Program, the goals of the U.S. Arctic expedition are to identify processes and quantify fluxes that control the distributions of key trace elements and isotopes in the ocean, and to establish the sensitivity of these distributions to changing environmental conditions. This multi-institutional team of ocean trace element experts will focus its attention on the importance of aerosol, precipitation, and sea ice melt water in trace element cycling. Results from this work will be disseminated through public educational initiatives, such as web communications and outreach to members of the public, including indigenous populations in Alaska. The project will also provide training for graduate and undergraduate students in biology and chemistry.
Atmospheric deposition is an important pathway and transport mechanism of both natural aerosols and contaminants to the ocean. Relative to other regions, atmospheric deposition rates in the Arctic are low and aerosols and dissolved chemicals in precipitation may be deposited directly to the sea surface or, unique to polar regions, onto sea ice. Given the unique biogeochemical processes of the region and its rapid changes in response to global climate change, quantifying the current atmospheric deposition of trace elements and isotopes to differing catchments (ocean, sea ice, and melt ponds) in the Arctic is critical to our ability to predict how their distribution may evolve over time. In this study, aerosol, precipitation, and melt water samples will be collected and analyzed for trace elements and isotopes in order to evaluate the impacts on the surface ocean and sea ice chemistry from natural and anthropogenic aerosols. Through this project, collected atmospheric samples from the Arctic will also be made available for distribution to the broader scientific community.";
    String projects_1_end_date "2020-09";
    String projects_1_name "Collaborative Research: GEOTRACES Arctic Section: Sampling and Analysis of Atmospheric Deposition";
    String projects_1_project_nid "779338";
    String projects_1_start_date "2014-10";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 56.0743;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "Station_ID";
    String summary "This dataset contains concentrations of ultrapure water soluble aerosol trace elements collected from bulk aerosol samples on the 2015 US GEOTRACES Western Arctic Transect (USCG Healy GN01).";
    String time_coverage_end "2015-10-07T18:40Z";
    String time_coverage_start "2015-08-10T17:53Z";
    String title "Concentrations of ultrapure water soluble aerosol trace elements collected from bulk aerosol samples on the 2015 US GEOTRACES Western Arctic Transect on USCGC Healy (HLY1502) August to October 2015";
    String version "2";
    Float64 Westernmost_Easting -176.7522;
    String xml_source "osprey2erddap.update_xml() v1.5";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact