BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [TN327 Axial 2015 MAPR Mooring Data] - Data collected from Miniature
Autonomous Plume Recorders (MAPRs) deployed near the Axial Seamount on the Juan
de Fuca Ridge on R/V Thomas G. Thompson TN327 in August 2015 and collected in
July 2017. (Event response to an eruption at Axial Seamount)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_731092)
Range: longitude = -129.9814 to -129.9814°E, latitude = 46.0934 to 46.0934°N, depth = 1.51772 to 1734.106m, time = 2015-08-27T16:00:01Z to 2016-02-29T23:20:00Z
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  MAPR {
    String bcodmo_name "instrument";
    String description "Name of MAPR";
    String long_name "MAPR";
    String units "no units";
  }
  Elevation {
    Int16 _FillValue 32767;
    Int16 actual_range 55, 130;
    String bcodmo_name "depth";
    String description "Depth above the seafloor";
    String long_name "Elevation";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String units "meters";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 46.0934, 46.0934;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Latidude of mooring";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -129.9814, -129.9814;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Longitude of mooring";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  Cruise {
    String bcodmo_name "cruise_id";
    String description "Cruise ID";
    String long_name "Cruise";
    String units "no units";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.440691201e+9, 1.456788e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "ISO Date-Time UTC YYYY-MM-DDThh:mm:ss";
    String ioos_category "Time";
    String long_name "ISO Date Time";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "ISO_date_time";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  Press_db {
    Float32 _FillValue NaN;
    Float32 actual_range 1.53, 1755.811;
    String bcodmo_name "pressure";
    String description "Pressure";
    String long_name "Press Db";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PRESPR01/";
    String units "decibars";
  }
  Temp_deg {
    Float32 _FillValue NaN;
    Float32 actual_range 2.03849, 20.16863;
    String bcodmo_name "temperature";
    String description "Temperature";
    String long_name "Temp Deg";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "degrees Celsius";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 1.51772, 1734.10597;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth below surface";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  Neph_volts {
    Float32 _FillValue NaN;
    Float32 actual_range 0.03014, 7.91927;
    String bcodmo_name "turbidity";
    String description "Raw voltage reading of the light-backscattering sensor; 0-5 V scale";
    String long_name "Neph Volts";
    String units "volts";
  }
  Press_counts {
    Int16 _FillValue 32767;
    Int16 actual_range 2792, 17465;
    String bcodmo_name "pressure";
    String description "Sensor pressure reading";
    String long_name "Press Counts";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PRESPR01/";
    String units "counts";
  }
  Temp_counts {
    Int32 _FillValue 2147483647;
    Int32 actual_range 19489, 47217;
    String bcodmo_name "temperature";
    String description "Sensor temperature reading";
    String long_name "Temp Counts";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "counts";
  }
  Neph_counts {
    Int32 _FillValue 2147483647;
    Int32 actual_range 690, 58457;
    String bcodmo_name "turbidity";
    String description "Light backscattering sensor reading";
    String long_name "Neph Counts";
    String units "counts";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description "\"\"";
    String awards_0_award_nid "661064";
    String awards_0_award_number "OCE-1546695";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1546695";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Candace O. Major";
    String awards_0_program_manager_nid "51690";
    String cdm_data_type "Other";
    String comment 
"TN327 Axial 2015 MAPR Mooring Data 
 PI's: E. Baker (NOAA-PMEL) and D. Butterfield (NOAA-PMEL) 
 Dataset ID: 731092 
 Version: 1 
 Last updated: 2018-03-21";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2018-03-16T18:05:59Z";
    String date_modified "2019-04-10T15:39:47Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.731092.1";
    Float64 Easternmost_Easting -129.9814;
    Float64 geospatial_lat_max 46.0934;
    Float64 geospatial_lat_min 46.0934;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -129.9814;
    Float64 geospatial_lon_min -129.9814;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 1734.10597;
    Float64 geospatial_vertical_min 1.51772;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2024-11-20T08:44:13Z (local files)
2024-11-20T08:44:13Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_731092.das";
    String infoUrl "https://www.bco-dmo.org/dataset/731092";
    String institution "BCO-DMO";
    String instruments_0_acronym "MAPR";
    String instruments_0_dataset_instrument_description 
"The PMEL MAPR is an inexpensive, lightweight yet rugged, simple to use self-contained instrument for recording light-backscattering (for suspended particle concentrations), oxidation-reduction potential (ORP, for detecting the presence of reduced chemical species such as H2S and Fe+2), temperature, and pressure during a wide variety of seagoing operations. MAPRs especially target operations where hydrothermal plume data are not normally collected: rock cores, dredges, or deep-towed geophysical and bottom imaging are some examples. To make these operations multi-disciplinary requires an instrument that is sensitive enough to detect hydrothermal optical anomalies yet simple enough for untrained researchers to use as an ancillary program without detracting from the time or efforts of the main sampling programs. With such an instrument, the opportunities to collect hydrothermal plume data through collaborations with other researchers, and without the need for additional dedicated technicians, expand to the global ocean.
https://www.pmel.noaa.gov/eoi/PlumeStudies/mapr/";
    String instruments_0_dataset_instrument_nid "731327";
    String instruments_0_description 
"The PMEL MAPR is an inexpensive, lightweight yet rugged, simple to use self-contained instrument for recording light-backscattering (for suspended particle concentrations), oxidation-reduction potential (ORP, for detecting the presence of reduced chemical species such as H2S and Fe+2), temperature, and pressure during a wide variety of seagoing operations. MAPRs especially target operations where hydrothermal plume data are not normally collected: rock cores, dredges, or deep-towed geophysical and bottom imaging are some examples. To make these operations multi-disciplinary requires an instrument that is sensitive enough to detect hydrothermal optical anomalies yet simple enough for untrained researchers to use as an ancillary program without detracting from the time or efforts of the main sampling programs. With such an instrument, the opportunities to collect hydrothermal plume data through collaborations with other researchers, and without the need for additional dedicated technicians, expand to the global ocean.

https://www.pmel.noaa.gov/eoi/PlumeStudies/mapr/";
    String instruments_0_instrument_name "Miniature Autonomous Plume Recorder";
    String instruments_0_instrument_nid "731326";
    String instruments_0_supplied_name "MAPR";
    String keywords "bco, bco-dmo, biological, chemical, counts, cruise, data, dataset, date, depth, dmo, elevation, erddap, iso, latitude, longitude, management, mapr, neph, Neph_counts, Neph_volts, oceanography, office, preliminary, press, Press_counts, Press_db, Temp_counts, Temp_deg, temperature, time, volts";
    String license "https://www.bco-dmo.org/dataset/731092/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/731092";
    Float64 Northernmost_Northing 46.0934;
    String param_mapping "{'731092': {'lat': 'master - latitude', 'Depth': 'master - depth', 'lon': 'master - longitude', 'ISO_date_time': 'master - time'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/731092/parameters";
    String people_0_affiliation "National Oceanic and Atmospheric Administration";
    String people_0_affiliation_acronym "NOAA-PMEL";
    String people_0_person_name "Dr Edward T. Baker";
    String people_0_person_nid "731098";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "National Oceanic and Atmospheric Administration";
    String people_1_affiliation_acronym "NOAA-PMEL";
    String people_1_person_name "David A. Butterfield";
    String people_1_person_nid "51265";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "National Oceanic and Atmospheric Administration";
    String people_2_affiliation_acronym "NOAA-PMEL";
    String people_2_person_name "Sharon L. Walker";
    String people_2_person_nid "731102";
    String people_2_role "Contact";
    String people_2_role_type "related";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Megan Switzer";
    String people_3_person_nid "708683";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "NeMO2015";
    String projects_0_acronym "NeMO2015";
    String projects_0_description 
"On 24 April 2015, the NSF-funded Ocean Observatories Initiative's (OOI) Cabled Array detected the onset of a probable eruption at Axial Seamount, heralded by a swarm of >8000 small earthquakes and a rapid subsidence of the seafloor by >2.4 meters at the center of the caldera. Evidence that lava was erupted in or near the summit caldera includes a dramatic temperature rise recorded by instruments on the OOI Cabled Array-- up to 0.6-0.7°C above ambient sustained for weeks after the event. This eruption is likely to have significantly perturbed the hydrothermal and biological systems in and around the summit caldera, and provides the rare opportunity to address time-critical scientific questions that can only be investigated with the near-term seafloor investigations. A currently scheduled NSF and NOAA funded cruise to Axial Seamount on R/V Thompson with ROV Jason and AUV Sentry in August 2015 provides an excellent opportunity for such a response. This study adds 3 days onto this cruise to facilitate time-critical event response science.
Detailed seafloor mapping with shipboard multi-beam sonar and near-bottom Sentry surveys will cover areas of the caldera and adjacent rift zones that are expected eruption site(s). Fresh rock, if located, will be sampled and dated using the 210Po-210Pb technique. Hydrothermal plumes will be discerned with CTD casts and sensor tows. A mooring will be deployed with Miniature Autonomous Plume Recorders to measure temperature, light attenuation, and redox potential. The at-sea team plans to make samples and data available to the broader science community for targeted research on seafloor processes.";
    String projects_0_end_date "2016-06";
    String projects_0_geolocation "Axial Seamount, Juan de Fuca Ridge, northeastern Pacific Ocean (46.06°N 130.00°W)";
    String projects_0_name "Event response to an eruption at Axial Seamount";
    String projects_0_project_nid "661058";
    String projects_0_project_website "http://axial2015.blogspot.com";
    String projects_0_start_date "2015-07";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 46.0934;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "latitude,longitude";
    String summary "Data collected from Miniature Autonomous Plume Recorders (MAPRs) deployed near the Axial Seamount on the Juan de Fuca Ridge on R/V Thomas G. Thompson TN327 in August 2015 and collected in July 2017.";
    String time_coverage_end "2016-02-29T23:20:00Z";
    String time_coverage_start "2015-08-27T16:00:01Z";
    String title "[TN327 Axial 2015 MAPR Mooring Data] - Data collected from Miniature Autonomous Plume Recorders (MAPRs) deployed near the Axial Seamount on the Juan de Fuca Ridge on R/V Thomas G. Thompson TN327 in August 2015 and collected in July 2017. (Event response to an eruption at Axial Seamount)";
    String version "1";
    Float64 Westernmost_Easting -129.9814;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact