BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [Productivity model CO2 diffusion] - Predictions of photosynthesis and carbon
use for diffusive uptake under light, temperature and pCO2 using a productivity
model, 2014-2015 (Seaweed OA Resilience project) (Ocean Acidification: Scope
for Resilience to Ocean Acidification in Macroalgae)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_731256)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    [The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Light {
    Int16 _FillValue 32767;
    Int16 actual_range 10, 400;
    String bcodmo_name "irradiance";
    String description "Light intensity";
    String long_name "Light";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/VSRW/";
    String units "?";
  }
  pH {
    Float32 _FillValue NaN;
    Float32 actual_range 7.73, 8.1;
    String bcodmo_name "pH";
    Float64 colorBarMaximum 9.0;
    Float64 colorBarMinimum 7.0;
    String description "Potential of Hydrogen in pH scale";
    String long_name "Sea Water Ph Reported On Total Scale";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/";
    String units "unitless";
  }
  Temp {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 5, 30;
    String bcodmo_name "temperature";
    String description "Temperature of seawater";
    String long_name "Temperature";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/";
    String units "degrees Celsius";
  }
  pCO2 {
    Float32 _FillValue NaN;
    Float32 actual_range 337.915, 936.3;
    String bcodmo_name "pCO2";
    String description "Partial pressure of CO2 in seawater";
    String long_name "P CO2";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PCO2C101/";
    String units "micro-atmospheres  (µatm)";
  }
  HCO3 {
    Float32 _FillValue NaN;
    Float32 actual_range 1611.11, 2071.034;
    String bcodmo_name "bicarbonate";
    String description "Concentration of bicarbonate in seawater";
    String long_name "HCO3";
    String units "micromoles/kilogram (µmol/kg)";
  }
  CO3 {
    Float32 _FillValue NaN;
    Float32 actual_range 51.144, 239.762;
    String bcodmo_name "carbonate";
    String description "Concentration of carbonate in seawater";
    String long_name "CO3";
    String units "micromoles/kilogram (µmol/kg)";
  }
  CO2 {
    Float32 _FillValue NaN;
    Float32 actual_range 8.608, 45.249;
    String bcodmo_name "TCO2";
    String description "Concentration of CO2 in seawater";
    String long_name "CO2";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/TCO2KG01/";
    String units "micromoles/kilogram (µmol/kg)";
  }
  DCO2 {
    Float32 _FillValue NaN;
    Float32 actual_range 1.16e-9, 2.3e-9;
    String bcodmo_name "unknown";
    String description "Molecular diffusion coefficient of CO2 (taken from Zeebe 2011)";
    String long_name "DCO2";
    String units "CP2/meter^2/second (m-2 . s-1)";
  }
  eb_a {
    Float32 _FillValue NaN;
    Float32 actual_range -11.35, -8.42;
    String bcodmo_name "unknown";
    String description "Ratio of carbon isotope fractionation of dissolved CO2 with respect to dissolved HCO3 (taken from Table 4 of Mook et al. 1974)";
    String long_name "Eb A";
    String units "unitless";
  }
  HCO3_CO3_frac {
    Float32 _FillValue NaN;
    Float32 actual_range 0.979, 0.995;
    String bcodmo_name "unknown";
    String description "Ratio of bicarbonate to carbonate fraction expressed per total inorganic carbon";
    String long_name "HCO3 CO3 Frac";
    String units "unitless";
  }
  d13C_CO2_SW {
    Float32 _FillValue NaN;
    Float32 actual_range -11.251, -8.322;
    String bcodmo_name "delta13C";
    String description "Predicted delta 13C fraction of CO2 in seawater";
    String long_name "D13 C CO2 SW";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/D13CMITX/";
    String units "parts per thousand (ppt)";
  }
  alpha_org {
    Float32 _FillValue NaN;
    Float32 actual_range 1.021, 1.028;
    String bcodmo_name "unknown";
    String description "Weighted average of discrimination by organism against 13C due to discrimination against 13C by RUBISCO (1.029) and diffusion (1.0007) (see Raven 1997)";
    String long_name "Alpha Org";
    String units "unitless (a ratio of rate constants)";
  }
  d13C {
    Float32 _FillValue NaN;
    Float32 actual_range -38.588, -28.253;
    String bcodmo_name "delta13C";
    String description "Predicted Isotopic composition of delta 13C of plant relative to Pee Dee Belemnite calculated as (((d13_CO2_SW/1000) - alpha_org+1)/alpha_org)*1000";
    String long_name "D13 C";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/D13CMITX/";
    String units "parts per thousand (ppt)";
  }
  D {
    Float32 _FillValue NaN;
    Float32 actual_range 20.51, 28.434;
    String bcodmo_name "unknown";
    String description "Predicted Discrimination against 13C by plant calculated as: ((((d13_CO2_SW/1000)-(d13C/1000))/(1+d13C/10000)))*1000";
    String long_name "D";
    String units "parts per thousand (ppt)";
  }
  K_half_sat {
    Float32 _FillValue NaN;
    Float32 actual_range 3012.36, 7501.26;
    String bcodmo_name "unknown";
    String description "Light-dependent values of K1/2 for carbon fixation taken from saturating and low light CO2-using seaweeds in Johnston et al. 1992";
    String long_name "K Half Sat";
    String units "moles/meter^3 (mol . m-3)";
  }
  PS {
    Float32 _FillValue NaN;
    Float32 actual_range 0.049, 2.809;
    String bcodmo_name "C_photosyn";
    String description "Predicted photosynthetic rate based on Hill-Whittingham equation for aquatic phototrophs with diffusive uptake of carbon (Hill and Whittingham 1955)";
    String long_name "Surface Pressure Variation";
    String units "micromoles C-fixed/meter^2/second";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv";
    String acquisition_description 
"Expected values of carbonate chemistry in seawater of specified conditions
were calculated using CO2Calc (Robbins et al. 2010). Estimates of
photosynthetic responses of CO2-using red algae under specified conditions of
light intensity, temperature and pCO2 were made using published data on rates
of photosynthesis as functions of light intensity and temperature and the
predicted availability and diffusive uptake rate of CO2 at the plant surface
in seawater. Pathlength of diffusion of CO2 from seawater to the site of
carbon fixation was assumed to be 20 microns for these data representing
photosynthetic rates (See K\\u00fcbler and Dudgeon 2015). Further methodology
references are listed below.";
    String awards_0_award_nid "55177";
    String awards_0_award_number "OCE-1316198";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward?AWD_ID=1316198";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "David L. Garrison";
    String awards_0_program_manager_nid "50534";
    String cdm_data_type "Other";
    String comment 
"Predictions of photosynthesis and carbon use for diffusive uptake under light, temperature and pCO2 
   PI's: J. Kubler, S. Dudgeon (CSU-Northridge) 
   version: 2018-03-19";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2018-03-21T15:07:43Z";
    String date_modified "2019-12-11T16:15:04Z";
    String defaultDataQuery "&time<now";
    String doi "10.1575/1912/bco-dmo.731256.1";
    String history 
"2024-11-14T03:27:52Z (local files)
2024-11-14T03:27:52Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_731256.das";
    String infoUrl "https://www.bco-dmo.org/dataset/731256";
    String institution "BCO-DMO";
    String keywords "alpha, alpha_org, bco, bco-dmo, biological, carbon, carbon dioxide, carbonate, chemical, chemistry, co2, co3, d13, d13C, d13C_CO2_SW, data, dataset, dco2, dioxide, dmo, earth, Earth Science > Oceans > Ocean Chemistry > pH, eb_a, erddap, frac, half, hco3, HCO3_CO3_frac, K_half_sat, light, management, ocean, oceanography, oceans, office, org, pCO2, preliminary, pressure, reported, sat, scale, science, sea, sea_water_ph_reported_on_total_scale, seawater, surface, Temp, temperature, total, variation, water";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "https://www.bco-dmo.org/dataset/731256/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/731256";
    String param_mapping "{'731256': {}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/731256/parameters";
    String people_0_affiliation "California State University Northridge";
    String people_0_affiliation_acronym "CSU-Northridge";
    String people_0_person_name "Dr Janet  E Kubler";
    String people_0_person_nid "51681";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "California State University Northridge";
    String people_1_affiliation_acronym "CSU-Northridge";
    String people_1_person_name "Dr Steve Dudgeon";
    String people_1_person_nid "51682";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI BCO-DMO";
    String people_2_person_name "Nancy Copley";
    String people_2_person_nid "50396";
    String people_2_role "BCO-DMO Data Manager";
    String people_2_role_type "related";
    String project "Seaweed OA Resilience";
    String projects_0_acronym "Seaweed OA Resilience";
    String projects_0_description "Benthic macroalgae contribute to intensely productive near shore  ecosystems and little is known about the potential effects of ocean  acidification on non-calcifying macroalgae. Kübler and Dudgeon will test  hypotheses about two macroalgae, Ulva spp. and Plocamium cartilagineum,  which, for different reasons, are hypothesized to be more productive  and undergo ecological expansions under predicted changes in ocean  chemistry. They have designed laboratory culture-based experiments to  quantify the scope for response to ocean acidification in Plocamium,  which relies solely on diffusive uptake of CO2, and populations of Ulva  spp., which have an inducible concentrating mechanism (CCM). The  investigators will culture these algae in media equilibrated at 8  different pCO2 levels ranging from 380 to 940 ppm to address three key  hypotheses. The first is that macroalgae (such as Plocamium  cartilagineum) that are not able to acquire inorganic carbon in changed  form will benefit, in terms of photosynthetic and growth rates, from  ocean acidification. There is little existing data to support this  common assumption. The second hypothesis is that enhanced growth of Ulva  sp. under OA will result from the energetic savings from down  regulating the CCM, rather than from enhanced photosynthesis per se.  Their approach will detect existing genetic variation for adaptive  plasticity. The third key hypothesis to be addressed in short-term  culture experiments is that there will be a significant interaction  between ocean acidification and nitrogen limited growth of Ulva spp.,  which are indicator species of eutrophication. Kübler and Dudgeon will  be able to quantify the individual effects of ocean acidification and  nitrogenous nutrient addition on Ulva spp. and also, the synergistic  effects, which will inevitably apply in many highly productive, shallow  coastal areas. The three hypotheses being addressed have been broadly  identified as urgent needs in our growing understanding of the impacts  of ocean acidification.";
    String projects_0_end_date "2016-05";
    String projects_0_geolocation "Temperate coastal waters of the USA (30 - 45 N latitude, -66 to -88 W and -117 to -125 W longitude)";
    String projects_0_name "Ocean Acidification: Scope for Resilience to Ocean Acidification in Macroalgae";
    String projects_0_project_nid "2275";
    String projects_0_start_date "2013-06";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "This dataset represents calculations from a model of photosynthesis by diffusive uptake of only CO2 given expected abundance of carbonate chemistry parameters in ocean water of known temperature salinity and depth.";
    String title "[Productivity model CO2 diffusion] - Predictions of photosynthesis and carbon use for diffusive uptake under light, temperature and pCO2 using a productivity model, 2014-2015 (Seaweed OA Resilience project) (Ocean Acidification: Scope for Resilience to Ocean Acidification in Macroalgae)";
    String version "1";
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact