BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Dataset Title: | [Gulf of Mexico sediment core oxygen profiles] - Oxygen profiles from sediment core samples collected in the northern Gulf of Mexico, May 2017 (Toward an Improved Understanding of Blue Carbon: The Role of Seagrasses in Sequestering CO2) |
Institution: | BCO-DMO (Dataset ID: bcodmo_dataset_745997) |
Range: | longitude = -84.552 to -84.456°E, latitude = 29.853 to 29.907°N |
Information: | Summary | License | FGDC | ISO 19115 | Metadata | Background | Data Access Form | Files |
Click on the map to specify a new center point.
Zoom: |
Attributes { s { site { String bcodmo_name "site"; String description "sample collection site identifier"; String long_name "Site"; String units "unitless"; } latitude { String _CoordinateAxisType "Lat"; Float64 _FillValue NaN; Float64 actual_range 29.853, 29.907; String axis "Y"; String bcodmo_name "latitude"; Float64 colorBarMaximum 90.0; Float64 colorBarMinimum -90.0; String description "latitude; north is positive"; String ioos_category "Location"; String long_name "Latitude"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/"; String standard_name "latitude"; String units "degrees_north"; } longitude { String _CoordinateAxisType "Lon"; Float64 _FillValue NaN; Float64 actual_range -84.552, -84.456; String axis "X"; String bcodmo_name "longitude"; Float64 colorBarMaximum 180.0; Float64 colorBarMinimum -180.0; String description "longitude; east is positive"; String ioos_category "Location"; String long_name "Longitude"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/"; String standard_name "longitude"; String units "degrees_east"; } core { String bcodmo_name "core_id"; String description "core number"; String long_name "Core"; String units "unitless"; } profile { String bcodmo_name "replicate"; String description "profile replicate identifier"; String long_name "Profile"; String units "unitless"; } ISO_DateTime_Local_collected { String bcodmo_name "date_local"; String description "local date and time sample was collected; formatted as YYYY-MM-DDTHH:MM:SS (ISO 8601:2004€ )"; String long_name "ISO Date Time Local Collected"; String source_name "ISO_DateTime_Local_collected"; String time_precision "1970-01-01T00:00:00Z"; String units "unitless"; } ISO_DateTime_Local_scan { String bcodmo_name "date_local"; String description "local date and time when oxygen profiling began; formatted as YYYY-MM-DDTHH:MM:SS (ISO 8601:2004€ )"; String long_name "ISO Date Time Local Scan"; String time_precision "1970-01-01T00:00:00Z"; String units "unitless"; } depth_cm { String bcodmo_name "depth_core"; String description "depth of oxygen reading within the core sample; bottom water refers to scan collected approximately 0.5 cm above the sediment surface"; String long_name "Depth"; String standard_name "depth"; String units "centimeters"; } O2_uM { String bcodmo_name "dissolved Oxygen"; String description "dissolved oxygen concentration"; String long_name "O2 U M"; String units "microMoles"; } } NC_GLOBAL { String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson"; String acquisition_description "Sediment cores were collected by divers, sealed in the field with rubber stoppers and returned to the lab for processing. Pore waters were collected by inserting rhizon samplers (Seeberg-Elverfeldt et al., 2005) through pre- drilled holes in the core tubes. Samples were collected in gas-tight glass syringes and filtered through 0.45 \\u00b5m nylon filters into storage vials. Oxygen profiles in the cores were collected with polarographic microelectrodes (Luther et al., 2008) using a DLK 70 WebPstat electrochemical analyzer (AIS, Inc.) and a computer-controlled micro-profiler. Note: 'sd' in this dataset means that the electrode signal deterioriated, likely due to sulfide interference."; String awards_0_award_nid "648650"; String awards_0_award_number "OCE-1635403"; String awards_0_funder_name "NSF Division of Ocean Sciences"; String awards_0_funding_acronym "NSF OCE"; String awards_0_funding_source_nid "355"; String awards_0_program_manager "David L. Garrison"; String awards_0_program_manager_nid "50534"; String awards_1_award_nid "710233"; String awards_1_award_number "OCE-1633951"; String awards_1_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1633951"; String awards_1_funder_name "NSF Division of Ocean Sciences"; String awards_1_funding_acronym "NSF OCE"; String awards_1_funding_source_nid "355"; String awards_1_program_manager "Michael E. Sieracki"; String awards_1_program_manager_nid "50446"; String cdm_data_type "Other"; String comment "Oxygen profiles collected May 2017 in the northern Gulf of Mexico PI: D. Burdige (ODU) Co-PIs: R. Zimmerman (ODU), M. Long (WHOI) version date: 2018-09-04 NOTE: sd = the electrode signal deterioriated (likley due to sulfide intereference)"; String Conventions "COARDS, CF-1.6, ACDD-1.3"; String creator_email "info@bco-dmo.org"; String creator_name "BCO-DMO"; String creator_type "institution"; String creator_url "https://www.bco-dmo.org/"; String data_source "extract_data_as_tsv version 2.3 19 Dec 2019"; String date_created "2018-09-11T17:25:58Z"; String date_modified "2019-03-20T15:10:53Z"; String defaultDataQuery "&time<now"; String doi "10.1575/1912/bco-dmo.745997.1"; Float64 Easternmost_Easting -84.456; Float64 geospatial_lat_max 29.907; Float64 geospatial_lat_min 29.853; String geospatial_lat_units "degrees_north"; Float64 geospatial_lon_max -84.456; Float64 geospatial_lon_min -84.552; String geospatial_lon_units "degrees_east"; String history "2024-11-08T06:07:37Z (local files) 2024-11-08T06:07:37Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_745997.das"; String infoUrl "https://www.bco-dmo.org/dataset/745997"; String institution "BCO-DMO"; String instruments_0_acronym "O2 microsensor"; String instruments_0_dataset_instrument_description "Oxygen was measured with polarographic microelectrodes using a DLK 70 WebPstat electrochemical analyzer (AIS, Inc.) and a computer-controlled micro-profiler."; String instruments_0_dataset_instrument_nid "746005"; String instruments_0_description "A miniaturized Clark-type dissolved oxygen instrument, including glass micro-sensors with minute tips (diameters ranging from 1 to 800 um). A gold or platinum sensing cathode is polarized against an internal reference and, driven by external partial pressure, oxygen from the environment penetrates through the sensor tip membrane and is reduced at the sensing cathode surface. A picoammeter converts the resulting reduction current to a signal. The size of the signal generated by the electrode is proportional to the flux of oxygen molecules to the cathode.The sensor also includes a polarized guard cathode, which scavenges oxygen in the electrolyte, thus minimizing zero-current and pre-polarization time.With the addition of a meter and a sample chamber, the respiration of a small specimen can be measured. Example: Strathkelvin Inst. http://www.strathkelvin.com"; String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/351/"; String instruments_0_instrument_name "Oxygen Microelectrode Sensor"; String instruments_0_instrument_nid "701"; String instruments_0_supplied_name "DLK 70 WebPstat electrochemical analyzer (AIS, Inc.)"; String keywords "bco, bco-dmo, biological, chemical, collected, core, data, dataset, date, depth, depth_cm, dmo, erddap, iso, ISO_DateTime_Local_scan, latitude, local, longitude, management, O2, O2_uM, oceanography, office, oxygen, preliminary, profile, scan, site, time, u"; String license "https://www.bco-dmo.org/dataset/745997/license"; String metadata_source "https://www.bco-dmo.org/api/dataset/745997"; Float64 Northernmost_Northing 29.907; String param_mapping "{'745997': {'lat': 'master - latitude', 'lon': 'master - longitude'}}"; String parameter_source "https://www.bco-dmo.org/mapserver/dataset/745997/parameters"; String people_0_affiliation "Old Dominion University"; String people_0_affiliation_acronym "ODU"; String people_0_person_name "David J Burdige"; String people_0_person_nid "648653"; String people_0_role "Principal Investigator"; String people_0_role_type "originator"; String people_1_affiliation "Woods Hole Oceanographic Institution"; String people_1_affiliation_acronym "WHOI"; String people_1_person_name "Matthew Long"; String people_1_person_nid "560155"; String people_1_role "Co-Principal Investigator"; String people_1_role_type "originator"; String people_2_affiliation "Old Dominion University"; String people_2_affiliation_acronym "ODU"; String people_2_person_name "Richard C. Zimmerman"; String people_2_person_nid "51308"; String people_2_role "Co-Principal Investigator"; String people_2_role_type "originator"; String people_3_affiliation "Woods Hole Oceanographic Institution"; String people_3_affiliation_acronym "WHOI BCO-DMO"; String people_3_person_name "Nancy Copley"; String people_3_person_nid "50396"; String people_3_role "BCO-DMO Data Manager"; String people_3_role_type "related"; String project "Seagrass Blue Carbon"; String projects_0_acronym "Seagrass Blue Carbon"; String projects_0_description "NSF abstract: This research will develop a quantitative understanding of the factors controlling carbon cycling in seagrass meadows that will improve our ability to quantify their potential as blue carbon sinks and predict their future response to climate change, including sea level rise, ocean warming and ocean acidification. This project will advance a new generation of bio-optical-geochemical models and tools (ECHOES) that have the potential to be transform our ability to measure and predict carbon dynamics in shallow water systems. This study will utilize cutting-edge methods for evaluating oxygen and carbon exchange (Eulerian and eddy covariance techniques) combined with biomass, sedimentary, and water column measurements to develop and test numerical models that can be scaled up to quantify the dynamics of carbon cycling and sequestration in seagrass meadows in temperate and tropical environments of the West Atlantic continental margin that encompass both siliciclastic and carbonate sediments. The comparative analysis across latitudinal and geochemical gradients will address the relative contributions of different species and geochemical processes to better constrain the role of seagrass carbon sequestration to global biogeochemical cycles. Specifically the research will quantify: (i) the relationship between C stocks and standing biomass for different species with different life histories and structural complexity, (ii) the influence of above- and below-ground metabolism on carbon exchange, and (iii) the influence of sediment type (siliciclastic vs. carbonate) on Blue Carbon storage. Seagrass biomass, growth rates, carbon content and isotope composition (above- and below-ground), organic carbon deposition and export will be measured. Sedimentation rates and isotopic composition of PIC, POC, and iron sulfide precipitates, as well as porewater concentrations of dissolved sulfide, CO2, alkalinity and salinity will be determined in order to develop a bio-optical-geochemical model that will predict the impact of seagrass metabolism on sediment geochemical processes that control carbon cycling in shallow waters. Model predictions will be validated against direct measurements of DIC and O2 exchange in seagrass meadows, enabling us to scale-up the density-dependent processes to predict the impacts of seagrass distribution and density on carbon cycling and sequestration across the submarine landscape. Status, as of 09 June 2016: This project has been recommended for funding by NSF's Division of Ocean Sciences."; String projects_0_end_date "2019-07"; String projects_0_geolocation "Chesapeake Bay, Northern Gulf of Mexico, and Bahamas Banks"; String projects_0_name "Toward an Improved Understanding of Blue Carbon: The Role of Seagrasses in Sequestering CO2"; String projects_0_project_nid "648649"; String projects_0_start_date "2016-08"; String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)"; String publisher_type "institution"; String sourceUrl "(local files)"; Float64 Southernmost_Northing 29.853; String standard_name_vocabulary "CF Standard Name Table v55"; String summary "This dataset includes oxygen profiles from sediment core samples collected in the northern Gulf of Mexico in May 2017."; String title "[Gulf of Mexico sediment core oxygen profiles] - Oxygen profiles from sediment core samples collected in the northern Gulf of Mexico, May 2017 (Toward an Improved Understanding of Blue Carbon: The Role of Seagrasses in Sequestering CO2)"; String version "1"; Float64 Westernmost_Easting -84.552; String xml_source "osprey2erddap.update_xml() v1.3"; } }
The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.
Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names,
followed by a collection of
constraints (e.g., variable<value),
each preceded by '&' (which is interpreted as "AND").
For details, see the tabledap Documentation.