BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Relative abundance of suspension-feeding invertebrates and algae in pacific
Panama, 2016-2018
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_746588)
Range: longitude = -81.75907 to -79.02817°E, latitude = 7.40309 to 8.63174°N
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Period {
    String bcodmo_name "time_point";
    String description "time period for settlement tile deployment";
    String long_name "Period";
    String units "unitless";
  }
  Site {
    String bcodmo_name "site";
    String description "experimental site";
    String long_name "Site";
    String units "unitless";
  }
  Gulf {
    String bcodmo_name "region";
    String description "Gulf from which samples were collected";
    String long_name "Gulf";
    String units "unitless";
  }
  ID {
    Byte _FillValue 127;
    Byte actual_range 1, 60;
    String bcodmo_name "sample";
    String description "tile ID number";
    String long_name "ID";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/ACYC/";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 7.40309, 8.63174;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "latitude; north is positive";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -81.75907, -79.02817;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "longitude; east is positive";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  Orientation {
    String bcodmo_name "unknown";
    String description "orientation of tile on cement block: T=top; B=bottom";
    String long_name "Orientation";
    String units "unitless";
  }
  Cirripedia {
    Byte _FillValue 127;
    Byte actual_range 1, 5;
    String bcodmo_name "relative_abund";
    String description "relative abundance of Cirripedia on settlement tiles: 1 (not present); 2 (covers75%).";
    String long_name "Cirripedia";
    String units "unitless";
  }
  Spirorbid {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "relative_abund";
    String description "relative abundance of Spirorbid polychaetes on settlement tiles";
    String long_name "Spirorbid";
    String units "unitless";
  }
  Serpulid {
    Byte _FillValue 127;
    Byte actual_range 1, 3;
    String bcodmo_name "relative_abund";
    String description "relative abundance of Serpulid polychaetes on settlement tiles";
    String long_name "Serpulid";
    String units "unitless";
  }
  Total_Polychaete {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "relative_abund";
    String description "relative abundance of total Polychaete on settlement tiles";
    String long_name "Total Polychaete";
    String units "unitless";
  }
  Vermetid {
    Byte _FillValue 127;
    Byte actual_range 1, 2;
    String bcodmo_name "relative_abund";
    String description "relative abundance of Vermetid gastropods on settlement tiles";
    String long_name "Vermetid";
    String units "unitless";
  }
  Other_gastropod {
    Byte _FillValue 127;
    Byte actual_range 1, 2;
    String bcodmo_name "relative_abund";
    String description "relative abundance of other gastropod on settlement tiles";
    String long_name "Other Gastropod";
    String units "unitless";
  }
  Total_Gastropods {
    Byte _FillValue 127;
    Byte actual_range 1, 2;
    String bcodmo_name "relative_abund";
    String description "relative abundance of total gastropods on settlement tiles";
    String long_name "Total Gastropods";
    String units "unitless";
  }
  Coral_byrozoan {
    Byte _FillValue 127;
    Byte actual_range 1, 2;
    String bcodmo_name "relative_abund";
    String description "relative abundance of coral byrozoans on settlement tiles";
    String long_name "Coral Byrozoan";
    String units "unitless";
  }
  Tubulipora_bryozoan {
    Byte _FillValue 127;
    Byte actual_range 1, 3;
    String bcodmo_name "relative_abund";
    String description "relative abundance of Tubulipora bryozoans on settlement tiles";
    String long_name "Tubulipora Bryozoan";
    String units "unitless";
  }
  Aggregate_byrozoan {
    Byte _FillValue 127;
    Byte actual_range 1, 3;
    String bcodmo_name "relative_abund";
    String description "relative abundance of aggregate byrozoans on settlement tiles";
    String long_name "Aggregate Byrozoan";
    String units "unitless";
  }
  Other_bryozoan {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "relative_abund";
    String description "relative abundance of other bryozoans on settlement tiles";
    String long_name "Other Bryozoan";
    String units "unitless";
  }
  Total_bryozoan {
    Byte _FillValue 127;
    Byte actual_range 1, 4;
    String bcodmo_name "relative_abund";
    String description "relative abundance of total bryozoans on settlement tiles";
    String long_name "Total Bryozoan";
    String units "unitless";
  }
  Smooth_ascidian {
    Byte _FillValue 127;
    Byte actual_range 1, 5;
    String bcodmo_name "relative_abund";
    String description "relative abundance of smooth ascidians on settlement tiles";
    String long_name "Smooth Ascidian";
    String units "unitless";
  }
  Other_ascidian {
    Byte _FillValue 127;
    Byte actual_range 1, 2;
    String bcodmo_name "relative_abund";
    String description "relative abundance of other ascidians on settlement tiles";
    String long_name "Other Ascidian";
    String units "unitless";
  }
  Total_ascidian {
    Byte _FillValue 127;
    Byte actual_range 1, 5;
    String bcodmo_name "relative_abund";
    String description "relative abundance of total ascidians on settlement tiles";
    String long_name "Total Ascidian";
    String units "unitless";
  }
  Corallinales {
    Byte _FillValue 127;
    Byte actual_range 1, 5;
    String bcodmo_name "relative_abund";
    String description "relative abundance of Corallinales algae on settlement tiles";
    String long_name "Corallinales";
    String units "unitless";
  }
  Macro_algae {
    Byte _FillValue 127;
    Byte actual_range 1, 5;
    String bcodmo_name "relative_abund";
    String description "relative abundance of macroalgae on settlement tiles";
    String long_name "Macro Algae";
    String units "unitless";
  }
  Film_algae {
    Byte _FillValue 127;
    Byte actual_range 1, 5;
    String bcodmo_name "relative_abund";
    String description "relative abundance of film-type algae on settlement tiles";
    String long_name "Film Algae";
    String units "unitless";
  }
  Tot_algae {
    Byte _FillValue 127;
    Byte actual_range 1, 5;
    String bcodmo_name "relative_abund";
    String description "relative abundance of total algae on settlement tiles";
    String long_name "Tot Algae";
    String units "unitless";
  }
  Weight {
    Float32 _FillValue NaN;
    Float32 actual_range 7.0053, 7.6318;
    String bcodmo_name "weight";
    String description "initial weight of the settlement tiles";
    String long_name "Weight";
    String units "grams";
  }
  Weight_48hr {
    Float32 _FillValue NaN;
    Float32 actual_range 7.1765, 13.1987;
    String bcodmo_name "weight";
    String description "the weight of the settlement tiles after being in-situ for the time period then dried in an oven for 48 hours";
    String long_name "Weight 48hr";
    String units "grams";
  }
  Notes {
    String bcodmo_name "comment";
    String description "comments pertaining to other organism seen on tiles";
    String long_name "Notes";
    String units "unitless";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson";
    String acquisition_description 
"Settlement tiles were deployed at six sites in Pacific Panama, three sites in
the Gulf of Panama and three sites in the Gulf of Chiriqui. Settlement tiles
were adhered to the top and to the bottom of 10 cement blocks at each site.
The tiles were deployed for approximately six months and then collected.
Photographs were taken of the tiles. The relative abundance of broad taxonomic
groups was recorded on a scale from 1 to 5 by examining the photographs and
the tiles in the laboratory.\\u00a0
 
In 2019, the same procedure was applied but the tiles were deployed for about
12 months before collection. Averages of the functional group abundances were
calculated.";
    String awards_0_award_nid "655898";
    String awards_0_award_number "OCE-1535007";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1535007";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Michael E. Sieracki";
    String awards_0_program_manager_nid "50446";
    String awards_1_award_nid "655911";
    String awards_1_award_number "OCE-1535203";
    String awards_1_data_url "http://www.nsf.gov/awardsearch/showAward?AWD_ID=1535203";
    String awards_1_funder_name "NSF Division of Ocean Sciences";
    String awards_1_funding_acronym "NSF OCE";
    String awards_1_funding_source_nid "355";
    String awards_1_program_manager "Michael E. Sieracki";
    String awards_1_program_manager_nid "50446";
    String cdm_data_type "Other";
    String comment 
"Settlement Abundance 2016-2019 
   Relative abundance of suspension-feeding invertebrates and algae in Pacific Panama, 2016-1019  
   PI's: R. Aronson (FIT), J. Leichter (UCSD), Toth (USGS) 
   Version date: 2019-09-09 [includes 2018-19 data] 
    Replaces version: 2018-09-20 [2016-2018 data] 
    
    Relative abundance key: 1 (not present); 2 (covers<25%); 3 (covers between 25-50%); 4 (covers between 50-75%); 5 (covers>75%).  
    Period: Time 1 (March 2016-September 2016); Time 2 (September 2016-March 2017); Time 3 (March 2017-September 2017); Time 4 (September 2017-March 2018); Time 5 (March 2018 - September 2019) 
    Orientation: T=top of cement block; B=bottom of the block";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2018-09-20T17:35:19Z";
    String date_modified "2019-09-12T19:10:04Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.746588.1";
    Float64 Easternmost_Easting -79.02817;
    Float64 geospatial_lat_max 8.63174;
    Float64 geospatial_lat_min 7.40309;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -79.02817;
    Float64 geospatial_lon_min -81.75907;
    String geospatial_lon_units "degrees_east";
    String history 
"2024-04-19T23:13:03Z (local files)
2024-04-19T23:13:03Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_746588.das";
    String infoUrl "https://www.bco-dmo.org/dataset/746588";
    String institution "BCO-DMO";
    String instruments_0_acronym "camera";
    String instruments_0_dataset_instrument_description "Used to record settlement on the tiles.";
    String instruments_0_dataset_instrument_nid "746592";
    String instruments_0_description "All types of photographic equipment including stills, video, film and digital systems.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/311/";
    String instruments_0_instrument_name "Camera";
    String instruments_0_instrument_nid "520";
    String keywords "48hr, aggregate, Aggregate_byrozoan, algae, ascidian, bco, bco-dmo, biological, bryozoan, byrozoan, chemical, cirripedia, coral, Coral_byrozoan, corallinales, data, dataset, dmo, erddap, film, Film_algae, gastropod, gastropods, gulf, latitude, longitude, macro, Macro_algae, management, notes, oceanography, office, orientation, Other_ascidian, Other_bryozoan, Other_gastropod, period, polychaete, preliminary, serpulid, site, smooth, Smooth_ascidian, spirorbid, tot, Tot_algae, total, Total_ascidian, Total_bryozoan, Total_Gastropods, Total_Polychaete, tubulipora, Tubulipora_bryozoan, vermetid, weight, Weight_48hr";
    String license "https://www.bco-dmo.org/dataset/746588/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/746588";
    Float64 Northernmost_Northing 8.63174;
    String param_mapping "{'746588': {'Latitude': 'master - latitude', 'Longitude': 'master - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/746588/parameters";
    String people_0_affiliation "Florida Institute of Technology";
    String people_0_affiliation_acronym "FIT";
    String people_0_person_name "Dr Richard B. Aronson";
    String people_0_person_nid "655902";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "University of California-San Diego";
    String people_1_affiliation_acronym "UCSD-SIO";
    String people_1_person_name "Dr James J. Leichter";
    String people_1_person_nid "51533";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI BCO-DMO";
    String people_2_person_name "Nancy Copley";
    String people_2_person_nid "50396";
    String people_2_role "BCO-DMO Data Manager";
    String people_2_role_type "related";
    String project "Coral Climate ETP";
    String projects_0_acronym "Coral Climate ETP";
    String projects_0_description 
"Coral reefs are under threat around the world, and climate change is the main reason they are declining. Knowing how local conditions on a reef exaggerate or mask the impacts of climate change make it possible to predict which reefs are most likely to survive longer and, therefore, which reefs deserve the greatest effort and funding for conservation. Reefs off the Pacific coast of Panama are vulnerable to the impacts of global climate change but are also strongly influenced by small-scale currents and other local conditions. The goal of this study is to see how those local differences affect coral growth and the ability of the corals to build reefs. Climate change appears poised to shut down reef growth off Pacific Panama within the next century. Considering that sea-level rise is accelerating at the same time, if coral reefs shut down they will not be able to protect populated shorelines from storm damage and erosion. In addition to its scientific insights, this project will provide undergraduate and graduate training, provide research training for underrepresented groups, advance women in scientific careers, and contribute important information for management and policy. The results will be incorporated into innovative curricular materials for K through 12 classes in Title-I schools in Florida aligned with Next Generation (Common Core) standards, and standards for Climate and Ocean Literacy. An annual film festival will be organized for K through 12 students to explore themes in marine science through videography.
Global climate change is now the leading cause of coral-reef degradation, but the extent to which mesoscale oceanography overprints climatic forcing is poorly understood. Previous studies in Pacific Panama showed that reef ecosystems collapsed from 4100 to 1600 years ago. The 2500-yr hiatus in reef-building occurred at locations throughout the Pacific, and the primary cause was increased variability of the El Nino-Southern Oscillation. This study will determine the influence of contemporary variability in mesoscale oceanography in the eastern tropical Pacific (ETP) on variability in the condition of local coral populations. Insights from the living populations will be combined with paleoecological and geochemical studies of reef frameworks to infer past conditions that were inimical or beneficial to coral growth and reef accretion. Three primary hypotheses will be tested in Pacific Panama:
H1. Mesoscale oceanography is manifested in gradients of reef condition, coral growth, and coral physiological condition. Physiographic protection from upwelling currents and thermocline shoaling confers positive effects on coral growth rate and physiology.
H2. The impacts of mesoscale oceanographic regimes on the growth and condition of reef-corals were felt at least as far back as the mid- to late Holocene.
H3. Physiographic protection from upwelling currents and thermocline shoaling conferred positive effects on vertical reef accretion in the past and shortened the late-Holocene hiatus.
Specific research approaches to test these hypotheses will include collecting high-resolution, oceanographic time series to characterize contemporary environments along gradients of physical conditions; collecting ecological and geochemical data on the condition of living coral populations; and extracting cores from the reef frameworks and analyzing the coral assemblages taxonomically, taphonomically, and geochemically to assess patterns of biotic and paleoenvironmental variability. Strong spatial and temporal variability in the physical drivers of reef development make the ETP an excellent model system in which to examine the response of coral reefs to climate change over a range of physical regimes. This research will provide a unique opportunity to tease apart the controls on reef development across multiple spatial and temporal scales. The climatology underlying the late-Holocene hiatus was similar to probable scenarios for the next century, implying that climate change could be driving reef ecosystems of the ETP (and elsewhere) toward another collapse. Understanding how the hiatus unfolded along oceanographic gradients will increase our power to predict the future responses of reefs to a rapidly changing climate.";
    String projects_0_end_date "2019-03";
    String projects_0_geolocation "Pacific Panamá";
    String projects_0_name "Collaborative Research: Climate Change, Mesoscale Oceanography, and the Dynamics of Eastern Pacific Coral Reefs";
    String projects_0_project_nid "655899";
    String projects_0_project_website "http://www.fit.edu/research/portal/project/420/climate-change-mesoscale-oceanography-and-the-dynamics-of-eastern-pacific-coral-reefs";
    String projects_0_start_date "2015-09";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 7.40309;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "This dataset includes relative abundances of suspension-feeding invertebrates and algae in pacific Panama during five time periods between March 2016 and March 2018. [2019-09-11/njc]";
    String title "Relative abundance of suspension-feeding invertebrates and algae in pacific Panama, 2016-2018";
    String version "2";
    Float64 Westernmost_Easting -81.75907;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact