BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  Porewater measurements of nitrate and nitrite concentration and N and O
isotopic ratios (d15N and d18O) collected from sites 3 and 10 on the North
Atlantic Long Core Cruise R/V Knorr KN223 from October to December 2014
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_748792)
Range: longitude = -50.6207 to -50.6203°E, latitude = 14.4 to 14.4007°N
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Site_Number {
    Byte _FillValue 127;
    Byte actual_range 3, 10;
    String bcodmo_name "site";
    Float64 colorBarMaximum 100.0;
    Float64 colorBarMinimum 0.0;
    String description "Site number where samples were collected";
    String long_name "Site Number";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 14.4, 14.4007;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Latitude of site; North = positive values";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -50.6207, -50.6203;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Longitude of site; East = positive values";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  Depth_for_O2 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 31.81;
    String bcodmo_name "depth_bsf";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth of sample for oxygen (O2) measurement";
    String long_name "Depth";
    String standard_name "depth";
    String units "meters below seafloor (mbsf)";
  }
  Oxygen {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 283.4;
    String bcodmo_name "dissolved Oxygen";
    String description "Oxygen concentration";
    String long_name "Oxygen";
    String units "micromolar (uM)";
  }
  Depth_for_Nitrate_and_Nitrate {
    Float32 _FillValue NaN;
    Float32 actual_range 0.02, 32.07;
    String bcodmo_name "depth_bsf";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth of sample for nitrate and nitrite measurements";
    String long_name "Depth";
    String standard_name "depth";
    String units "meters below seafloor (mbsf)";
  }
  Nitrate {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 40.6;
    String bcodmo_name "NO3";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Nitrate concentration";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRAIGGS/";
    String units "micromolar (uM)";
  }
  Nitrite {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 19.86;
    String bcodmo_name "NO2";
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String description "Nitrite concentration";
    String long_name "Mole Concentration Of Nitrite In Sea Water";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRIAAZX/";
    String units "micromolar (uM)";
  }
  Depth_for_Nitrite_isotopes {
    Float32 _FillValue NaN;
    Float32 actual_range 4.2, 20.34;
    String bcodmo_name "depth_bsf";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth of sample for nitrite isotope measurements";
    String long_name "Depth";
    String standard_name "depth";
    String units "meters below seafloor (mbsf)";
  }
  d15N_Nitrite {
    Float32 _FillValue NaN;
    Float32 actual_range -27.41, 38.23;
    String bcodmo_name "NO2";
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String description "d15N nitrite";
    String long_name "Mole Concentration Of Nitrite In Sea Water";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRIAAZX/";
    String units "per mil (‰)";
  }
  d18O_Nitrite {
    Float32 _FillValue NaN;
    Float32 actual_range 14.55, 17.03;
    String bcodmo_name "NO2";
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String description "d18O nitrite";
    String long_name "Mole Concentration Of Nitrite In Sea Water";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRIAAZX/";
    String units "per mil (‰)";
  }
  Depth_for_Nitrate_isotopes {
    Float32 _FillValue NaN;
    Float32 actual_range 0.02, 9.55;
    String bcodmo_name "depth_bsf";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth of sample for nitrate isotope measurements";
    String long_name "Depth";
    String standard_name "depth";
    String units "meters below seafloor (mbsf)";
  }
  d15N_Nitrate {
    Float32 _FillValue NaN;
    Float32 actual_range 3.86, 49.3;
    String bcodmo_name "dN15_NO3";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "d15N nitrate";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "per mil (‰)";
  }
  d18O_Nitrate {
    Float32 _FillValue NaN;
    Float32 actual_range 2.48, 34.7;
    String bcodmo_name "d18O_NO3";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "d18O nitrate";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "per mil (‰)";
  }
  Depth_for_Ammonium {
    Float64 _FillValue NaN;
    Float64 actual_range 0.02, 28.48;
    String bcodmo_name "depth_bsf";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth of sample for ammonium measurements";
    String long_name "Depth";
    String standard_name "depth";
    String units "meters below seafloor (mbsf)";
  }
  Ammonium {
    Float32 _FillValue NaN;
    Float32 actual_range 0.5, 3.2;
    String bcodmo_name "Ammonium";
    Float64 colorBarMaximum 5.0;
    Float64 colorBarMinimum 0.0;
    String description "Ammonium concentration";
    String long_name "Mole Concentration Of Ammonium In Sea Water";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AMONAAZX/";
    String units "micromolar (uM)";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson";
    String acquisition_description 
"Samples were collected aboard the R/V Knorr using its long coring system in
November of 2014 on cruise KN-223 in the North Atlantic. Samples used in this
study came from two sediment coring sites located within 90m of each other at
50\\u00b037.25'W, 14\\u00b024.05'N, and 4455 m water depth. Porewaters were
extracted at approximately 0.5m intervals from two long piston cores (30 and
34 m long) using Rhizon samplers (0.2 mm pore size) and either analyzed
shipboard or frozen until analyses were conducted shore side.
 
Nitrate and nitrite concentrations were determined shipboard using ion
chromatography with UV detection (D'Hondt et al., 2015). Isotopes were
measured in the Wankel lab (Woods Hole Oceanographic Institution) using an
Isoprime 100 isotope ratio mass spectrometer coupled to a modified TraceGas
prep system similar to that described previously (McIlvin and Casciotti,
2011), which is used to flush, purify and cryogenically trap sample N2O from
converted nitrate or nitrite samples. Nitrate isotopic composition was
measured using the denitrifier method to convert nitrate to N2O, normalized to
international reference materials (USGS 34, USGS 32, and USGS 35) (Sigman et
al., 2001; Casciotti et al., 2002). Nitrite isotope measurements were made
separately using the azide method for conversion of nitrite to N2O (McIlvin
and Altabet, 2005), normalizing to previously calibrated Wankel isotope lab
standards (WILIS 10, 11, and 20) (Buchwald et al., 2016). Where co-occurring
nitrite concentrations were less than 5 times as high as nitrate, nitrite was
removed by addition of sulfamic acid (Granger and Sigman, 2009) prior to the
denitrifier method. In the deepest samples having measurable nitrate, where
concentrations were very low, the N and O isotopic composition of nitrate was
calculated by mass balance using analyses of the combined nitrate + nitrite
pools by the denitrifier method, in which both nitrate and nitrite standards
were also analyzed, together with nitrite isotope values from the azide-only
measurements described previously (Casciotti and McIlvin, 2007).\\u00a0
\\u00a0\\u00a0";
    String awards_0_award_nid "554980";
    String awards_0_award_number "OCE-0939564";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward?AWD_ID=0939564";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "David L. Garrison";
    String awards_0_program_manager_nid "50534";
    String awards_1_award_nid "567400";
    String awards_1_award_number "OCE-1433150";
    String awards_1_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1433150";
    String awards_1_funder_name "NSF Division of Ocean Sciences";
    String awards_1_funding_acronym "NSF OCE";
    String awards_1_funding_source_nid "355";
    String awards_1_program_manager "Candace O. Major";
    String awards_1_program_manager_nid "51690";
    String awards_2_award_nid "748796";
    String awards_2_award_number "OCE-1537485";
    String awards_2_data_url "https://www.nsf.gov/awardsearch/showAward?AWD_ID=1537485";
    String awards_2_funder_name "NSF Division of Ocean Sciences";
    String awards_2_funding_acronym "NSF OCE";
    String awards_2_funding_source_nid "355";
    String awards_2_program_manager "Candace O. Major";
    String awards_2_program_manager_nid "51690";
    String cdm_data_type "Other";
    String comment 
"Porewater measurements of nitrate and nitrite, 
   and N and O isotopic ratios 
  PI: Carolyn Buchwald 
  Co-PIs: Scott Wankel and Arthur Spivack 
  Version: 1 
  Version date: 26 October 2018";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2018-10-25T16:32:37Z";
    String date_modified "2019-03-15T15:37:11Z";
    String defaultDataQuery "&time<now";
    String doi "10.1575/1912/bco-dmo.748792.1";
    Float64 Easternmost_Easting -50.6203;
    Float64 geospatial_lat_max 14.4007;
    Float64 geospatial_lat_min 14.4;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -50.6203;
    Float64 geospatial_lon_min -50.6207;
    String geospatial_lon_units "degrees_east";
    String history 
"2022-08-17T11:14:33Z (local files)
2022-08-17T11:14:33Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_748792.das";
    String infoUrl "https://www.bco-dmo.org/dataset/748792";
    String institution "BCO-DMO";
    String instruments_0_acronym "IR Mass Spec";
    String instruments_0_dataset_instrument_description "Isoprime 100 isotope ratio mass spectrometer coupled to a modified TraceGas prep system";
    String instruments_0_dataset_instrument_nid "748811";
    String instruments_0_description "The Isotope-ratio Mass Spectrometer is a particular type of mass spectrometer used to measure the relative abundance of isotopes in a given sample (e.g. VG Prism II Isotope Ratio Mass-Spectrometer).";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB16/";
    String instruments_0_instrument_name "Isotope-ratio Mass Spectrometer";
    String instruments_0_instrument_nid "469";
    String instruments_0_supplied_name "Isoprime 100 isotope ratio mass spectrometer";
    String instruments_1_acronym "Piston Corer";
    String instruments_1_dataset_instrument_nid "748805";
    String instruments_1_description "The piston corer is a type of bottom sediment sampling device. A long, heavy tube is plunged into the seafloor to extract samples of mud sediment. A piston corer uses a \"free fall\" of the coring rig to achieve a greater initial force on impact than gravity coring.  A sliding piston inside the core barrel reduces inside wall friction with the sediment and helps to evacuate displaced water from the top of the corer. A piston corer is capable of extracting core samples up to 90 feet in length.";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/51/";
    String instruments_1_instrument_name "Piston Corer";
    String instruments_1_instrument_nid "519";
    String instruments_1_supplied_name "R/V Knorr long coring system";
    String instruments_2_acronym "Ion Chromatograph";
    String instruments_2_dataset_instrument_nid "748810";
    String instruments_2_description "Ion chromatography is a form of liquid chromatography that measures concentrations of ionic species by separating them based on their interaction with a resin. Ionic species separate differently depending on species type and size. Ion chromatographs are able to measure concentrations of major anions, such as fluoride, chloride, nitrate, nitrite, and sulfate, as well as major cations such as lithium, sodium, ammonium, potassium, calcium, and magnesium in the parts-per-billion (ppb) range. (from http://serc.carleton.edu/microbelife/research_methods/biogeochemical/ic.html)";
    String instruments_2_instrument_name "Ion Chromatograph";
    String instruments_2_instrument_nid "662";
    String instruments_2_supplied_name "ion chromatography with UV detection";
    String instruments_3_dataset_instrument_description "Rhizon samplers extract small volumes of pore water from soil and sediments. See: https://www.rhizosphere.com/";
    String instruments_3_dataset_instrument_nid "748809";
    String instruments_3_description "A device that collects samples of pore water from various horizons below the seabed.";
    String instruments_3_instrument_name "Sediment Porewater Sampler";
    String instruments_3_instrument_nid "748807";
    String instruments_3_supplied_name "Rhizon samplers";
    String keywords "ammonia, ammonium, bco, bco-dmo, biological, chemical, chemistry, concentration, d15N_Nitrate, d15N_Nitrite, d18O_Nitrate, d18O_Nitrite, data, dataset, depth, Depth_for_Ammonium, Depth_for_Nitrate_and_Nitrate, Depth_for_Nitrate_isotopes, Depth_for_Nitrite_isotopes, Depth_for_O2, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Ammonia, Earth Science > Oceans > Ocean Chemistry > Nitrate, erddap, latitude, longitude, management, mole, mole_concentration_of_ammonium_in_sea_water, mole_concentration_of_nitrate_in_sea_water, mole_concentration_of_nitrite_in_sea_water, n02, nh4, nitrate, nitrite, no3, number, O2, ocean, oceanography, oceans, office, oxygen, preliminary, science, sea, seawater, site, Site_Number, water";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "https://www.bco-dmo.org/dataset/748792/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/748792";
    Float64 Northernmost_Northing 14.4007;
    String param_mapping "{'748792': {'Latitude': 'flag - latitude', 'Depth_for_Ammonium': 'flag - depth', 'Longitude': 'flag - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/748792/parameters";
    String people_0_affiliation "Woods Hole Oceanographic Institution";
    String people_0_affiliation_acronym "WHOI";
    String people_0_person_name "Dr Carolyn Buchwald";
    String people_0_person_nid "637913";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "University of Rhode Island";
    String people_1_affiliation_acronym "URI-GSO";
    String people_1_person_name "Dr Arthur J. Spivack";
    String people_1_person_nid "51425";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI";
    String people_2_person_name "Scott Wankel";
    String people_2_person_nid "637907";
    String people_2_role "Co-Principal Investigator";
    String people_2_role_type "originator";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Shannon Rauch";
    String people_3_person_nid "51498";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "North Atlantic Nitrate and Nitrite";
    String projects_0_acronym "North Atlantic Nitrate and Nitrite";
    String projects_0_description 
"Project Abstract:
Deep-sea sediments in the oligotrophic ocean host a diverse array of microbes that are involved in multiple processes within the nitrogen cycle. Using measurements of nitrate and nitrite, and their stable isotopes (d15N and d18O) in sedimentary pore fluids, we have been developing approaches for determining the distribution and magnitude of key processes in the oligotrophic sediments of the North Atlantic. While concentration profiles alone indicate the production of nitrate through nitrification in the surface sediments and the reduction of the nitrate deeper in the absence of oxygen, the dual stable isotope profiles of NO3- and NO2- demonstrate clear evidence of further complexity; specifically, that nitrite oxidation occurs deeper in the sediments as well, apparently in the absence of O2. A number of lines of evidence contribute to this refined understanding of the distribution of N cycling processes in these environments, including large differences in the nitrate and nitrite d15N, as well as the evolution of a greater than 1:1 relationship between the d15N and d18O of nitrate. We used a 1D inverse model that predicts the distribution and rates of different oxidative and reductive nitrogen cycling processes throughout these vertical profiles. Our analysis reveals that nitrate reduction and nitrite oxidation co-occur between 0 and 10 meters, and that the ratio of these processes changes in relation to the abundance of porewater oxygen. In the upper profile where dissolved oxygen is more abundant oxidative processes (e.g., nitrite re-oxidation) play an exceptionally large role, as reflected in the very high slope for the evolving relationship between d15N and d18O nitrate. Below the depth of oxygen penetration, while nitrate reduction becomes a substantially more important processes, a clear indication of oxidation remains – as reflected in the large difference between nitrate and nitrite d15N. All rates were predicted to be slow on the order of 0.1 mM per year, which was substantiated by d18O values of nitrite reflecting complete isotopic equilibration with water.
This project was funded by a C-DEBI Postdoctoral Fellowship to Carolyn Buchwald (advisor: Scott Wankel).";
    String projects_0_end_date "2016-05";
    String projects_0_geolocation "North Pond, North Atlantic";
    String projects_0_name "Determining the rates of denitrification, nitrification, and nitrogen fixation using natural abundance isotope profiles in North Atlantic sediments";
    String projects_0_project_nid "748767";
    String projects_0_project_website "https://www.darkenergybiosphere.org/award/determining-the-rates-of-denitrification-nitrification-and-nitrogen-fixation-using-natural-abundance-isotope-profiles-in-north-pond-sediments/";
    String projects_0_start_date "2014-06";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 14.4;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "Porewater measurements of nitrate and nitrite concentration and N and O isotopic ratios (d15N and d18O) collected from sites 3 and 10 on the North Atlantic Long Core Cruise R/V Knorr KN223 from October to December 2014.";
    String title "Porewater measurements of nitrate and nitrite concentration and N and O isotopic ratios (d15N and d18O) collected from sites 3 and 10 on the North Atlantic Long Core Cruise R/V Knorr KN223 from October to December 2014";
    String version "1";
    Float64 Westernmost_Easting -50.6207;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact