Attributes { s { incubation_type { String bcodmo_name "exp_type"; String description "Incubations conducted in the dark alone are classified as \"microbial, and incubations using a dark/light cycle are classified as \"coupled\"."; String long_name "Incubation Type"; String units "unitless"; } site_type { String bcodmo_name "sample_descrip"; String description "Sample type?"; String long_name "Site Type"; String units "unitless"; } time_point { String bcodmo_name "time_point"; String description "Time point"; String long_name "Time Point"; String units "unitless"; } days { Int16 _FillValue 32767; Int16 actual_range 0, 401; String bcodmo_name "time_elapsed"; String description "Time elapsed (days)"; String long_name "Days"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ELTMZZZZ/"; String units "days"; } hours { Int16 _FillValue 32767; Int16 actual_range 0, 9624; String bcodmo_name "time_elapsed"; String description "Time elapsed (hours)"; String long_name "Hours"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ELTMZZZZ/"; String units "hours"; } Exposure { Int16 _FillValue 32767; Int16 actual_range 0, 145; String bcodmo_name "time_elapsed"; String description "Exposure time"; String long_name "Exposure"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ELTMZZZZ/"; String units "hours"; } Dose { Int16 _FillValue 32767; Int16 actual_range 0, 209; String bcodmo_name "treatment"; String description "Dose"; String long_name "Dose"; String units "MJ/m2"; } Irradiance { Int16 _FillValue 32767; Int16 actual_range 0, 400; String bcodmo_name "irradiance"; String description "Irradiance"; String long_name "Irradiance"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/VSRW/"; String units "W/m2"; } DOC_mg_L { Byte _FillValue 127; Byte actual_range 4, 115; String bcodmo_name "DOC"; String description "Dissolved organic carbon in milligrams per liter"; String long_name "DOC Mg L"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGZZZX/"; String units "mg/L"; } DOC_mM { Byte _FillValue 127; Byte actual_range 0, 10; String bcodmo_name "DOC"; String description "Dissolved organic carbon in millimolar"; String long_name "DOC M M"; String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGZZZX/"; String units "mM"; } Fuc { Int16 _FillValue 32767; Int16 actual_range 11, 12461; String bcodmo_name "unknown"; String description "Fucose"; String long_name "Fuc"; String units "nanomoles per liter (nmol/L)"; } Rha { Int32 _FillValue 2147483647; Int32 actual_range 41, 41891; String bcodmo_name "unknown"; String description "Rhamnose"; String long_name "Rha"; String units "nanomoles per liter (nmol/L)"; } Ara { Int16 _FillValue 32767; Int16 actual_range 38, 17471; String bcodmo_name "unknown"; String description "Arabinose"; String long_name "Ara"; String units "nanomoles per liter (nmol/L)"; } Gal { Int32 _FillValue 2147483647; Int32 actual_range 19, 33144; String bcodmo_name "unknown"; String description "Galactose"; String long_name "Gal"; String units "nanomoles per liter (nmol/L)"; } Glu { Int32 _FillValue 2147483647; Int32 actual_range 106, 114469; String bcodmo_name "unknown"; String description "Glucose"; String long_name "Glu"; String units "nanomoles per liter (nmol/L)"; } Man { Int16 _FillValue 32767; Int16 actual_range 6, 6648; String bcodmo_name "unknown"; String description "Mannose"; String long_name "Man"; String units "nanomoles per liter (nmol/L)"; } Xyl { Int32 _FillValue 2147483647; Int32 actual_range 8, 40876; String bcodmo_name "unknown"; String description "Xylose"; String long_name "XYL"; String units "nanomoles per liter (nmol/L)"; } D_Asx { Int16 _FillValue 32767; Int16 actual_range 0, 731; String bcodmo_name "amino_conc"; String description "D-Aspartate or D-Asparagine"; String long_name "D Asx"; String units "nanomoles per liter (nmol/L)"; } L_Asx { Int16 _FillValue 32767; Int16 actual_range 32, 10315; String bcodmo_name "amino_conc"; String description "L-Aspartate or L-Asparagine"; String long_name "L Asx"; String units "nanomoles per liter (nmol/L)"; } D_Glx { Int16 _FillValue 32767; Int16 actual_range 0, 834; String bcodmo_name "amino_conc"; String description "D-Glutamate or D-Glutamine"; String long_name "D GLX"; String units "nanomoles per liter (nmol/L)"; } L_Glx { Int16 _FillValue 32767; Int16 actual_range 26, 13024; String bcodmo_name "amino_conc"; String description "L-Glutamate or L-Glutamine"; String long_name "L GLX"; String units "nanomoles per liter (nmol/L)"; } D_Ser { Int16 _FillValue 32767; Int16 actual_range 1, 142; String bcodmo_name "amino_conc"; String description "D-Serine"; String long_name "D Ser"; String units "nanomoles per liter (nmol/L)"; } L_Ser { Int16 _FillValue 32767; Int16 actual_range 16, 7004; String bcodmo_name "amino_conc"; String description "L-Serine"; String long_name "L Ser"; String units "nanomoles per liter (nmol/L)"; } D_His { Byte _FillValue 127; Byte actual_range 0, 0; String bcodmo_name "amino_conc"; String description "D-Histidine"; String long_name "D His"; String units "nanomoles per liter (nmol/L)"; } L_His { Int16 _FillValue 32767; Int16 actual_range 2, 543; String bcodmo_name "amino_conc"; String description "L-Histidine"; String long_name "L His"; String units "nanomoles per liter (nmol/L)"; } D_Thr { Byte _FillValue 127; Byte actual_range 0, 0; String bcodmo_name "amino_conc"; String description "D-Threonine"; String long_name "D THR"; String units "nanomoles per liter (nmol/L)"; } L_Thr { Int16 _FillValue 32767; Int16 actual_range 21, 5181; String bcodmo_name "amino_conc"; String description "L-Threonine"; String long_name "L THR"; String units "nanomoles per liter (nmol/L)"; } Gly { Int16 _FillValue 32767; Int16 actual_range 103, 8541; String bcodmo_name "amino_conc"; String description "Glycine"; String long_name "GLY"; String units "nanomoles per liter (nmol/L)"; } D_Arg { Byte _FillValue 127; Byte actual_range 0, 0; String bcodmo_name "amino_conc"; String description "D-Arginine"; String long_name "D Arg"; String units "nanomoles per liter (nmol/L)"; } L_Arg { Int16 _FillValue 32767; Int16 actual_range 5, 3176; String bcodmo_name "amino_conc"; String description "L-Arginine"; String long_name "L Arg"; String units "nanomoles per liter (nmol/L)"; } D_Ala { Int16 _FillValue 32767; Int16 actual_range 11, 337; String bcodmo_name "amino_conc"; String description "D-Alanine"; String long_name "D Ala"; String units "nanomoles per liter (nmol/L)"; } L_Ala { Int16 _FillValue 32767; Int16 actual_range 35, 8604; String bcodmo_name "amino_conc"; String description "L-Alanine"; String long_name "L Ala"; String units "nanomoles per liter (nmol/L)"; } D_Tyr { Byte _FillValue 127; Byte actual_range 0, 0; String bcodmo_name "amino_conc"; String description "D-Tyrosine"; String long_name "D TYR"; String units "nanomoles per liter (nmol/L)"; } L_Tyr { Int16 _FillValue 32767; Int16 actual_range 0, 1768; String bcodmo_name "amino_conc"; String description "L-Tyrosine"; String long_name "L TYR"; String units "nanomoles per liter (nmol/L)"; } D_Val { Byte _FillValue 127; Byte actual_range 0, 0; String bcodmo_name "amino_conc"; String description "D-Valine"; String long_name "D Val"; String units "nanomoles per liter (nmol/L)"; } L_Val { Int16 _FillValue 32767; Int16 actual_range 13, 5233; String bcodmo_name "amino_conc"; String description "L-Valine"; String long_name "L Val"; String units "nanomoles per liter (nmol/L)"; } D_Met { Byte _FillValue 127; Byte actual_range 0, 1; String bcodmo_name "amino_conc"; String description "D-Methionine"; String long_name "D Met"; String units "nanomoles per liter (nmol/L)"; } L_Met { Int16 _FillValue 32767; Int16 actual_range 0, 5677; String bcodmo_name "amino_conc"; String description "L-Methionine"; String long_name "L Met"; String units "nanomoles per liter (nmol/L)"; } D_Ileu { Byte _FillValue 127; Byte actual_range 0, 0; String bcodmo_name "amino_conc"; String description "D-Isoleucine"; String long_name "D Ileu"; String units "nanomoles per liter (nmol/L)"; } L_Ileu { Int16 _FillValue 32767; Int16 actual_range 4, 2053; String bcodmo_name "amino_conc"; String description "L-Isoleucine"; String long_name "L Ileu"; String units "nanomoles per liter (nmol/L)"; } D_Phe { Byte _FillValue 127; Byte actual_range 0, 0; String bcodmo_name "amino_conc"; String description "D-Phenylalanine"; String long_name "D Phe"; String units "nanomoles per liter (nmol/L)"; } L_Phe { Int16 _FillValue 32767; Int16 actual_range 0, 1362; String bcodmo_name "amino_conc"; String description "L-Phenylalanine"; String long_name "L Phe"; String units "nanomoles per liter (nmol/L)"; } D_Leu { Byte _FillValue 127; Byte actual_range 0, 0; String bcodmo_name "amino_conc"; String description "D-Leucine"; String long_name "D Leu"; String units "nanomoles per liter (nmol/L)"; } L_Leu { Int16 _FillValue 32767; Int16 actual_range 0, 4342; String bcodmo_name "amino_conc"; String description "L-Leucine"; String long_name "L Leu"; String units "nanomoles per liter (nmol/L)"; } D_Lys { Byte _FillValue 127; Byte actual_range 0, 0; String bcodmo_name "amino_conc"; String description "D-Lysine"; String long_name "D LYS"; String units "nanomoles per liter (nmol/L)"; } L_Lys { Int16 _FillValue 32767; Int16 actual_range 6, 946; String bcodmo_name "amino_conc"; String description "L-Lysine"; String long_name "L LYS"; String units "nanomoles per liter (nmol/L)"; } FI { Float64 _FillValue NaN; Float64 actual_range 1.182732025, 2.238936206; String bcodmo_name "unknown"; String description "Fluorescence Index (DOM composition metric)"; String long_name "FI"; String units "unitless"; } HIX { Float64 _FillValue NaN; Float64 actual_range 0.246588077, 8.512841975; String bcodmo_name "unknown"; String description "Humification Index (DOM composition metric)"; String long_name "HIX"; String units "unitless"; } HIX_Norm { Float64 _FillValue NaN; Float64 actual_range 0.199388793, 0.896111828; String bcodmo_name "unknown"; String description "Humification Index Norm (DOM composition metric)"; String long_name "HIX Norm"; String units "unitless"; } BIX { Float64 _FillValue NaN; Float64 actual_range 0.225600797, 1.349911229; String bcodmo_name "unknown"; String description "Autotrophic productivity index (DOM composition metric)"; String long_name "BIX"; String units "unitless"; } abs_250 { Float64 _FillValue NaN; Float64 actual_range 7.916, 70.357; String bcodmo_name "absorption coefficient"; String description "CDOM absorbance at 250 nm"; String long_name "Abs 250"; String units "reciprocal meters (m-1)"; } abs_254 { Float64 _FillValue NaN; Float64 actual_range 7.53, 68.851; String bcodmo_name "absorption coefficient"; String description "CDOM absorbance at 254 nm"; String long_name "Abs 254"; String units "reciprocal meters (m-1)"; } abs_350 { Float64 _FillValue NaN; Float64 actual_range 1.491, 25.366; String bcodmo_name "absorption coefficient"; String description "CDOM absorbance at 350 nm"; String long_name "Abs 350"; String units "reciprocal meters (m-1)"; } abs_365 { Float64 _FillValue NaN; Float64 actual_range 1.134, 21.304; String bcodmo_name "absorption coefficient"; String description "CDOM absorbance at 365 nm"; String long_name "Abs 365"; String units "reciprocal meters (m-1)"; } abs_412 { Float64 _FillValue NaN; Float64 actual_range 0.507, 11.775; String bcodmo_name "absorption coefficient"; String description "CDOM absorbance at 412 nm"; String long_name "Abs 412"; String units "reciprocal meters (m-1)"; } abs_440 { Float64 _FillValue NaN; Float64 actual_range 0.325, 8.029; String bcodmo_name "absorption coefficient"; String description "CDOM absorbance at 440 nm"; String long_name "Abs 440"; String units "reciprocal meters (m-1)"; } abs_ratio_250_365 { Float64 _FillValue NaN; Float64 actual_range 2.843743823, 7.015278479; String bcodmo_name "absorption coefficient"; String description "Absorbance ratio; absorbance at 250/365"; String long_name "Abs Ratio 250 365"; String units "reciprocal meters (m-1)"; } S275_295 { Float64 _FillValue NaN; Float64 actual_range 0.003879629, 0.031815616; String bcodmo_name "unknown"; String description "Spectral slope range 275-295"; String long_name "S275 295"; String units "unitless"; } r2_of_fit { Float64 _FillValue NaN; Float64 actual_range 0.890192162, 0.999558947; String bcodmo_name "unknown"; String description "r2 of fit of S275_295"; String long_name "R2 Of Fit"; String units "unitless"; } S350_400 { Float64 _FillValue NaN; Float64 actual_range 0.011096935, 0.022420523; String bcodmo_name "unknown"; String description "Spectral slope range 350-400"; String long_name "S350 400"; String units "unitless"; } r2_of_fit2 { Float64 _FillValue NaN; Float64 actual_range 0.992399848, 0.999982032; String bcodmo_name "unknown"; String description "r2 of fit of S350_400"; String long_name "R2 Of Fit2"; String units "unitless"; } Sr { Float64 _FillValue NaN; Float64 actual_range 0.173039163, 2.010944282; String bcodmo_name "unknown"; String description "Spectral slope ratio (275-295/350-400)"; String long_name "SR"; String units "unitless"; } C1 { Float64 _FillValue NaN; Float64 actual_range 0.0, 8.401191924; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 1"; String long_name "C1"; String units "Raman units"; } C2 { Float64 _FillValue NaN; Float64 actual_range 0.0, 36.06491309; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 2"; String long_name "C2"; String units "Raman units"; } C3 { Float64 _FillValue NaN; Float64 actual_range 0.0, 13.79226552; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 3"; String long_name "C3"; String units "Raman units"; } C4 { Float64 _FillValue NaN; Float64 actual_range 0.078553637, 3.990849264; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 4"; String long_name "C4"; String units "Raman units"; } C5 { Float64 _FillValue NaN; Float64 actual_range 0.0, 12.4240941; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 5"; String long_name "C5"; String units "Raman units"; } C6 { Float64 _FillValue NaN; Float64 actual_range 0.0, 11.85463548; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 6"; String long_name "C6"; String units "Raman units"; } C7 { Float64 _FillValue NaN; Float64 actual_range 0.0, 17.15457625; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 7"; String long_name "C7"; String units "Raman units"; } C8 { Float64 _FillValue NaN; Float64 actual_range 0.037142857, 2.718886937; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 8"; String long_name "C8"; String units "Raman units"; } C9 { Float64 _FillValue NaN; Float64 actual_range 0.0, 2.616775215; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 9"; String long_name "C9"; String units "Raman units"; } C10 { Float64 _FillValue NaN; Float64 actual_range 0.0, 35.28114321; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 10"; String long_name "C10"; String units "Raman units"; } Ctotal { Float64 _FillValue NaN; Float64 actual_range 1.379889776, 238.0904448; String bcodmo_name "unknown"; String description "Fluorescence intensity total"; String long_name "Ctotal"; String units "Raman units"; } C1_pcnt { Float64 _FillValue NaN; Float64 actual_range 3.398797763, 48.63231906; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 1 as a percent"; String long_name "C1 PCNT"; String units "unitless (percent)"; } C2_pcnt { Float64 _FillValue NaN; Float64 actual_range 1.586019207, 59.53662811; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 2 as a percent"; String long_name "C2 PCNT"; String units "unitless (percent)"; } C3_pcnt { Float64 _FillValue NaN; Float64 actual_range 1.257007028, 32.20059792; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 1 as a percent"; String long_name "C3 PCNT"; String units "unitless (percent)"; } C4_pcnt { Float64 _FillValue NaN; Float64 actual_range 1.219338087, 18.23950798; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 2 as a percent"; String long_name "C4 PCNT"; String units "unitless (percent)"; } C5_pcnt { Float64 _FillValue NaN; Float64 actual_range 1.633332273, 21.654844; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 1 as a percent"; String long_name "C5 PCNT"; String units "unitless (percent)"; } C6_pcnt { Float64 _FillValue NaN; Float64 actual_range 0.0, 17.20046248; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 2 as a percent"; String long_name "C6 PCNT"; String units "unitless (percent)"; } C7_pcnt { Float64 _FillValue NaN; Float64 actual_range 0.0, 34.26310257; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 1 as a percent"; String long_name "C7 PCNT"; String units "unitless (percent)"; } C8_pcnt { Float64 _FillValue NaN; Float64 actual_range 0.591243274, 8.826623653; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 2 as a percent"; String long_name "C8 PCNT"; String units "unitless (percent)"; } C9_pcnt { Float64 _FillValue NaN; Float64 actual_range 0.0, 12.93472701; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 1 as a percent"; String long_name "C9 PCNT"; String units "unitless (percent)"; } C10_pcnt { Float64 _FillValue NaN; Float64 actual_range 0.0, 60.9898483; String bcodmo_name "unknown"; String description "Fluorescence intensity of component 2 as a percent"; String long_name "C10 PCNT"; String units "unitless (percent)"; } PAL { Float64 _FillValue NaN; Float64 actual_range 329.4862754, 332960.0264; String bcodmo_name "unknown"; String description "p-hydroxybenzaldehyde"; String long_name "PAL"; String units "nanograms per liter (ng/L)"; } PON { Float64 _FillValue NaN; Float64 actual_range 0.0, 112914.7208; String bcodmo_name "unknown"; String description "p-hydroxyacetophenone"; String long_name "PON"; String units "nanograms per liter (ng/L)"; } VAL { Float64 _FillValue NaN; Float64 actual_range 55.27167853, 1969894.964; String bcodmo_name "unknown"; String description "vanillin"; String long_name "VAL"; String units "nanograms per liter (ng/L)"; } VON { Float64 _FillValue NaN; Float64 actual_range 154.3071678, 631182.4777; String bcodmo_name "unknown"; String description "acetovanillone"; String long_name "VON"; String units "nanograms per liter (ng/L)"; } PAD { Float64 _FillValue NaN; Float64 actual_range 0.0, 361578.1837; String bcodmo_name "unknown"; String description "p-hydroxybenzoic acid"; String long_name "PAD"; String units "nanograms per liter (ng/L)"; } SAL { Float64 _FillValue NaN; Float64 actual_range 0.0, 687907.7255; String bcodmo_name "unknown"; String description "syringaldehyde"; String long_name "SAL"; String units "nanograms per liter (ng/L)"; } VAD { Float64 _FillValue NaN; Float64 actual_range 85.58301543, 611194.155; String bcodmo_name "unknown"; String description "vanillic acid"; String long_name "VAD"; String units "nanograms per liter (ng/L)"; } SON { Float64 _FillValue NaN; Float64 actual_range 0.0, 338401.5749; String bcodmo_name "unknown"; String description "acetosyringone"; String long_name "SON"; String units "nanograms per liter (ng/L)"; } SAD { Float64 _FillValue NaN; Float64 actual_range 293.7375848, 276813.9009; String bcodmo_name "unknown"; String description "syringic acid"; String long_name "SAD"; String units "nanograms per liter (ng/L)"; } CAD { Float64 _FillValue NaN; Float64 actual_range 182.0148535, 209944.2139; String bcodmo_name "unknown"; String description "p-coumaric acid"; String long_name "CAD"; String units "nanograms per liter (ng/L)"; } FAD { Float64 _FillValue NaN; Float64 actual_range 208.9292441, 331034.318; String bcodmo_name "unknown"; String description "ferulic acid"; String long_name "FAD"; String units "nanograms per liter (ng/L)"; } } NC_GLOBAL { String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv"; String acquisition_description "Samples were collect on the USGS R/V Mary Landsteiner and pumped directly from the surface (1 m deep) with a pump and clean tycoon tubing connected to an inline 0.2 um Whatman Polycap filter. Incubation experiments were conducted in the dark or using a dark/light cycle. Incubations conducted in the dark alone are classified as \\\"microbial, and incubations using a dark/light cycle are classified as \\\"coupled\\\". All filters were pumped and field filtered through 0.7 um Whatman glass fiber filters (GF/F, precombusted at 550 degrees C) using a peristaltic pump after purging the line. Samples for DOC concentration were acidified to pH 2 and stored in a refrigerator (4 degrees C) until analysis by high-temperature combustion on a Shimadzu TOC-L CPH within two weeks following collection. DOC was calculated as the mean of between three and five injections using a six-point standard curve using established protocols (Mann et al., 2012) and the coefficient of variance was always <2%. Samples for CDOM absorbance were analyzed in a 1 cm cuvette on a Horiba Aqualog-UV-800-C. Absorbance spectra were measured from 230-800 nm, and corrected for a small offset either due to long-term baseline drift or derived from glass fiber particles during filtration (Blough et al., 1993), by subtracting the mean absorbance measured between 750-800 nm. Two spectral slopes were calculated at 275-295 nm and 350-400 nm (S275-295 and S350-400, respectively), and the spectral slope ratio (SR) was then calculated by dividing the former by the latter (Helms et al., 2008). The CDOM absorption ratio at 250 nm to 365 nm was calculated (a250:a365) and specific ultraviolet absorbance (SUVA254) was calculated by dividing the decadic absorption coefficient at 254 nm by DOC concentration (Weishaar et al., 2003; Fellman et al., 2009). Fluorescence properties of FDOM were determined using a Horiba Aqualog- UV-800-C. The excitation emission matrices (EEMs) were generated in a 1 cm cuvette at varying integration times (1-10 seconds) to maximize the signal-to- noise ratio based on absorbance values. The EEMs were obtained at excitation (ex) 250-600 nm and at emission (em) 250-600 nm with 5 nm and 2 nm intervals respectively, and the EEMs were corrected for lamp intensity (Cory et al., 2010), inner filter effects (Kothawala et al., 2013), and normalized to Raman units (R.U.) (Stedmon et al., 2003). All corrections were performed using the FDOMcorr toolbox version 1.6 (Murphy, 2011). EEMs were analyzed with parallel factor analysis (PARAFAC) using the procedure described in Murphy et al. (2013). Furthermore, the fluorescence index (FI) (Cory et al., 2010), humification index (HIX) (Ohno, 2002; Zsolnay et al., 1999), and autotrophic productivity index (BIX) (Huguet et al., 2009) were calculated. FI was calculated from the emission wavelengths at 470 nm and 520 nm, obtained at excitation 370 nm (Cory and McKnight, 2005). HIX was calculated using the area under the emission sepctra 435-480 nm divided by the peak area 300-345 + 435-480 nm, at excitation 254 nm (Ohno, 2002). BIX was calculated from the emission intensity of 380 nm and 430 nm, obtained at excitation 310 nm (Wang et al., 2014). Samples for FT-ICR MS analysis were solid-phase extracted using the procedure described in Dittmar et al., 2008. Filtered samples were acidified to pH 2 before solid phase extraction on 500 mg Agilent Bond Elut PPL cartridges. Each 1 L sample was extracted by eluting 2 mL of of methanol and then diluted to a DOC target concentration of 50 ug C mL-1. Extracted samples were stored at -20 degrees C prior to analysis on a 21 T (Bruker Daltonics, Billerica, MA, USA) FT-ICR MS located at the National High Magnetic Field Laboratory (NHMFL) (Tallahassee, Florida). Direct infusion electrospray ionization (ESI) generates negative ions at a flow rate of 700 nL min-1, and 100 time domain acquisitions were coadded for each mass spectrum. Molecular formulas were assigned to signals >6RMS baseline noise with EnviroOrg \\u00a9,TM software (Koch et al., 2007; Stubbins et al., 2010). Elemental combinations of C1\\u201345H1\\u201392N0\\u20134O1\\u201325S0\\u20132 with a mass accuracy of \\u2264300 ppb were considered for assignment. Classification of formulas were based on their elemental ratios (Corilo, 2015). The modified aromaticity index (Almod) of each formula was calculated and Almod values of 0.5-0.67 and \\u22650.67 were classified as aromatic and condensed aromatic structures (Koch and Dittmar, 2006; Koch and Dittmar, 2016). Other compound classes were unsaturated low oxygen=Almod<0.5, H/C<1.5, O/C<0.5; unsaturated high oxygen=Almod<0.5, H/ C<1.5, O/C>0.5; aliphatics=H/C 1.5-2.0, O/C<0.9, N=0; peptide-like=H/C 1.5-2.0, O/C<0.9, N>0, and sugar-like= O/C>0.9. Sugar-like compounds provide a very minor contribution to %RA (mean = 0.05, \\u00b1 0.06 %RA) and so were combined with peptide-like compounds throughout. Although FT-ICR MS allows for the precise assignment of molecular formulas to signals that may represent multiple isomers, they describe the underlying molecular compounds comprising DOM, thus the term compound may be used when describing the signals detected by FT-ICR MS. Lignin derived phenols were isolated from the dried solid phase extracts followed by cupric oxide oxidation and liquid-liquid extraction modified from Spencer et al., (2010). Briefly, PPL extracts were redissolved in O2 free 2 M NaOH in a 6 mL Teflon vial (Savillex Corp) containing 500 mg CuO, and amended with 100 mg ferrous ammonium sulfate and 50 mg glucose and reacted in a 155 degree C oven for 3 hours. Following oxidation, the samples were centrifuged and supernatants were decanted into 40 mL vials. Oxidation products were acidified to pH 1 with H3PO4 and t-cinnamic acid was added as an internal standard. Liquid-liquid extractions of the oxidation products were undertaken by addition of 4 mL ethyl acetate, vortexing, and centrifugation prior to removal of the ethyl acetate. Extracts were pipetted through drying columns containing sodium sulfate into a 4 mL vial. Samples were dried under ultra- high purity argon between each extraction for a total of three extractions, following the last extraction the sodium sulfate was rinsed with 1 mL of ethyl acetate into the extract vial. Dried ethyl acetate extracts were dissolved in pyridine and derivatized with N/O bis-trimethylsilyltrifluoromethylacetamide (BSTFA) at 60 degrees C for ten minutes. Lignin phenol monomers were measured as trimethylsilane derivatives using an Agilent 6890N GC/5975 MS and were quantified as the relative response factors of each compound compared to the response of t- cinnamic acid and a five-point calibration curve bracketing the concentration range. Eight lignin phenols from three phenol groups were quantified; vanillyl (vanillin, acetovanillone, vanillic acid), syringyl (syringaldehyde, acetosyringone, syringic acid), and coumaryl (coumaric acid, ferulic acid). Seven neutral sugars (fucose, rhamnose, arabinose, galactose, glucose, mannose, xylose) were analyzed according to Skoog and Benner (1997) with modifications. Briefly, samples were hydrolyzed in 1.2 mol L\\u22121 sulfuric acid and neutralized with a self-absorbed ion retardation resin (Kaiser and Benner, 2000). After desalting with a mixture of cation and anion exchange resins, neutral sugars were isocratically separated with 25 mM NaOH on a PA 1 column in a Dionex 500 system with a pulsed amperiometric detector (PAD). The following amino acids were analyzed using the method of Kaiser and Benner, 2005: histidine, serine, arginine, glycine, aspartic acid, glutamic acid, threonine, alanine, lysine, tyrosine, methionine, valine, norvaline, isoleucine, leucine, phenylalanine."; String awards_0_award_nid "732795"; String awards_0_award_number "OCE-1464396"; String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1464396"; String awards_0_funder_name "NSF Division of Ocean Sciences"; String awards_0_funding_acronym "NSF OCE"; String awards_0_funding_source_nid "355"; String awards_0_program_manager "Henrietta N Edmonds"; String awards_0_program_manager_nid "51517"; String awards_1_award_nid "732797"; String awards_1_award_number "OCE-1335622"; String awards_1_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1335622"; String awards_1_funder_name "NSF Division of Ocean Sciences"; String awards_1_funding_acronym "NSF OCE"; String awards_1_funding_source_nid "355"; String awards_1_program_manager "Henrietta N Edmonds"; String awards_1_program_manager_nid "51517"; String awards_2_award_nid "732801"; String awards_2_award_number "OCE-1333633"; String awards_2_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1333633"; String awards_2_funder_name "NSF Division of Ocean Sciences"; String awards_2_funding_acronym "NSF OCE"; String awards_2_funding_source_nid "355"; String awards_2_program_manager "Henrietta N Edmonds"; String awards_2_program_manager_nid "51517"; String cdm_data_type "Other"; String comment "Incubation Experiments PI: Peter Hernes (UC Davis) Co-PIs: Karl Kaiser (TAMU) Contact: Robert Spence (FSU) Version date: 04 February 2019"; String Conventions "COARDS, CF-1.6, ACDD-1.3"; String creator_email "info@bco-dmo.org"; String creator_name "BCO-DMO"; String creator_type "institution"; String creator_url "https://www.bco-dmo.org/"; String data_source "extract_data_as_tsv version 2.3 19 Dec 2019"; String date_created "2019-02-05T17:48:02Z"; String date_modified "2020-01-06T19:03:52Z"; String defaultDataQuery "&time<now"; String doi "10.1575/1912/bco-dmo.754885.1"; String history "2024-04-29T05:23:29Z (local files) 2024-04-29T05:23:29Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_754885.das"; String infoUrl "https://www.bco-dmo.org/dataset/754885"; String institution "BCO-DMO"; String instruments_0_acronym "Fluorometer"; String instruments_0_dataset_instrument_description "Samples for CDOM absorbance were analyzed in a 1 cm cuvette on a Horiba Aqualog-UV-800-C (benchtop fluorometer). Fluorescence properties of FDOM were also determined using a Horiba Aqualog-UV-800-C."; String instruments_0_dataset_instrument_nid "754895"; String instruments_0_description "A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ."; String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/113/"; String instruments_0_instrument_name "Fluorometer"; String instruments_0_instrument_nid "484"; String instruments_0_supplied_name "Horiba Aqualog-UV-800-C"; String instruments_1_acronym "Gas Chromatograph"; String instruments_1_dataset_instrument_description "Lignin phenol monomers were measured as trimethylsilane derivatives using an Agilent 6890N GC/5975 MS."; String instruments_1_dataset_instrument_nid "754897"; String instruments_1_description "Instrument separating gases, volatile substances, or substances dissolved in a volatile solvent by transporting an inert gas through a column packed with a sorbent to a detector for assay. (from SeaDataNet, BODC)"; String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB02/"; String instruments_1_instrument_name "Gas Chromatograph"; String instruments_1_instrument_nid "661"; String instruments_1_supplied_name "Agilent 6890N GC/5975 MS"; String instruments_2_acronym "Ion Chromatograph"; String instruments_2_dataset_instrument_description "Neutral sugars were isocratically separated in a Dionex 500 system with a pulsed amperiometric detector (PAD)."; String instruments_2_dataset_instrument_nid "754899"; String instruments_2_description "Ion chromatography is a form of liquid chromatography that measures concentrations of ionic species by separating them based on their interaction with a resin. Ionic species separate differently depending on species type and size. Ion chromatographs are able to measure concentrations of major anions, such as fluoride, chloride, nitrate, nitrite, and sulfate, as well as major cations such as lithium, sodium, ammonium, potassium, calcium, and magnesium in the parts-per-billion (ppb) range. (from http://serc.carleton.edu/microbelife/research_methods/biogeochemical/ic.html)"; String instruments_2_instrument_name "Ion Chromatograph"; String instruments_2_instrument_nid "662"; String instruments_2_supplied_name "Dionex 500 system"; String instruments_3_acronym "Mass Spec"; String instruments_3_dataset_instrument_description "Lignin phenol monomers were measured as trimethylsilane derivatives using an Agilent 6890N GC/5975 MS."; String instruments_3_dataset_instrument_nid "754898"; String instruments_3_description "General term for instruments used to measure the mass-to-charge ratio of ions; generally used to find the composition of a sample by generating a mass spectrum representing the masses of sample components."; String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB16/"; String instruments_3_instrument_name "Mass Spectrometer"; String instruments_3_instrument_nid "685"; String instruments_3_supplied_name "Agilent 6890N GC/5975 MS"; String instruments_4_acronym "Shimadzu TOC-L"; String instruments_4_dataset_instrument_description "DOC concentration was determined on a Shimadzu TOC-L CPH."; String instruments_4_dataset_instrument_nid "754894"; String instruments_4_description "A Shimadzu TOC-L Analyzer measures DOC by high temperature combustion method. Developed by Shimadzu, the 680 degree C combustion catalytic oxidation method is now used worldwide. One of its most important features is the capacity to efficiently oxidize hard-to-decompose organic compounds, including insoluble and macromolecular organic compounds. The 680 degree C combustion catalytic oxidation method has been adopted for the TOC-L series. http://www.shimadzu.com/an/toc/lab/toc-l2.html"; String instruments_4_instrument_external_identifier "http://onto.nerc.ac.uk/CAST/124.html"; String instruments_4_instrument_name "Shimadzu TOC-L Analyzer"; String instruments_4_instrument_nid "527277"; String instruments_4_supplied_name "Shimadzu TOC-L CPH"; String instruments_5_acronym "FTICR MS"; String instruments_5_dataset_instrument_description "Samples were analyzed on a 21 T (Bruker Daltonics, Billerica, MA, USA) FT-ICR MS located at the National High Magnetic Field Laboratory (NHMFL) (Tallahassee, Florida)."; String instruments_5_dataset_instrument_nid "754896"; String instruments_5_description "In Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, the mass-to-charge ratio (m/z) of an ion is experimentally determined by measuring the frequency at which the ion processes in a magnetic field. These frequencies, which are typically in the 100 KHz to MHz regime, can be measured with modern electronics making it possible to determine the mass of an ion to within +/- 0.000005 amu or 5 ppm."; String instruments_5_instrument_name "Fourier Transform Ion Cyclotron Resonance Mass Spectrometer"; String instruments_5_instrument_nid "652691"; String instruments_5_supplied_name "FT-ICR MS"; String keywords "abs, abs_250, abs_254, abs_350, abs_365, abs_412, abs_440, abs_ratio_250_365, ala, altimetry, ara, arg, asx, bco, bco-dmo, biological, bix, c10, C10_pcnt, C1_pcnt, C2_pcnt, C3_pcnt, C4_pcnt, C5_pcnt, C6_pcnt, C7_pcnt, C8_pcnt, C9_pcnt, cad, chemical, commerce, ctotal, D_Ala, D_Arg, D_Asx, D_Glx, D_His, D_Ileu, D_Leu, D_Lys, D_Met, D_Phe, D_Ser, D_Thr, D_Tyr, D_Val, data, dataset, days, department, dmo, doc, DOC_mg_L, DOC_mM, dose, erddap, exposure, fad, fit, fit2, fuc, gal, glu, glx, gly, his, hix, HIX_Norm, hours, ileu, incubation, incubation_type, irradiance, L_Ala, L_Arg, L_Asx, L_Glx, L_His, L_Ileu, L_Leu, L_Lys, L_Met, L_Phe, L_Ser, L_Thr, L_Tyr, L_Val, laboratory, leu, lys, man, management, met, norm, oceanography, office, pad, pal, pcnt, phe, point, pon, preliminary, r2_of_fit, r2_of_fit2, ratio, rha, s275, S275_295, s350, S350_400, sad, sal, satellite, ser, site, site_type, son, thr, time, time_point, type, tyr, vad, val, von, xyl"; String license "https://www.bco-dmo.org/dataset/754885/license"; String metadata_source "https://www.bco-dmo.org/api/dataset/754885"; String param_mapping "{'754885': {}}"; String parameter_source "https://www.bco-dmo.org/mapserver/dataset/754885/parameters"; String people_0_affiliation "University of California-Davis"; String people_0_affiliation_acronym "UC Davis"; String people_0_person_name "Peter Hernes"; String people_0_person_nid "732799"; String people_0_role "Principal Investigator"; String people_0_role_type "originator"; String people_1_affiliation "Texas A&M University"; String people_1_affiliation_acronym "TAMU"; String people_1_person_name "Karl Kaiser"; String people_1_person_nid "732803"; String people_1_role "Co-Principal Investigator"; String people_1_role_type "originator"; String people_2_affiliation "Florida State University"; String people_2_affiliation_acronym "FSU"; String people_2_person_name "Robert Spencer"; String people_2_person_nid "554165"; String people_2_role "Contact"; String people_2_role_type "related"; String people_3_affiliation "Woods Hole Oceanographic Institution"; String people_3_affiliation_acronym "WHOI BCO-DMO"; String people_3_person_name "Shannon Rauch"; String people_3_person_nid "51498"; String people_3_role "BCO-DMO Data Manager"; String people_3_role_type "related"; String project "DOM biomarkers"; String projects_0_acronym "DOM biomarkers"; String projects_0_description "NSF abstract: Organic matter (OM) fluxes between and within terrestrial and oceanic reservoirs play an important role in the global carbon cycle. A clearer understanding of OM dynamics is critical for understanding fundamental processes and effects on greenhouse gases and climate. At present, researchers have an abundance of analytical methods and tools for investigating dissolved organic matter (DOM) cycling, but the field struggles to move past a qualitative understanding of sources, processing, and fates toward a quantitative understanding. Researchers from University of California-Davis, Woods Hole Oceanographic Institute, and Texas A&M University will develop biomarker tools to advance quantitative understanding of DOM cycling in riverine and estuarine environments in California, specifically targeting vascular plant and microbial markers. Results from this study will allow for future biomarker studies to quantitatively address DOM source and processing in aquatic environments and improve the limited understanding of the fate of terrestrial DOM in the ocean. Broader Impacts: This study will provide interdisciplinary scientific training and development for undergraduate and graduate students, including individuals from underrepresented groups. Results from the study will be disseminated to the public, California stakeholders, and college students to educate them about the carbon cycle."; String projects_0_end_date "2017-09"; String projects_0_geolocation "San Francisco Bay Delta"; String projects_0_name "Collaborative Research: Calibration and application of vascular plant and aqueous microbial biomarkers to examine transformations of dissolved organic matter"; String projects_0_project_nid "732791"; String projects_0_start_date "2013-10"; String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)"; String publisher_type "institution"; String sourceUrl "(local files)"; String standard_name_vocabulary "CF Standard Name Table v55"; String subsetVariables "D_His,D_Thr,D_Arg,D_Tyr,D_Val,D_Ileu,D_Phe,D_Leu,D_Lys"; String summary "Incubation experiments were conducted in the dark or using a dark/light cycle. Incubations conducted in the dark alone are classified as \\microbial, and incubations using a dark/light cycle are classified as \\coupled\\."; String title "Vascular plant and microbial biomarkers of dissolved organic matter data from incubation experiments"; String version "1"; String xml_source "osprey2erddap.update_xml() v1.3"; } }