BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  [Incubation Data] - Vascular plant and microbial biomarkers of dissolved
organic matter data from incubation experiments (Collaborative Research:
Calibration and application of vascular plant and aqueous microbial biomarkers
to examine transformations of dissolved organic matter)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_754885)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Subset | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
   or a List of Values ?
   Maximum ?
 
 incubation_type (unitless) ?          "Coupled"    "Microbial"
 site_type (unitless) ?          "Cattail"    "Wetland"
 time_point (unitless) ?          "T0"    "T6"
 days (days) ?          0    401
 hours (hours) ?          0    9624
 Exposure (hours) ?          0    145
 Dose (MJ/m2) ?          0    209
 Irradiance (W/m2) ?          0    400
 DOC_mg_L (mg/L) ?          4    115
 DOC_mM (mM) ?          0    10
 Fuc (nanomoles per liter (nmol/L)) ?          11    12461
 Rha (nanomoles per liter (nmol/L)) ?          41    41891
 Ara (nanomoles per liter (nmol/L)) ?          38    17471
 Gal (nanomoles per liter (nmol/L)) ?          19    33144
 Glu (nanomoles per liter (nmol/L)) ?          106    114469
 Man (nanomoles per liter (nmol/L)) ?          6    6648
 Xyl (nanomoles per liter (nmol/L)) ?          8    40876
 D_Asx (nanomoles per liter (nmol/L)) ?          0    731
 L_Asx (nanomoles per liter (nmol/L)) ?          32    10315
 D_Glx (nanomoles per liter (nmol/L)) ?          0    834
 L_Glx (nanomoles per liter (nmol/L)) ?          26    13024
 D_Ser (nanomoles per liter (nmol/L)) ?          1    142
 L_Ser (nanomoles per liter (nmol/L)) ?          16    7004
 D_His (nanomoles per liter (nmol/L)) ?      
   - +  ?
 L_His (nanomoles per liter (nmol/L)) ?          2    543
 D_Thr (nanomoles per liter (nmol/L)) ?      
   - +  ?
 L_Thr (nanomoles per liter (nmol/L)) ?          21    5181
 Gly (nanomoles per liter (nmol/L)) ?          103    8541
 D_Arg (nanomoles per liter (nmol/L)) ?      
   - +  ?
 L_Arg (nanomoles per liter (nmol/L)) ?          5    3176
 D_Ala (nanomoles per liter (nmol/L)) ?          11    337
 L_Ala (nanomoles per liter (nmol/L)) ?          35    8604
 D_Tyr (nanomoles per liter (nmol/L)) ?      
   - +  ?
 L_Tyr (nanomoles per liter (nmol/L)) ?          0    1768
 D_Val (nanomoles per liter (nmol/L)) ?      
   - +  ?
 L_Val (nanomoles per liter (nmol/L)) ?          13    5233
 D_Met (nanomoles per liter (nmol/L)) ?          0    1
 L_Met (nanomoles per liter (nmol/L)) ?          0    5677
 D_Ileu (nanomoles per liter (nmol/L)) ?      
   - +  ?
 L_Ileu (nanomoles per liter (nmol/L)) ?          4    2053
 D_Phe (nanomoles per liter (nmol/L)) ?      
   - +  ?
 L_Phe (nanomoles per liter (nmol/L)) ?          0    1362
 D_Leu (nanomoles per liter (nmol/L)) ?      
   - +  ?
 L_Leu (nanomoles per liter (nmol/L)) ?          0    4342
 D_Lys (nanomoles per liter (nmol/L)) ?      
   - +  ?
 L_Lys (nanomoles per liter (nmol/L)) ?          6    946
 FI (unitless) ?          1.182732025    2.238936206
 HIX (unitless) ?          0.246588077    8.512841975
 HIX_Norm (unitless) ?          0.199388793    0.896111828
 BIX (unitless) ?          0.225600797    1.349911229
 abs_250 (reciprocal meters (m-1)) ?          7.916    70.357
 abs_254 (reciprocal meters (m-1)) ?          7.53    68.851
 abs_350 (reciprocal meters (m-1)) ?          1.491    25.366
 abs_365 (reciprocal meters (m-1)) ?          1.134    21.304
 abs_412 (reciprocal meters (m-1)) ?          0.507    11.775
 abs_440 (reciprocal meters (m-1)) ?          0.325    8.029
 abs_ratio_250_365 (reciprocal meters (m-1)) ?          2.843743823    7.015278479
 S275_295 (unitless) ?          0.003879629    0.031815616
 r2_of_fit (unitless) ?          0.890192162    0.999558947
 S350_400 (unitless) ?          0.011096935    0.022420523
 r2_of_fit2 (unitless) ?          0.992399848    0.999982032
 Sr (unitless) ?          0.173039163    2.010944282
 C1 (Raman units) ?          0.0    8.401191924
 C2 (Raman units) ?          0.0    36.06491309
 C3 (Raman units) ?          0.0    13.79226552
 C4 (Raman units) ?          0.078553637    3.990849264
 C5 (Raman units) ?          0.0    12.4240941
 C6 (Raman units) ?          0.0    11.85463548
 C7 (Raman units) ?          0.0    17.15457625
 C8 (Raman units) ?          0.037142857    2.718886937
 C9 (Raman units) ?          0.0    2.616775215
 C10 (Raman units) ?          0.0    35.28114321
 Ctotal (Raman units) ?          1.379889776    238.0904448
 C1_pcnt (unitless (percent)) ?          3.398797763    48.63231906
 C2_pcnt (unitless (percent)) ?          1.586019207    59.53662811
 C3_pcnt (unitless (percent)) ?          1.257007028    32.20059792
 C4_pcnt (unitless (percent)) ?          1.219338087    18.23950798
 C5_pcnt (unitless (percent)) ?          1.633332273    21.654844
 C6_pcnt (unitless (percent)) ?          0.0    17.20046248
 C7_pcnt (unitless (percent)) ?          0.0    34.26310257
 C8_pcnt (unitless (percent)) ?          0.591243274    8.826623653
 C9_pcnt (unitless (percent)) ?          0.0    12.93472701
 C10_pcnt (unitless (percent)) ?          0.0    60.9898483
 PAL (nanograms per liter (ng/L)) ?          329.4862754    332960.0264
 PON (nanograms per liter (ng/L)) ?          0.0    112914.7208
 VAL (nanograms per liter (ng/L)) ?          55.27167853    1969894.964
 VON (nanograms per liter (ng/L)) ?          154.3071678    631182.4777
 PAD (nanograms per liter (ng/L)) ?          0.0    361578.1837
 SAL (nanograms per liter (ng/L)) ?          0.0    687907.7255
 VAD (nanograms per liter (ng/L)) ?          85.58301543    611194.155
 SON (nanograms per liter (ng/L)) ?          0.0    338401.5749
 SAD (nanograms per liter (ng/L)) ?          293.7375848    276813.9009
 CAD (nanograms per liter (ng/L)) ?          182.0148535    209944.2139
 FAD (nanograms per liter (ng/L)) ?          208.9292441    331034.318
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more information)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  incubation_type {
    String bcodmo_name "exp_type";
    String description "Incubations conducted in the dark alone are classified as \"microbial, and incubations using a dark/light cycle are classified as \"coupled\".";
    String long_name "Incubation Type";
    String units "unitless";
  }
  site_type {
    String bcodmo_name "sample_descrip";
    String description "Sample type?";
    String long_name "Site Type";
    String units "unitless";
  }
  time_point {
    String bcodmo_name "time_point";
    String description "Time point";
    String long_name "Time Point";
    String units "unitless";
  }
  days {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 401;
    String bcodmo_name "time_elapsed";
    String description "Time elapsed (days)";
    String long_name "Days";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ELTMZZZZ/";
    String units "days";
  }
  hours {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 9624;
    String bcodmo_name "time_elapsed";
    String description "Time elapsed (hours)";
    String long_name "Hours";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ELTMZZZZ/";
    String units "hours";
  }
  Exposure {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 145;
    String bcodmo_name "time_elapsed";
    String description "Exposure time";
    String long_name "Exposure";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ELTMZZZZ/";
    String units "hours";
  }
  Dose {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 209;
    String bcodmo_name "treatment";
    String description "Dose";
    String long_name "Dose";
    String units "MJ/m2";
  }
  Irradiance {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 400;
    String bcodmo_name "irradiance";
    String description "Irradiance";
    String long_name "Irradiance";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/VSRW/";
    String units "W/m2";
  }
  DOC_mg_L {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 4, 115;
    String bcodmo_name "DOC";
    String description "Dissolved organic carbon in milligrams per liter";
    String long_name "DOC Mg L";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGZZZX/";
    String units "mg/L";
  }
  DOC_mM {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 10;
    String bcodmo_name "DOC";
    String description "Dissolved organic carbon in millimolar";
    String long_name "DOC M M";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGZZZX/";
    String units "mM";
  }
  Fuc {
    Int16 _FillValue 32767;
    Int16 actual_range 11, 12461;
    String bcodmo_name "unknown";
    String description "Fucose";
    String long_name "Fuc";
    String units "nanomoles per liter (nmol/L)";
  }
  Rha {
    Int32 _FillValue 2147483647;
    Int32 actual_range 41, 41891;
    String bcodmo_name "unknown";
    String description "Rhamnose";
    String long_name "Rha";
    String units "nanomoles per liter (nmol/L)";
  }
  Ara {
    Int16 _FillValue 32767;
    Int16 actual_range 38, 17471;
    String bcodmo_name "unknown";
    String description "Arabinose";
    String long_name "Ara";
    String units "nanomoles per liter (nmol/L)";
  }
  Gal {
    Int32 _FillValue 2147483647;
    Int32 actual_range 19, 33144;
    String bcodmo_name "unknown";
    String description "Galactose";
    String long_name "Gal";
    String units "nanomoles per liter (nmol/L)";
  }
  Glu {
    Int32 _FillValue 2147483647;
    Int32 actual_range 106, 114469;
    String bcodmo_name "unknown";
    String description "Glucose";
    String long_name "Glu";
    String units "nanomoles per liter (nmol/L)";
  }
  Man {
    Int16 _FillValue 32767;
    Int16 actual_range 6, 6648;
    String bcodmo_name "unknown";
    String description "Mannose";
    String long_name "Man";
    String units "nanomoles per liter (nmol/L)";
  }
  Xyl {
    Int32 _FillValue 2147483647;
    Int32 actual_range 8, 40876;
    String bcodmo_name "unknown";
    String description "Xylose";
    String long_name "XYL";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Asx {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 731;
    String bcodmo_name "amino_conc";
    String description "D-Aspartate or D-Asparagine";
    String long_name "D Asx";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Asx {
    Int16 _FillValue 32767;
    Int16 actual_range 32, 10315;
    String bcodmo_name "amino_conc";
    String description "L-Aspartate or L-Asparagine";
    String long_name "L Asx";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Glx {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 834;
    String bcodmo_name "amino_conc";
    String description "D-Glutamate or D-Glutamine";
    String long_name "D GLX";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Glx {
    Int16 _FillValue 32767;
    Int16 actual_range 26, 13024;
    String bcodmo_name "amino_conc";
    String description "L-Glutamate or L-Glutamine";
    String long_name "L GLX";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Ser {
    Int16 _FillValue 32767;
    Int16 actual_range 1, 142;
    String bcodmo_name "amino_conc";
    String description "D-Serine";
    String long_name "D Ser";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Ser {
    Int16 _FillValue 32767;
    Int16 actual_range 16, 7004;
    String bcodmo_name "amino_conc";
    String description "L-Serine";
    String long_name "L Ser";
    String units "nanomoles per liter (nmol/L)";
  }
  D_His {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 0;
    String bcodmo_name "amino_conc";
    String description "D-Histidine";
    String long_name "D His";
    String units "nanomoles per liter (nmol/L)";
  }
  L_His {
    Int16 _FillValue 32767;
    Int16 actual_range 2, 543;
    String bcodmo_name "amino_conc";
    String description "L-Histidine";
    String long_name "L His";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Thr {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 0;
    String bcodmo_name "amino_conc";
    String description "D-Threonine";
    String long_name "D THR";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Thr {
    Int16 _FillValue 32767;
    Int16 actual_range 21, 5181;
    String bcodmo_name "amino_conc";
    String description "L-Threonine";
    String long_name "L THR";
    String units "nanomoles per liter (nmol/L)";
  }
  Gly {
    Int16 _FillValue 32767;
    Int16 actual_range 103, 8541;
    String bcodmo_name "amino_conc";
    String description "Glycine";
    String long_name "GLY";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Arg {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 0;
    String bcodmo_name "amino_conc";
    String description "D-Arginine";
    String long_name "D Arg";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Arg {
    Int16 _FillValue 32767;
    Int16 actual_range 5, 3176;
    String bcodmo_name "amino_conc";
    String description "L-Arginine";
    String long_name "L Arg";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Ala {
    Int16 _FillValue 32767;
    Int16 actual_range 11, 337;
    String bcodmo_name "amino_conc";
    String description "D-Alanine";
    String long_name "D Ala";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Ala {
    Int16 _FillValue 32767;
    Int16 actual_range 35, 8604;
    String bcodmo_name "amino_conc";
    String description "L-Alanine";
    String long_name "L Ala";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Tyr {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 0;
    String bcodmo_name "amino_conc";
    String description "D-Tyrosine";
    String long_name "D TYR";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Tyr {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 1768;
    String bcodmo_name "amino_conc";
    String description "L-Tyrosine";
    String long_name "L TYR";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Val {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 0;
    String bcodmo_name "amino_conc";
    String description "D-Valine";
    String long_name "D Val";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Val {
    Int16 _FillValue 32767;
    Int16 actual_range 13, 5233;
    String bcodmo_name "amino_conc";
    String description "L-Valine";
    String long_name "L Val";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Met {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 1;
    String bcodmo_name "amino_conc";
    String description "D-Methionine";
    String long_name "D Met";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Met {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 5677;
    String bcodmo_name "amino_conc";
    String description "L-Methionine";
    String long_name "L Met";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Ileu {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 0;
    String bcodmo_name "amino_conc";
    String description "D-Isoleucine";
    String long_name "D Ileu";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Ileu {
    Int16 _FillValue 32767;
    Int16 actual_range 4, 2053;
    String bcodmo_name "amino_conc";
    String description "L-Isoleucine";
    String long_name "L Ileu";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Phe {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 0;
    String bcodmo_name "amino_conc";
    String description "D-Phenylalanine";
    String long_name "D Phe";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Phe {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 1362;
    String bcodmo_name "amino_conc";
    String description "L-Phenylalanine";
    String long_name "L Phe";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Leu {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 0;
    String bcodmo_name "amino_conc";
    String description "D-Leucine";
    String long_name "D Leu";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Leu {
    Int16 _FillValue 32767;
    Int16 actual_range 0, 4342;
    String bcodmo_name "amino_conc";
    String description "L-Leucine";
    String long_name "L Leu";
    String units "nanomoles per liter (nmol/L)";
  }
  D_Lys {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 0, 0;
    String bcodmo_name "amino_conc";
    String description "D-Lysine";
    String long_name "D LYS";
    String units "nanomoles per liter (nmol/L)";
  }
  L_Lys {
    Int16 _FillValue 32767;
    Int16 actual_range 6, 946;
    String bcodmo_name "amino_conc";
    String description "L-Lysine";
    String long_name "L LYS";
    String units "nanomoles per liter (nmol/L)";
  }
  FI {
    Float64 _FillValue NaN;
    Float64 actual_range 1.182732025, 2.238936206;
    String bcodmo_name "unknown";
    String description "Fluorescence Index (DOM composition metric)";
    String long_name "FI";
    String units "unitless";
  }
  HIX {
    Float64 _FillValue NaN;
    Float64 actual_range 0.246588077, 8.512841975;
    String bcodmo_name "unknown";
    String description "Humification Index (DOM composition metric)";
    String long_name "HIX";
    String units "unitless";
  }
  HIX_Norm {
    Float64 _FillValue NaN;
    Float64 actual_range 0.199388793, 0.896111828;
    String bcodmo_name "unknown";
    String description "Humification Index Norm (DOM composition metric)";
    String long_name "HIX Norm";
    String units "unitless";
  }
  BIX {
    Float64 _FillValue NaN;
    Float64 actual_range 0.225600797, 1.349911229;
    String bcodmo_name "unknown";
    String description "Autotrophic productivity index (DOM composition metric)";
    String long_name "BIX";
    String units "unitless";
  }
  abs_250 {
    Float64 _FillValue NaN;
    Float64 actual_range 7.916, 70.357;
    String bcodmo_name "absorption coefficient";
    String description "CDOM absorbance at 250 nm";
    String long_name "Abs 250";
    String units "reciprocal meters (m-1)";
  }
  abs_254 {
    Float64 _FillValue NaN;
    Float64 actual_range 7.53, 68.851;
    String bcodmo_name "absorption coefficient";
    String description "CDOM absorbance at 254 nm";
    String long_name "Abs 254";
    String units "reciprocal meters (m-1)";
  }
  abs_350 {
    Float64 _FillValue NaN;
    Float64 actual_range 1.491, 25.366;
    String bcodmo_name "absorption coefficient";
    String description "CDOM absorbance at 350 nm";
    String long_name "Abs 350";
    String units "reciprocal meters (m-1)";
  }
  abs_365 {
    Float64 _FillValue NaN;
    Float64 actual_range 1.134, 21.304;
    String bcodmo_name "absorption coefficient";
    String description "CDOM absorbance at 365 nm";
    String long_name "Abs 365";
    String units "reciprocal meters (m-1)";
  }
  abs_412 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.507, 11.775;
    String bcodmo_name "absorption coefficient";
    String description "CDOM absorbance at 412 nm";
    String long_name "Abs 412";
    String units "reciprocal meters (m-1)";
  }
  abs_440 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.325, 8.029;
    String bcodmo_name "absorption coefficient";
    String description "CDOM absorbance at 440 nm";
    String long_name "Abs 440";
    String units "reciprocal meters (m-1)";
  }
  abs_ratio_250_365 {
    Float64 _FillValue NaN;
    Float64 actual_range 2.843743823, 7.015278479;
    String bcodmo_name "absorption coefficient";
    String description "Absorbance ratio; absorbance at 250/365";
    String long_name "Abs Ratio 250 365";
    String units "reciprocal meters (m-1)";
  }
  S275_295 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.003879629, 0.031815616;
    String bcodmo_name "unknown";
    String description "Spectral slope range 275-295";
    String long_name "S275 295";
    String units "unitless";
  }
  r2_of_fit {
    Float64 _FillValue NaN;
    Float64 actual_range 0.890192162, 0.999558947;
    String bcodmo_name "unknown";
    String description "r2 of fit of S275_295";
    String long_name "R2 Of Fit";
    String units "unitless";
  }
  S350_400 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.011096935, 0.022420523;
    String bcodmo_name "unknown";
    String description "Spectral slope range 350-400";
    String long_name "S350 400";
    String units "unitless";
  }
  r2_of_fit2 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.992399848, 0.999982032;
    String bcodmo_name "unknown";
    String description "r2 of fit of S350_400";
    String long_name "R2 Of Fit2";
    String units "unitless";
  }
  Sr {
    Float64 _FillValue NaN;
    Float64 actual_range 0.173039163, 2.010944282;
    String bcodmo_name "unknown";
    String description "Spectral slope ratio (275-295/350-400)";
    String long_name "SR";
    String units "unitless";
  }
  C1 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 8.401191924;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 1";
    String long_name "C1";
    String units "Raman units";
  }
  C2 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 36.06491309;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 2";
    String long_name "C2";
    String units "Raman units";
  }
  C3 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 13.79226552;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 3";
    String long_name "C3";
    String units "Raman units";
  }
  C4 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.078553637, 3.990849264;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 4";
    String long_name "C4";
    String units "Raman units";
  }
  C5 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 12.4240941;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 5";
    String long_name "C5";
    String units "Raman units";
  }
  C6 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 11.85463548;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 6";
    String long_name "C6";
    String units "Raman units";
  }
  C7 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 17.15457625;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 7";
    String long_name "C7";
    String units "Raman units";
  }
  C8 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.037142857, 2.718886937;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 8";
    String long_name "C8";
    String units "Raman units";
  }
  C9 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 2.616775215;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 9";
    String long_name "C9";
    String units "Raman units";
  }
  C10 {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 35.28114321;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 10";
    String long_name "C10";
    String units "Raman units";
  }
  Ctotal {
    Float64 _FillValue NaN;
    Float64 actual_range 1.379889776, 238.0904448;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity total";
    String long_name "Ctotal";
    String units "Raman units";
  }
  C1_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 3.398797763, 48.63231906;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 1 as a percent";
    String long_name "C1 PCNT";
    String units "unitless (percent)";
  }
  C2_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 1.586019207, 59.53662811;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 2 as a percent";
    String long_name "C2 PCNT";
    String units "unitless (percent)";
  }
  C3_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 1.257007028, 32.20059792;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 1 as a percent";
    String long_name "C3 PCNT";
    String units "unitless (percent)";
  }
  C4_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 1.219338087, 18.23950798;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 2 as a percent";
    String long_name "C4 PCNT";
    String units "unitless (percent)";
  }
  C5_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 1.633332273, 21.654844;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 1 as a percent";
    String long_name "C5 PCNT";
    String units "unitless (percent)";
  }
  C6_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 17.20046248;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 2 as a percent";
    String long_name "C6 PCNT";
    String units "unitless (percent)";
  }
  C7_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 34.26310257;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 1 as a percent";
    String long_name "C7 PCNT";
    String units "unitless (percent)";
  }
  C8_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 0.591243274, 8.826623653;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 2 as a percent";
    String long_name "C8 PCNT";
    String units "unitless (percent)";
  }
  C9_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 12.93472701;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 1 as a percent";
    String long_name "C9 PCNT";
    String units "unitless (percent)";
  }
  C10_pcnt {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 60.9898483;
    String bcodmo_name "unknown";
    String description "Fluorescence intensity of component 2 as a percent";
    String long_name "C10 PCNT";
    String units "unitless (percent)";
  }
  PAL {
    Float64 _FillValue NaN;
    Float64 actual_range 329.4862754, 332960.0264;
    String bcodmo_name "unknown";
    String description "p-hydroxybenzaldehyde";
    String long_name "PAL";
    String units "nanograms per liter (ng/L)";
  }
  PON {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 112914.7208;
    String bcodmo_name "unknown";
    String description "p-hydroxyacetophenone";
    String long_name "PON";
    String units "nanograms per liter (ng/L)";
  }
  VAL {
    Float64 _FillValue NaN;
    Float64 actual_range 55.27167853, 1969894.964;
    String bcodmo_name "unknown";
    String description "vanillin";
    String long_name "VAL";
    String units "nanograms per liter (ng/L)";
  }
  VON {
    Float64 _FillValue NaN;
    Float64 actual_range 154.3071678, 631182.4777;
    String bcodmo_name "unknown";
    String description "acetovanillone";
    String long_name "VON";
    String units "nanograms per liter (ng/L)";
  }
  PAD {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 361578.1837;
    String bcodmo_name "unknown";
    String description "p-hydroxybenzoic acid";
    String long_name "PAD";
    String units "nanograms per liter (ng/L)";
  }
  SAL {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 687907.7255;
    String bcodmo_name "unknown";
    String description "syringaldehyde";
    String long_name "SAL";
    String units "nanograms per liter (ng/L)";
  }
  VAD {
    Float64 _FillValue NaN;
    Float64 actual_range 85.58301543, 611194.155;
    String bcodmo_name "unknown";
    String description "vanillic acid";
    String long_name "VAD";
    String units "nanograms per liter (ng/L)";
  }
  SON {
    Float64 _FillValue NaN;
    Float64 actual_range 0.0, 338401.5749;
    String bcodmo_name "unknown";
    String description "acetosyringone";
    String long_name "SON";
    String units "nanograms per liter (ng/L)";
  }
  SAD {
    Float64 _FillValue NaN;
    Float64 actual_range 293.7375848, 276813.9009;
    String bcodmo_name "unknown";
    String description "syringic acid";
    String long_name "SAD";
    String units "nanograms per liter (ng/L)";
  }
  CAD {
    Float64 _FillValue NaN;
    Float64 actual_range 182.0148535, 209944.2139;
    String bcodmo_name "unknown";
    String description "p-coumaric acid";
    String long_name "CAD";
    String units "nanograms per liter (ng/L)";
  }
  FAD {
    Float64 _FillValue NaN;
    Float64 actual_range 208.9292441, 331034.318;
    String bcodmo_name "unknown";
    String description "ferulic acid";
    String long_name "FAD";
    String units "nanograms per liter (ng/L)";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv";
    String acquisition_description 
"Samples were collect on the USGS R/V Mary Landsteiner and pumped directly from
the surface (1 m deep) with a pump and clean tycoon tubing connected to an
inline 0.2 um Whatman Polycap filter.
 
Incubation experiments were conducted in the dark or using a dark/light cycle.
Incubations conducted in the dark alone are classified as \\\"microbial, and
incubations using a dark/light cycle are classified as \\\"coupled\\\".
 
All filters were pumped and field filtered through 0.7 um Whatman glass fiber
filters (GF/F, precombusted at 550 degrees C) using a peristaltic pump after
purging the line.
 
Samples for DOC concentration were acidified to pH 2 and stored in a
refrigerator (4 degrees C) until analysis by high-temperature combustion on a
Shimadzu TOC-L CPH within two weeks following collection. DOC was calculated
as the mean of between three and five injections using a six-point standard
curve using established protocols (Mann et al., 2012) and the coefficient of
variance was always <2%.
 
Samples for CDOM absorbance were analyzed in a 1 cm cuvette on a Horiba
Aqualog-UV-800-C. Absorbance spectra were measured from 230-800 nm, and
corrected for a small offset either due to long-term baseline drift or derived
from glass fiber particles during filtration (Blough et al., 1993), by
subtracting the mean absorbance measured between 750-800 nm. Two spectral
slopes were calculated at 275-295 nm and 350-400 nm (S275-295 and S350-400,
respectively), and the spectral slope ratio (SR) was then calculated by
dividing the former by the latter (Helms et al., 2008). The CDOM absorption
ratio at 250 nm to 365 nm was calculated (a250:a365) and specific ultraviolet
absorbance (SUVA254) was calculated by dividing the decadic absorption
coefficient at 254 nm by DOC concentration (Weishaar et al., 2003; Fellman et
al., 2009).
 
Fluorescence properties of FDOM were determined using a Horiba Aqualog-
UV-800-C. The excitation emission matrices (EEMs) were generated in a 1 cm
cuvette at varying integration times (1-10 seconds) to maximize the signal-to-
noise ratio based on absorbance values. The EEMs were obtained at excitation
(ex) 250-600 nm and at emission (em) 250-600 nm with 5 nm and 2 nm intervals
respectively, and the EEMs were corrected for lamp intensity (Cory et al.,
2010), inner filter effects (Kothawala et al., 2013), and normalized to Raman
units (R.U.) (Stedmon et al., 2003). All corrections were performed using the
FDOMcorr toolbox version 1.6 (Murphy, 2011). EEMs were analyzed with parallel
factor analysis (PARAFAC) using the procedure described in Murphy et al.
(2013). Furthermore, the fluorescence index (FI) (Cory et al., 2010),
humification index (HIX) (Ohno, 2002; Zsolnay et al., 1999), and autotrophic
productivity index (BIX) (Huguet et al., 2009) were calculated. FI was
calculated from the emission wavelengths at 470 nm and 520 nm, obtained at
excitation 370 nm (Cory and McKnight, 2005). HIX was calculated using the area
under the emission sepctra 435-480 nm divided by the peak area 300-345 +
435-480 nm, at excitation 254 nm (Ohno, 2002). BIX was calculated from the
emission intensity of 380 nm and 430 nm, obtained at excitation 310 nm (Wang
et al., 2014).
 
Samples for FT-ICR MS analysis were solid-phase extracted using the procedure
described in Dittmar et al., 2008. Filtered samples were acidified to pH 2
before solid phase extraction on 500 mg Agilent Bond Elut PPL cartridges. Each
1 L sample was extracted by eluting 2 mL of of methanol and then diluted to a
DOC target concentration of 50 ug C mL-1. Extracted samples were stored at -20
degrees C prior to analysis on a 21 T (Bruker Daltonics, Billerica, MA, USA)
FT-ICR MS located at the National High Magnetic Field Laboratory (NHMFL)
(Tallahassee, Florida). Direct infusion electrospray ionization (ESI)
generates negative ions at a flow rate of 700 nL min-1, and 100 time domain
acquisitions were coadded for each mass spectrum.
 
Molecular formulas were assigned to signals >6RMS baseline noise with
EnviroOrg \\u00a9,TM software (Koch et al., 2007; Stubbins et al., 2010).
Elemental combinations of C1\\u201345H1\\u201392N0\\u20134O1\\u201325S0\\u20132
with a mass accuracy of \\u2264300 ppb were considered for assignment.
Classification of formulas were based on their elemental ratios (Corilo,
2015). The modified aromaticity index (Almod) of each formula was calculated
and Almod values of 0.5-0.67 and \\u22650.67 were classified as aromatic and
condensed aromatic structures (Koch and Dittmar, 2006; Koch and Dittmar,
2016). Other compound classes were unsaturated low oxygen=Almod<0.5, H/C<1.5,
O/C<0.5; unsaturated high oxygen=Almod<0.5, H/ C<1.5, O/C>0.5; aliphatics=H/C
1.5-2.0, O/C<0.9, N=0; peptide-like=H/C 1.5-2.0, O/C<0.9, N>0, and sugar-like=
O/C>0.9. Sugar-like compounds provide a very minor contribution to %RA (mean =
0.05, \\u00b1 0.06 %RA) and so were combined with peptide-like compounds
throughout. Although FT-ICR MS allows for the precise assignment of molecular
formulas to signals that may represent multiple isomers, they describe the
underlying molecular compounds comprising DOM, thus the term compound may be
used when describing the signals detected by FT-ICR MS.
 
Lignin derived phenols were isolated from the dried solid phase extracts
followed by cupric oxide oxidation and liquid-liquid extraction modified from
Spencer et al., (2010). Briefly, PPL extracts were redissolved in O2 free 2 M
NaOH in a 6 mL Teflon vial (Savillex Corp) containing 500 mg CuO, and amended
with 100 mg ferrous ammonium sulfate and 50 mg glucose and reacted in a 155
degree C oven for 3 hours. Following oxidation, the samples were centrifuged
and supernatants were decanted into 40 mL vials. Oxidation products were
acidified to pH 1 with H3PO4 and t-cinnamic acid was added as an internal
standard. Liquid-liquid extractions of the oxidation products were undertaken
by addition of 4 mL ethyl acetate, vortexing, and centrifugation prior to
removal of the ethyl acetate. Extracts were pipetted through drying columns
containing sodium sulfate into a 4 mL vial. Samples were dried under ultra-
high purity argon between each extraction for a total of three extractions,
following the last extraction the sodium sulfate was rinsed with 1 mL of ethyl
acetate into the extract vial. Dried ethyl acetate extracts were dissolved in
pyridine and derivatized with N/O bis-trimethylsilyltrifluoromethylacetamide
(BSTFA) at 60 degrees C for ten minutes. Lignin phenol monomers were measured
as trimethylsilane derivatives using an Agilent 6890N GC/5975 MS and were
quantified as the relative response factors of each compound compared to the
response of t- cinnamic acid and a five-point calibration curve bracketing the
concentration range. Eight lignin phenols from three phenol groups were
quantified; vanillyl (vanillin, acetovanillone, vanillic acid), syringyl
(syringaldehyde, acetosyringone, syringic acid), and coumaryl (coumaric acid,
ferulic acid).
 
Seven neutral sugars (fucose, rhamnose, arabinose, galactose, glucose,
mannose, xylose) were analyzed according to Skoog and Benner (1997) with
modifications. Briefly, samples were hydrolyzed in 1.2 mol L\\u22121 sulfuric
acid and neutralized with a self-absorbed ion retardation resin (Kaiser and
Benner, 2000). After desalting with a mixture of cation and anion exchange
resins, neutral sugars were isocratically separated with 25 mM NaOH on a PA 1
column in a Dionex 500 system with a pulsed amperiometric detector (PAD).
 
The following amino acids were analyzed using the method of Kaiser and Benner,
2005: histidine, serine, arginine, glycine, aspartic acid, glutamic acid,
threonine, alanine, lysine, tyrosine, methionine, valine, norvaline,
isoleucine, leucine, phenylalanine.";
    String awards_0_award_nid "732795";
    String awards_0_award_number "OCE-1464396";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1464396";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Henrietta N Edmonds";
    String awards_0_program_manager_nid "51517";
    String awards_1_award_nid "732797";
    String awards_1_award_number "OCE-1335622";
    String awards_1_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1335622";
    String awards_1_funder_name "NSF Division of Ocean Sciences";
    String awards_1_funding_acronym "NSF OCE";
    String awards_1_funding_source_nid "355";
    String awards_1_program_manager "Henrietta N Edmonds";
    String awards_1_program_manager_nid "51517";
    String awards_2_award_nid "732801";
    String awards_2_award_number "OCE-1333633";
    String awards_2_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1333633";
    String awards_2_funder_name "NSF Division of Ocean Sciences";
    String awards_2_funding_acronym "NSF OCE";
    String awards_2_funding_source_nid "355";
    String awards_2_program_manager "Henrietta N Edmonds";
    String awards_2_program_manager_nid "51517";
    String cdm_data_type "Other";
    String comment 
"Incubation Experiments 
  PI: Peter Hernes (UC Davis) 
  Co-PIs: Karl Kaiser (TAMU) 
  Contact: Robert Spence (FSU) 
  Version date: 04 February 2019";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2019-02-05T17:48:02Z";
    String date_modified "2020-01-06T19:03:52Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.754885.1";
    String history 
"2025-01-22T07:04:55Z (local files)
2025-01-22T07:04:55Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_754885.html";
    String infoUrl "https://www.bco-dmo.org/dataset/754885";
    String institution "BCO-DMO";
    String instruments_0_acronym "Fluorometer";
    String instruments_0_dataset_instrument_description "Samples for CDOM absorbance were analyzed in a 1 cm cuvette on a Horiba Aqualog-UV-800-C (benchtop fluorometer). Fluorescence properties of FDOM were also determined using a Horiba Aqualog-UV-800-C.";
    String instruments_0_dataset_instrument_nid "754895";
    String instruments_0_description "A fluorometer or fluorimeter is a device used to measure parameters of fluorescence: its intensity and wavelength distribution of emission spectrum after excitation by a certain spectrum of light. The instrument is designed to measure the amount of stimulated electromagnetic radiation produced by pulses of electromagnetic radiation emitted into a water sample or in situ.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/113/";
    String instruments_0_instrument_name "Fluorometer";
    String instruments_0_instrument_nid "484";
    String instruments_0_supplied_name "Horiba Aqualog-UV-800-C";
    String instruments_1_acronym "Gas Chromatograph";
    String instruments_1_dataset_instrument_description "Lignin phenol monomers were measured as trimethylsilane derivatives using an Agilent 6890N GC/5975 MS.";
    String instruments_1_dataset_instrument_nid "754897";
    String instruments_1_description "Instrument separating gases, volatile substances, or substances dissolved in a volatile solvent by transporting an inert gas through a column packed with a sorbent to a detector for assay. (from SeaDataNet, BODC)";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB02/";
    String instruments_1_instrument_name "Gas Chromatograph";
    String instruments_1_instrument_nid "661";
    String instruments_1_supplied_name "Agilent 6890N GC/5975 MS";
    String instruments_2_acronym "Ion Chromatograph";
    String instruments_2_dataset_instrument_description "Neutral sugars were isocratically separated in a Dionex 500 system with a pulsed amperiometric detector (PAD).";
    String instruments_2_dataset_instrument_nid "754899";
    String instruments_2_description "Ion chromatography is a form of liquid chromatography that measures concentrations of ionic species by separating them based on their interaction with a resin. Ionic species separate differently depending on species type and size. Ion chromatographs are able to measure concentrations of major anions, such as fluoride, chloride, nitrate, nitrite, and sulfate, as well as major cations such as lithium, sodium, ammonium, potassium, calcium, and magnesium in the parts-per-billion (ppb) range. (from http://serc.carleton.edu/microbelife/research_methods/biogeochemical/ic.html)";
    String instruments_2_instrument_name "Ion Chromatograph";
    String instruments_2_instrument_nid "662";
    String instruments_2_supplied_name "Dionex 500 system";
    String instruments_3_acronym "Mass Spec";
    String instruments_3_dataset_instrument_description "Lignin phenol monomers were measured as trimethylsilane derivatives using an Agilent 6890N GC/5975 MS.";
    String instruments_3_dataset_instrument_nid "754898";
    String instruments_3_description "General term for instruments used to measure the mass-to-charge ratio of ions; generally used to find the composition of a sample by generating a mass spectrum representing the masses of sample components.";
    String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB16/";
    String instruments_3_instrument_name "Mass Spectrometer";
    String instruments_3_instrument_nid "685";
    String instruments_3_supplied_name "Agilent 6890N GC/5975 MS";
    String instruments_4_acronym "Shimadzu TOC-L";
    String instruments_4_dataset_instrument_description "DOC concentration was determined on a Shimadzu TOC-L CPH.";
    String instruments_4_dataset_instrument_nid "754894";
    String instruments_4_description 
"A Shimadzu TOC-L Analyzer measures DOC by high temperature combustion method.

Developed by Shimadzu, the 680 degree C combustion catalytic oxidation method is now used worldwide. One of its most important features is the capacity to efficiently oxidize hard-to-decompose organic compounds, including insoluble and macromolecular organic compounds. The 680 degree C combustion catalytic oxidation method has been adopted for the TOC-L series.

http://www.shimadzu.com/an/toc/lab/toc-l2.html";
    String instruments_4_instrument_external_identifier "http://onto.nerc.ac.uk/CAST/124.html";
    String instruments_4_instrument_name "Shimadzu TOC-L Analyzer";
    String instruments_4_instrument_nid "527277";
    String instruments_4_supplied_name "Shimadzu TOC-L CPH";
    String instruments_5_acronym "FTICR MS";
    String instruments_5_dataset_instrument_description "Samples were analyzed on a 21 T (Bruker Daltonics, Billerica, MA, USA) FT-ICR MS located at the National High Magnetic Field Laboratory (NHMFL) (Tallahassee, Florida).";
    String instruments_5_dataset_instrument_nid "754896";
    String instruments_5_description "In Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, the mass-to-charge ratio (m/z) of an ion is experimentally determined by measuring the frequency at which the ion processes in a magnetic field. These frequencies, which are typically in the 100 KHz to MHz regime, can be measured with modern electronics making it possible to determine the mass of an ion to within +/- 0.000005 amu or 5 ppm.";
    String instruments_5_instrument_name "Fourier Transform Ion Cyclotron Resonance Mass Spectrometer";
    String instruments_5_instrument_nid "652691";
    String instruments_5_supplied_name "FT-ICR MS";
    String keywords "abs, abs_250, abs_254, abs_350, abs_365, abs_412, abs_440, abs_ratio_250_365, ala, altimetry, ara, arg, asx, bco, bco-dmo, biological, bix, c10, C10_pcnt, C1_pcnt, C2_pcnt, C3_pcnt, C4_pcnt, C5_pcnt, C6_pcnt, C7_pcnt, C8_pcnt, C9_pcnt, cad, chemical, commerce, ctotal, D_Ala, D_Arg, D_Asx, D_Glx, D_His, D_Ileu, D_Leu, D_Lys, D_Met, D_Phe, D_Ser, D_Thr, D_Tyr, D_Val, data, dataset, days, department, dmo, doc, DOC_mg_L, DOC_mM, dose, erddap, exposure, fad, fit, fit2, fuc, gal, glu, glx, gly, his, hix, HIX_Norm, hours, ileu, incubation, incubation_type, irradiance, L_Ala, L_Arg, L_Asx, L_Glx, L_His, L_Ileu, L_Leu, L_Lys, L_Met, L_Phe, L_Ser, L_Thr, L_Tyr, L_Val, laboratory, leu, lys, man, management, met, norm, oceanography, office, pad, pal, pcnt, phe, point, pon, preliminary, r2_of_fit, r2_of_fit2, ratio, rha, s275, S275_295, s350, S350_400, sad, sal, satellite, ser, site, site_type, son, thr, time, time_point, type, tyr, vad, val, von, xyl";
    String license "https://www.bco-dmo.org/dataset/754885/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/754885";
    String param_mapping "{'754885': {}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/754885/parameters";
    String people_0_affiliation "University of California-Davis";
    String people_0_affiliation_acronym "UC Davis";
    String people_0_person_name "Peter Hernes";
    String people_0_person_nid "732799";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Texas A&M University";
    String people_1_affiliation_acronym "TAMU";
    String people_1_person_name "Karl Kaiser";
    String people_1_person_nid "732803";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Florida State University";
    String people_2_affiliation_acronym "FSU";
    String people_2_person_name "Robert Spencer";
    String people_2_person_nid "554165";
    String people_2_role "Contact";
    String people_2_role_type "related";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Shannon Rauch";
    String people_3_person_nid "51498";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "DOM biomarkers";
    String projects_0_acronym "DOM biomarkers";
    String projects_0_description 
"NSF abstract:
Organic matter (OM) fluxes between and within terrestrial and oceanic reservoirs play an important role in the global carbon cycle. A clearer understanding of OM dynamics is critical for understanding fundamental processes and effects on greenhouse gases and climate. At present, researchers have an abundance of analytical methods and tools for investigating dissolved organic matter (DOM) cycling, but the field struggles to move past a qualitative understanding of sources, processing, and fates toward a quantitative understanding. Researchers from University of California-Davis, Woods Hole Oceanographic Institute, and Texas A&M University will develop biomarker tools to advance quantitative understanding of DOM cycling in riverine and estuarine environments in California, specifically targeting vascular plant and microbial markers. Results from this study will allow for future biomarker studies to quantitatively address DOM source and processing in aquatic environments and improve the limited understanding of the fate of terrestrial DOM in the ocean.
Broader Impacts: This study will provide interdisciplinary scientific training and development for undergraduate and graduate students, including individuals from underrepresented groups. Results from the study will be disseminated to the public, California stakeholders, and college students to educate them about the carbon cycle.";
    String projects_0_end_date "2017-09";
    String projects_0_geolocation "San Francisco Bay Delta";
    String projects_0_name "Collaborative Research:   Calibration and application of vascular plant and aqueous microbial biomarkers to examine transformations of dissolved organic matter";
    String projects_0_project_nid "732791";
    String projects_0_start_date "2013-10";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "D_His,D_Thr,D_Arg,D_Tyr,D_Val,D_Ileu,D_Phe,D_Leu,D_Lys";
    String summary "Incubation experiments were conducted in the dark or using a dark/light cycle. Incubations conducted in the dark alone are classified as \\microbial, and incubations using a dark/light cycle are classified as \\coupled\\.";
    String title "[Incubation Data] - Vascular plant and microbial biomarkers of dissolved organic matter data from incubation experiments (Collaborative Research:   Calibration and application of vascular plant and aqueous microbial biomarkers to examine transformations of dissolved organic matter)";
    String version "1";
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact