BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [AR16 Water column nutrients] - Water column nutrient data from RV/Neil
Armstrong cruise AR16, May 2017 (Redox Cycling of Phosphorus in the Western
North Atlantic Ocean)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_762849)
Range: longitude = -71.21921 to -64.44075°E, latitude = 29.16425 to 40.59278°N, depth = 5.0 to 204.0m, time = 2017-05-04 to 2017-05-20
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Station {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 1, 9;
    String bcodmo_name "station";
    String description "Numeric identifier for the station where the data was collected.";
    String long_name "Station";
    String units "unitless";
  }
  CTD_Cast {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 1, 87;
    String bcodmo_name "cast";
    String description "Numeric identifier for the CTD cast where the data was collected.";
    String long_name "CTD Cast";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 29.16425, 40.59278;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "latitude; north is positive";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -71.21921, -64.44075;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "longitude; east is positive";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.493856e+9, 1.4952384e+9;
    String axis "T";
    String bcodmo_name "date_utc";
    String description "UTC sampling date formatted as yyyy-mm-dd.";
    String ioos_category "Time";
    String long_name "Date";
    String source_name "Date";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 5.0, 204.0;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Depth at which the samples were collected.";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  PO4 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.02, 0.68;
    String bcodmo_name "PO4";
    String description "Phosphate concentration.Samples were NOT pre-concentrated with MAGIC; bdl = 0.014 umol per liter";
    String long_name "Mass Concentration Of Phosphate In Sea Water";
    String units "umol per liter";
  }
  Silicate {
    Float32 _FillValue NaN;
    Float32 actual_range 0.54, 5.39;
    String bcodmo_name "SiOH_4";
    String description "Silica concentration; bdl = 0.23 umol per liter";
    String long_name "Mass Concentration Of Silicate In Sea Water";
    String units "umol per liter";
  }
  NO3 {
    String bcodmo_name "NO3";
    String description "Nitrate concentration; bdl = 0.288 umol per liter";
    String long_name "NO3";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRAIGGS/";
    String units "umol per liter";
  }
  NO2 {
    String bcodmo_name "NO2";
    String description "Nitrite concentration; bdl = 0.011 umol per liter";
    String long_name "NO2";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRIAAZX/";
    String units "umol per liter";
  }
  NH4 {
    String bcodmo_name "Ammonium";
    String description "Ammonium concentration; bdl = 0.047 umol per liter";
    String long_name "NH4";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AMONAAZX/";
    String units "umol per liter";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"Sampling was conducted aboard the R/V Neil Armstrong during a cruise in May
2017. Seawater was collected from Niskin bottles deployed on a rosette with a
CTD. Samples were pre-filtered through a 0.2 micrometer filter into a 50 mL
Falcon tube and frozen at -20 degrees C. Samples were shipped frozen to the
University of Washington Marine Chemistry Laboratory. Samples were analyzed on
a Technicon AAII Autoanalyzer.\\u00a0
 
Analytical methods (from
[https://www.ocean.washington.edu/story/Marine+Chemistry+Laboratory](\\\\\"https://www.ocean.washington.edu/story/Marine+Chemistry+Laboratory\\\\\")):
  
Analysis
  |  
Method Reference
  |  
EPA/SM#
  |  
MELAC Code
    
---|---|---|---  
 
PO4
  |  
UNESCO(1994)
  |  
EPA 365.5_1.4_1997
  |  
WM920270
    
 
Si(OH)4
  |  
UNESCO(1994)
  |  
EPA 366
  |  
WM920240
    
 
NO3
  |  
UNESCO(1994)
  |  
EPA 353.4_2_1997
  |  
10068209
    
 
NO2
  |  
UNESCO(1994)
  |  
EPA 353.4_2_1997
  |  
10068209
    
 
NH4
  |  
UNESCO(1994)
  |  
EPA 349
  |  
WM920220";
    String awards_0_award_nid "746564";
    String awards_0_award_number "OCE-1536346";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1536346";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Henrietta N Edmonds";
    String awards_0_program_manager_nid "51517";
    String cdm_data_type "Other";
    String comment 
"Water column nutrient data 
   from RV/Neil Armstrong AR16, May 2017 
   PI: B. Van Mooy (WHOI) 
   version date: 2019-03-21";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2019-03-21T13:22:22Z";
    String date_modified "2019-05-30T19:36:07Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.762849.1";
    Float64 Easternmost_Easting -64.44075;
    Float64 geospatial_lat_max 40.59278;
    Float64 geospatial_lat_min 29.16425;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -64.44075;
    Float64 geospatial_lon_min -71.21921;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 204.0;
    Float64 geospatial_vertical_min 5.0;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2024-10-03T20:53:25Z (local files)
2024-10-03T20:53:25Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_762849.das";
    String infoUrl "https://www.bco-dmo.org/dataset/762849";
    String institution "BCO-DMO";
    String instruments_0_acronym "Niskin bottle";
    String instruments_0_dataset_instrument_nid "762857";
    String instruments_0_description "A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends.  The bottles can be attached individually on a hydrowire or deployed in 12, 24 or 36 bottle Rosette systems mounted on a frame and combined with a CTD.  Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0412/";
    String instruments_0_instrument_name "Niskin bottle";
    String instruments_0_instrument_nid "413";
    String instruments_1_acronym "CTD";
    String instruments_1_dataset_instrument_nid "762856";
    String instruments_1_description "The Conductivity, Temperature, Depth (CTD) unit is an integrated instrument package designed to measure the conductivity, temperature, and pressure (depth) of the water column.  The instrument is lowered via cable through the water column and permits scientists observe the physical properties in real time via a conducting cable connecting the CTD to a deck unit and computer on the ship. The CTD is often configured with additional optional sensors including fluorometers, transmissometers and/or  radiometers.  It is often combined with a Rosette of water sampling bottles (e.g. Niskin, GO-FLO) for collecting discrete water samples during the cast.  This instrument designation is used when specific make and model are not known.";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/130/";
    String instruments_1_instrument_name "CTD profiler";
    String instruments_1_instrument_nid "417";
    String instruments_2_acronym "Nutrient Autoanalyzer";
    String instruments_2_dataset_instrument_nid "762874";
    String instruments_2_description "Nutrient Autoanalyzer is a generic term used when specific type, make and model were not specified.  In general, a Nutrient Autoanalyzer is an automated flow-thru system for doing nutrient analysis (nitrate, ammonium, orthophosphate, and silicate) on seawater samples.";
    String instruments_2_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB04/";
    String instruments_2_instrument_name "Nutrient Autoanalyzer";
    String instruments_2_instrument_nid "558";
    String instruments_2_supplied_name "Technicon AAII Autoanalyzer";
    String keywords "ammonium, bco, bco-dmo, biological, cast, chemical, chemistry, concentration, conductivity, ctd, CTD_Cast, data, dataset, date, depth, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Phosphate, Earth Science > Oceans > Ocean Chemistry > Silicate, erddap, latitude, longitude, management, mass, mass_concentration_of_phosphate_in_sea_water, mass_concentration_of_silicate_in_sea_water, nh4, nitrate, nitrite, no2, no3, ocean, oceanography, oceans, office, phosphate, po4, preliminary, science, sea, seawater, silicate, sonde, station, temperature, time, water";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "https://www.bco-dmo.org/dataset/762849/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/762849";
    Float64 Northernmost_Northing 40.59278;
    String param_mapping "{'762849': {'Date': 'flag - time', 'lat': 'flag - latitude', 'Depth': 'flag - depth', 'lon': 'flag - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/762849/parameters";
    String people_0_affiliation "University of Rhode Island";
    String people_0_affiliation_acronym "URI-GSO";
    String people_0_person_name "Benjamin A.S. Van Mooy";
    String people_0_person_nid "50975";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI BCO-DMO";
    String people_1_person_name "Nancy Copley";
    String people_1_person_nid "50396";
    String people_1_role "BCO-DMO Data Manager";
    String people_1_role_type "related";
    String project "Phosphorus Redox Cycling";
    String projects_0_acronym "Phosphorus Redox Cycling";
    String projects_0_description 
"NSF Award Abstract:
Redox Cycling of Phosphorus in the Western North Atlantic Ocean
Benjamin Van Mooy
ID: 1536346
Understanding controls on the growth of plankton in the upper ocean, which plays an essential role in the sequestration of carbon dioxide, is an important endeavor for chemical oceanography. Phosphorus is an essential element for marine plankton, and has been a research focus of chemical oceanography for nearly a century. Yet, phosphorus redox cycling rates are almost completely unknown throughout the ocean, and the specific molecular identities of the phosphonates, a form of phosphate, in seawater have defied elucidation. This project will explore and refine entirely new pathways for the biological cycling of phosphorus. This project will support teaching and learning by funding the PhD research of a graduate student, and through the continuation of conducting K-12 classroom laboratory modules and hosting 6-8th grade science fair participants in the investigator's lab.
Phosphorus has never been viewed by oceanographers as an element that actively undergoes chemical redox reactions in the water column, and it was believed to occur only in the +5 valence state, in compounds such as phosphate. However, over the last 17 years, numerous lines of geochemical and genomic information have emerged to show that phosphorus in the +3 valence state (P(+3)), particularly dissolved phosphonate compounds, may play a very important role within open ocean planktonic communities. This is particularly true in oligotrophic gyres such as the Sargasso Sea, where growth of phytoplankton can be limited by the scarcity of phosphate. To better understand these new data, the investigators will design and execute a research program that spans at-sea chemical oceanographic experimentation, state-of-the-art chromatography and mass spectrometry, and novel organic synthesis of 33P-labeled P(+3) compounds. Specifically, they will answer questions about rates of production and consumption of low molecular weight P(+3) compounds, the impact of phosphate availability on the production and consumption of P(+3) compounds, and the groups of phytoplankton that utilize low molecular weight P(+3) compounds. Results of this project have the potential to contribute to the transformation of our understanding of the marine phosphorus cycle.";
    String projects_0_end_date "2018-09";
    String projects_0_geolocation "western north Atlantic";
    String projects_0_name "Redox Cycling of Phosphorus in the Western North Atlantic Ocean";
    String projects_0_project_nid "746565";
    String projects_0_start_date "2015-10";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 29.16425;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "This dataset includes water column nutrient data from RV/Neil Armstrong cruise AR16, May 2017: silicate, nitrate, nitrite, and ammonium concentrations.";
    String time_coverage_end "2017-05-20";
    String time_coverage_start "2017-05-04";
    String title "[AR16 Water column nutrients] - Water column nutrient data from RV/Neil Armstrong cruise AR16, May 2017 (Redox Cycling of Phosphorus in the Western North Atlantic Ocean)";
    String version "1";
    Float64 Westernmost_Easting -71.21921;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact