BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [In-situ pump data] - TPC, PIC, POC, TPN, and Th-234 from in-situ pumps at the
Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast
Atlantic Ocean during RRS Discovery cruise DY077 in April of
2017 (Collaborative Research: Are all traps created equal? A multi-method
assessment of the collection and detection of sinking particles in the ocean)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_765850)
Range: longitude = -16.5907 to -16.4953°E, latitude = 48.8656 to 48.9835°N, depth = 200.0 to 350.0m, time = 2017-04-19T15:17Z to 2017-04-26T09:15Z
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  deployment {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 1, 2;
    String bcodmo_name "deploy";
    String description "deployment cycle during cruise DY077";
    String long_name "Deployment";
    String units "unitless";
  }
  station {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 38, 88;
    String bcodmo_name "station";
    String description "station occupied during cruise DY077";
    String long_name "Station";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 200.0, 350.0;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "depth of water sample collection";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  pore_size {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 1, 51;
    String bcodmo_name "sample_descrip";
    String description "nominal pore size of filter used to collect particles";
    String long_name "Pore Size";
    String units "micrometers (um)";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 48.8656, 48.9835;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "latitude of in-situ pump deployment";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -16.5907, -16.4953;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "longitude of in-situ pump deployment";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  date_start {
    String bcodmo_name "date_utc";
    String description "date sample collection began (GMT) in ISO 8601 format yyyy-mm-dd";
    String long_name "Date Start";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  time_start {
    String bcodmo_name "time_utc";
    String description "time sample collection began (GMT) in ISO 8601 format hh:mm:ss";
    String long_name "Time Start";
    String units "unitless";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.49261502e+9, 1.4931981e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "Date time sampling began (GMT) in format yyyy-mm-ddTHH:MMZ";
    String ioos_category "Time";
    String long_name "ISO Date Time Start";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "ISO_DateTime_start";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  date_end {
    String bcodmo_name "date_utc";
    String description "date sample collection ended (GMT) in ISO 8601 format yyyy-mm-dd";
    String long_name "Date End";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  time_end {
    String bcodmo_name "time_utc";
    String description "time sample collection ended (GMT) in ISO 8601 format hh:mm:ss";
    String long_name "Time End";
    String units "unitless";
  }
  volume {
    Int16 _FillValue 32767;
    Int16 actual_range 787, 894;
    String bcodmo_name "sample_descrip";
    String description "water volume filtered by in-situ pump";
    String long_name "Volume";
    String units "liters (L)";
  }
  TPN {
    Float32 _FillValue NaN;
    Float32 actual_range 0.005, 0.056;
    String bcodmo_name "Total Particulate Nitrogen";
    String description "total particulate nitrogen concentration";
    String long_name "TPN";
    String units "micromoles per liter (umol/L)";
  }
  TPN_err {
    Float32 _FillValue NaN;
    Float32 actual_range 0.004, 0.007;
    String bcodmo_name "Total Particulate Nitrogen";
    String description "total particulate nitrogen uncertainty. For 51-µm particles is unavailable because blanks were below the analytical detection limit.";
    String long_name "TPN Err";
    String units "micromoles per liter (umol/L)";
  }
  TPC {
    Float32 _FillValue NaN;
    Float32 actual_range 0.039, 0.38;
    String bcodmo_name "TPC";
    String description "total particulate carbon concentration";
    String long_name "TPC";
    String units "micromoles per liter (umol/L)";
  }
  TPC_err {
    Float32 _FillValue NaN;
    Float32 actual_range 0.006, 0.03;
    String bcodmo_name "TPC";
    String description "total particulate carbon uncertainty, determined as 3 x SD of blanks, scaled by the volume filtered and fraction of the filter area analyzed. See note in Processing Description regarding QMA punch-to-punch variability.";
    String long_name "TPC Err";
    String units "micromoles per liter (umol/L)";
  }
  PIC {
    Float32 _FillValue NaN;
    Float32 actual_range 0.108, 0.302;
    String bcodmo_name "PIC";
    String description "total particulate inorganic carbon concentration";
    String long_name "Particulate Inorganic Carbon";
    String units "micrograms per liter (ug/L)";
  }
  PIC_err {
    Float32 _FillValue NaN;
    Float32 actual_range 0.003, 0.008;
    String bcodmo_name "PIC";
    String description "total particulate inorganic carbon uncertainty, determined as 3 x SD of blanks, scaled by the volume filtered and fraction of the filter area analyzed. See note in Processing Description regarding QMA punch-to-punch variability.";
    String long_name "PIC Err";
    String units "micrograms per liter (ug/L)";
  }
  POC {
    Float32 _FillValue NaN;
    Float32 actual_range 0.03, 0.36;
    String bcodmo_name "POC";
    String description "total particulate organic carbon concentration, computed as the difference between TPC and PIC";
    String long_name "Particulate Organic Carbon";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGCAP1/";
    String units "micromoles per liter (umol/L)";
  }
  POC_err {
    Float32 _FillValue NaN;
    Float32 actual_range 0.006, 0.03;
    String bcodmo_name "POC";
    String description "total particulate organic carbon uncertainty, POC_err = (TPC_err2 + PIC_err2)1/2. See note in Processing Description regarding QMA punch-to-punch variability.";
    String long_name "POC Err";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CORGCAP1/";
    String units "micromoles per liter (umol/L)";
  }
  Th234_part {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0117, 0.093;
    String bcodmo_name "thorium-234";
    String description "particulate thorium-234 activity";
    String long_name "Th234 Part";
    String units "disintegration per minute per liter (dpm/L)";
  }
  Th234_part_err {
    Float32 _FillValue NaN;
    Float32 actual_range 5.0e-4, 0.003;
    String bcodmo_name "thorium-234";
    String description "particulate thorium-234 uncertainty, propagated from counting statistics. See note in Processing Description regarding QMA punch-to-punch variability.";
    String long_name "Th234 Part Err";
    String units "disintegration per minute per liter (dpm/L)";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"Samples were collected during two deployment cycles (termed \\u201cdeployment
1\\u201d and \\u201cdeployment 2\\u201d) occupied during the RRS Discovery cruise
DY077 to the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) Site in
April 2017 (Figure 1). In each of the cycles, we conducted particle flux
sampling method intercomparisons between fluxes derived from upper water
column deficits of 234Th vs. its parent isotope 238U, two types of neutrally
buoyant sediment traps (NBST and PELAGRA), and a surface tethered array of
sediment traps (STT). DY077 samples analyzed in US (WHOI and Skidmore College)
are archived here; DY077 samples analyzed in the UK (NOC) are archived in the
British Oceanographic Data Centre.
 
Two McLane in-situ battery powered pumps were deployed two times for the
collection of size fractionated particles. The water passes first through a
51-micron screen followed by a nominal 1-micron quartz filter. Filter
diameters are both 142 mm and a baffled opening developed for the GEOTRACES
program keeps particles from washing off the top screen during retrieval of
the pumps as they ascend on the wire. The pumps were programmed with a 1-hour
delay time before turning on at depths of 200 and 350 m. After a pumping time
of 2 hours, the pumps shut off and were retrieved. After retrieval, volumes
were noted (measured by dual flow meters), any water that remained in the pump
was drained through the filters, and the screen was rinsed with prefiltered
seawater onto a 1-\\u00b5m pore size silver filter (25-mm diameter).
 
The Ag filter and a 25-mm subsample from the QMA were dried at 45\\u00b0C,
mounted, and immediately counted for low-level \\u03b2 emission onboard the
ship. At WHOI, a subset of samples was re-counted approximately one month
later on shore. Final background counts to measure non-234Th related \\u03b2
emissions were conducted approximately six months later. At this point,
filters were unmounted, re-dried, and gravimetrically subdivided into four
sections. One half of the filter was analyzed for total carbon and nitrogen
after high-temperature combustion on a Thermo Electron FlashEA 1112 C/N
analyzer. Coulometric analysis for PIC after sample acidification was
performed on a quarter of the filter (Johnson et al, 1985; Honjo et al, 2000).
The remainder of the filter was archived.
 
Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast
Atlantic Ocean (49\\u00b0N, 16.5\\u00b0W).";
    String awards_0_award_nid "762021";
    String awards_0_award_number "OCE-1659995";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1659995";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Dr Simone Metz";
    String awards_0_program_manager_nid "51479";
    String awards_1_award_nid "762029";
    String awards_1_award_number "OCE-1660012";
    String awards_1_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1660012";
    String awards_1_funder_name "NSF Division of Ocean Sciences";
    String awards_1_funding_acronym "NSF OCE";
    String awards_1_funding_source_nid "355";
    String awards_1_program_manager "Dr Simone Metz";
    String awards_1_program_manager_nid "51479";
    String cdm_data_type "Other";
    String comment 
"In-situ pump data 
  PI: Kenneth Buesseler 
  Data version 2: 2019-06-26";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2019-04-29T16:37:46Z";
    String date_modified "2019-06-26T19:34:38Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.765850.2";
    Float64 Easternmost_Easting -16.4953;
    Float64 geospatial_lat_max 48.9835;
    Float64 geospatial_lat_min 48.8656;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -16.4953;
    Float64 geospatial_lon_min -16.5907;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 350.0;
    Float64 geospatial_vertical_min 200.0;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2024-11-08T05:48:42Z (local files)
2024-11-08T05:48:42Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_765850.das";
    String infoUrl "https://www.bco-dmo.org/dataset/765850";
    String institution "BCO-DMO";
    String instruments_0_acronym "CO2 coulometer";
    String instruments_0_dataset_instrument_nid "766332";
    String instruments_0_description "A CO2 coulometer semi-automatically controls the sample handling and extraction of CO2 from seawater samples. Samples are acidified and the CO2 gas is bubbled into a titration cell where CO2 is converted to hydroxyethylcarbonic acid which is then automatically titrated with a coulometrically-generated base to a colorimetric endpoint.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB12";
    String instruments_0_instrument_name "CO2 Coulometer";
    String instruments_0_instrument_nid "507";
    String instruments_0_supplied_name "Coulometer";
    String instruments_1_acronym "McLane Pump";
    String instruments_1_dataset_instrument_nid "766329";
    String instruments_1_description "McLane pumps sample large volumes of seawater at depth. They are attached to a wire and lowered to different depths in the ocean. As the water is pumped through the filter, particles suspended in the ocean are collected on the filters. The pumps are then retrieved and the contents of the filters are analyzed in a lab.";
    String instruments_1_instrument_name "McLane Pump";
    String instruments_1_instrument_nid "627";
    String instruments_2_acronym "Riso Beta Counter";
    String instruments_2_dataset_instrument_nid "766330";
    String instruments_2_description 
"Low-level beta detectors manufactured by Riso (now Nutech) in Denmark. These instruments accept samples that can be mounted on a 25mm filter holder. These detectors have very low backgrounds, 0.17 counts per minute, and can have counting efficiencies as high as 55%.

See:
http://cafethorium.whoi.edu/website/about/services_radioanalytical_facility_equip.html
and
http://www.nutech.dtu.dk/Produkter/Dosimetri/NUK_instruments/GM_multicounter.aspx";
    String instruments_2_instrument_name "Riso Laboratory Anti-coincidence Beta Counters";
    String instruments_2_instrument_nid "687";
    String instruments_2_supplied_name "Riso Beta Counter";
    String instruments_3_dataset_instrument_nid "766331";
    String instruments_3_description "Instruments that quantify carbon, nitrogen and sometimes other elements by combusting the sample at very high temperature and assaying the resulting gaseous oxides. Usually used for samples including organic material.";
    String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB01/";
    String instruments_3_instrument_name "Elemental Analyzer";
    String instruments_3_instrument_nid "546339";
    String instruments_3_supplied_name "Thermo Electron FlashEA 1112 C/N analyzer";
    String keywords "bco, bco-dmo, biological, carbon, chemical, data, dataset, date, date_end, date_start, deployment, depth, dmo, end, erddap, error, inorganic, iso, latitude, longitude, management, oceanography, office, organic, part, particulate, pic, PIC_err, poc, POC_err, pore, pore_size, preliminary, size, start, station, th234, Th234_part, Th234_part_err, time, time_end, time_start, tpc, TPC_err, tpn, TPN_err, volume";
    String license "https://www.bco-dmo.org/dataset/765850/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/765850";
    Float64 Northernmost_Northing 48.9835;
    String param_mapping "{'765850': {'lat': 'master - latitude', 'depth': 'master - depth', 'lon': 'master - longitude', 'ISO_DateTime_start': 'flag - time'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/765850/parameters";
    String people_0_affiliation "Woods Hole Oceanographic Institution";
    String people_0_affiliation_acronym "WHOI";
    String people_0_person_name "Kenneth O. Buesseler";
    String people_0_person_nid "50522";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Skidmore College";
    String people_1_person_name "Margaret L. Estapa";
    String people_1_person_nid "644830";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI BCO-DMO";
    String people_2_person_name "Amber York";
    String people_2_person_nid "643627";
    String people_2_role "BCO-DMO Data Manager";
    String people_2_role_type "related";
    String project "Are Traps Equal";
    String projects_0_acronym "Are Traps Equal";
    String projects_0_description 
"NSF Award Abstract:
There is considerable need to understand the biological and ecological processes that through net primary production fix dissolved carbon dioxide (CO2) into organic matter in the upper ocean, and the processes that subsequently transport this organic carbon in to the ocean's interior. Most of the particulate organic carbon flux to the deep ocean is thought to be mediated by sinking particles. Ultimately it is the deep organic carbon transport and its sequestration that define the impact of ocean biota on atmospheric CO2 levels and hence climate. Currently, various methods are available to measure the amount of particles in the ocean that sink over a specified period of time commonly referred to as particle flux. Unfortunately, all of these methods are used independently of each other with very little intercomparison, leaving some uncertainty as to which approach provides the most accurate estimates. This study seeks to be the first concerted effort to standardize particle flux measurements. Seeking to keep the cost modest, the researchers are taking advantage of a collaboration with scientists in the United Kingdom to participate in an already scheduled research cruise. The proposed research will have much greater impact that merely standardization of particle flux measurements because it will provide the science and modeling community the ability to quantify the transfer of carbon throughout the surface ocean. Also, this project provides a variety of mentoring and training opportunities for students. A PhD student at Woods Hole Oceanographic Institute will get their first sea-going experience and will learn all of the processing steps for the study of an isotope of thorium (234Th). Skidmore College will have an undergraduate participant in the research and the results from the cruise will also be an excellent additional component for undergraduate oceanography classes.
Researchers from Woods Hole Oceanographic Institution and Skidmore College, in collaboration with a scientist from the National Oceanography Centre, Southampton will inter-compare direct, tracer, and optical-sensor methods used to determine sinking particle fluxes in the surface ocean. To do this, they will firstly conduct a comparison of two types of neutrally buoyant traps and one surface-tethered, drifting array. Secondly, measured trap fluxes will be compared to predicted 234Th fluxes from a 3D time-series of data. Lastly, optical sediment trap measurements will be compared to particle size distributions in the water column and gel traps, as well as size-fractionated particles on filters from large volume pumps. With this research, global ocean models, particularly carbon, will have greater accuracy and stronger conclusions will be able to be drawn from them.";
    String projects_0_end_date "2019-06";
    String projects_0_geolocation "Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean (49°N, 16.5°W)";
    String projects_0_name "Collaborative Research:   Are all traps created equal?  A multi-method assessment of the collection and detection of sinking particles in the ocean";
    String projects_0_project_nid "762022";
    String projects_0_start_date "2017-01";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 48.8656;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "TPC, PIC, POC, TPN, and Th-234 from in-situ pumps at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017.";
    String time_coverage_end "2017-04-26T09:15Z";
    String time_coverage_start "2017-04-19T15:17Z";
    String title "[In-situ pump data] - TPC, PIC, POC, TPN, and Th-234 from in-situ pumps at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) site in the Northeast Atlantic Ocean during RRS Discovery cruise DY077 in April of 2017 (Collaborative Research:   Are all traps created equal?  A multi-method assessment of the collection and detection of sinking particles in the ocean)";
    String version "2";
    Float64 Westernmost_Easting -16.5907;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact