BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  [HOT LAVA Nitrogen] - Water column nitrate+nitrite d15N and d18O and total
dissolved nitrogen d15N measurements from R/V Ka`imikai-O-Kanaloa cruise
KOK1806 (HOT LAVA) in July 2018 (Quantifying nitrogen fixation along unique
geochemical gradients in the southwest Pacific Ocean)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_770818)
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Subset | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
   or a List of Values ?
   Maximum ?
 
 Station_Number (unitless) ?          1    15
 Towfish_or_CTD_profile_station (unitless) ?          "CTD profile"    "Towfish"
 depth (m) ?          1.0    126.5
  < slider >
 time (Date, UTC) ?      
   - +  ?
  < slider >
 latitude (degrees_north) ?          19.373    19.45
  < slider >
 longitude (degrees_east) ?          -154.829    -154.71
  < slider >
 Karl_HI_NO3_NO2 (micromolar (uM)) ?          0.0    4.69
 Knapp_NO3_NO2_d15N (per mil) ?          3.41    11.47
 Knapp_NO3_NO2_d15N_std_dev (per mil) ?          0.02    1.21
 Knapp_NO3_NO2_d18O (per mil) ?          -0.57    9.97
 Knapp_NO3_NO2_d18O_std_dev (per mil) ?          0.05    2.55
 Karl_TDN (micromolar (uM)) ?          4.84    9.83
 Knapp_TDN_d15N (per mil) ?          2.8    6.15
 Knapp_TDN_d15N_std_dev (per mil) ?          0.0    0.97
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more information)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Station_Number {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 1, 15;
    String bcodmo_name "station";
    Float64 colorBarMaximum 100.0;
    Float64 colorBarMinimum 0.0;
    String description "Station number";
    String long_name "Station Number";
    String units "unitless";
  }
  Towfish_or_CTD_profile_station {
    String bcodmo_name "instrument";
    String description "Sampling system (either towfish or CTD rosette)";
    String long_name "Towfish Or CTD Profile Station";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 1.0, 126.5;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "Sample depth";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.5315264e+9, 1.5315264e+9;
    String axis "T";
    String bcodmo_name "date";
    String description "Date of collection. Format: yyyy-mm-dd";
    String ioos_category "Time";
    String long_name "Date";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String source_name "Date";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 19.373, 19.45;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Latitude North";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String source_name "Lat_N";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -154.829, -154.71;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Longitude East";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String source_name "Longitude_E";
    String standard_name "longitude";
    String units "degrees_east";
  }
  Karl_HI_NO3_NO2 {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 4.69;
    String bcodmo_name "NO3_NO2";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Nitrate+nitrite concentration; measured in Karl lab at U. Hawaii using colorimetric methods";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "micromolar (uM)";
  }
  Knapp_NO3_NO2_d15N {
    Float32 _FillValue NaN;
    Float32 actual_range 3.41, 11.47;
    String bcodmo_name "15N of nitrate plus nitrite";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Nitrate+nitrite d15N";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "per mil";
  }
  Knapp_NO3_NO2_d15N_std_dev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.02, 1.21;
    String bcodmo_name "15N of nitrate plus nitrite";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Standard deviation of Knapp_NO3_NO2_d15N";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "per mil";
  }
  Knapp_NO3_NO2_d18O {
    Float32 _FillValue NaN;
    Float32 actual_range -0.57, 9.97;
    String bcodmo_name "unknown";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Nitrate+nitrite d18O";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "per mil";
  }
  Knapp_NO3_NO2_d18O_std_dev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.05, 2.55;
    String bcodmo_name "unknown";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Standard deviation of Knapp_NO3_NO2_d18O";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    String units "per mil";
  }
  Karl_TDN {
    Float32 _FillValue NaN;
    Float32 actual_range 4.84, 9.83;
    String bcodmo_name "Total Dissolved Nitrogren";
    String description "Total dissolved nitrogen concentration; measured in Karl lab at U. Hawaii using uv-oxidation and subsequent colorimetric analysis";
    String long_name "Karl TDN";
    String units "micromolar (uM)";
  }
  Knapp_TDN_d15N {
    Float32 _FillValue NaN;
    Float32 actual_range 2.8, 6.15;
    String bcodmo_name "15N of Total Particulate Nitrogen";
    String description "Total dissolved nitrogen ?15N";
    String long_name "Knapp TDN D15 N";
    String units "per mil";
  }
  Knapp_TDN_d15N_std_dev {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 0.97;
    String bcodmo_name "15N of Total Particulate Nitrogen";
    String description "Standard deviation of Knapp_TDN_d15N";
    String long_name "Knapp TDN D15 N Std Dev";
    String units "per mil";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"Some water samples were collected by Niskin bottle on a CTD rosette (\\\"CTD
profile\\\"), while others were collected using a trace metal clean \\\"Towfish\\\"
that was running along side the ship and collected trace metal clean underway
samples ~1 m below the sea surface.
 
NO3-+NO2- d15N and d18O and TDN \\u03b415N analysis was by the \\\"denitrifier
method\\\" and followed the methods described by Sigman et al., 2001, Casciotti
et al., 2002, McIlvin and Casciotti, 2011, and Weigand et al., 2016. Briefly,
NO3-+NO2- was quantitatively reduced to N2O by Pseudomonas aureofaciens and
Pseudomonas chlororaphis, which was then cryogenically focused and analyzed on
an isotope ratio mass spectrometer. A volume of sample was added to each
bacterial vial to achieve a final quantity of 10 or 20 nmols N2O, which was
then purged from the vial using a helium carrier gas. The d15N of N2O in
samples was calibrated with the international isotopic reference materials
 
The \\u03b415N of TDN was measured using persulfate oxidation of DON to NO3-
followed by the denitrified method as described in Knapp et al. (2005).
 
Nitrate+nitrite concentration was measured by others (Karl lab, U. Hawaii)
using colorimetric methods, and total dissolved nitrogen concentration was
measured by others (Karl lab, U. Hawaii) using uv-oxidation and subsequent
colorimetric analysis. Both of these data sets can be found at:
[http://scope.soest.hawaii.edu/data/](\\\\\"http://scope.soest.hawaii.edu/data/\\\\\")";
    String awards_0_award_nid "710561";
    String awards_0_award_number "OCE-1537314";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1537314";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Henrietta N Edmonds";
    String awards_0_program_manager_nid "51517";
    String cdm_data_type "Other";
    String comment 
"Water column nitrate+nitrite and total dissolved nitrogen d15N 
   from HOT LAVA cruise, KOK1806 
  PI: Angela Knapp (FSU) 
  Version date: 18 June 2019";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2019-06-18T17:38:04Z";
    String date_modified "2019-09-12T14:09:19Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.770818.1";
    Float64 Easternmost_Easting -154.71;
    Float64 geospatial_lat_max 19.45;
    Float64 geospatial_lat_min 19.373;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -154.71;
    Float64 geospatial_lon_min -154.829;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 126.5;
    Float64 geospatial_vertical_min 1.0;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2024-11-21T08:46:49Z (local files)
2024-11-21T08:46:49Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_770818.html";
    String infoUrl "https://www.bco-dmo.org/dataset/770818";
    String institution "BCO-DMO";
    String instruments_0_acronym "Niskin bottle";
    String instruments_0_dataset_instrument_nid "770835";
    String instruments_0_description "A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends.  The bottles can be attached individually on a hydrowire or deployed in 12, 24 or 36 bottle Rosette systems mounted on a frame and combined with a CTD.  Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0412/";
    String instruments_0_instrument_name "Niskin bottle";
    String instruments_0_instrument_nid "413";
    String instruments_0_supplied_name "Niskin bottle (CTD rosette)";
    String instruments_1_acronym "IR Mass Spec";
    String instruments_1_dataset_instrument_nid "770836";
    String instruments_1_description "The Isotope-ratio Mass Spectrometer is a particular type of mass spectrometer used to measure the relative abundance of isotopes in a given sample (e.g. VG Prism II Isotope Ratio Mass-Spectrometer).";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB16/";
    String instruments_1_instrument_name "Isotope-ratio Mass Spectrometer";
    String instruments_1_instrument_nid "469";
    String instruments_1_supplied_name "Thermo Finnigan Delta V";
    String instruments_2_acronym "GeoFish";
    String instruments_2_dataset_instrument_nid "770860";
    String instruments_2_description "The GeoFish towed sampler is a custom designed near surface (";
    String instruments_2_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/31/";
    String instruments_2_instrument_name "GeoFish Towed near-Surface Sampler";
    String instruments_2_instrument_nid "549";
    String instruments_2_supplied_name "Towfish";
    String keywords "bco, bco-dmo, biological, chemical, chemistry, concentration, conductivity, ctd, d15, data, dataset, date, depth, dev, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Nitrate, erddap, karl, Karl_HI_NO3_NO2, Karl_TDN, knapp, Knapp_NO3_NO2_d15N, Knapp_NO3_NO2_d15N_std_dev, Knapp_NO3_NO2_d18O, Knapp_NO3_NO2_d18O_std_dev, Knapp_TDN_d15N, Knapp_TDN_d15N_std_dev, latitude, longitude, management, mole, mole_concentration_of_nitrate_in_sea_water, n02, nitrate, no3, number, ocean, oceanography, oceans, office, preliminary, profile, profiler, salinity, salinity-temperature-depth, science, sea, seawater, sonde, station, Station_Number, std, tdn, temperature, time, towfish, Towfish_or_CTD_profile_station, water";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "https://www.bco-dmo.org/dataset/770818/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/770818";
    Float64 Northernmost_Northing 19.45;
    String param_mapping "{'770818': {'Date': 'flag - time', 'Lat_N': 'flag - latitude', 'Depth': 'flag - depth', 'Longitude_E': 'flag - longitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/770818/parameters";
    String people_0_affiliation "Florida State University";
    String people_0_affiliation_acronym "FSU";
    String people_0_person_name "Angela N. Knapp";
    String people_0_person_nid "555499";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Woods Hole Oceanographic Institution";
    String people_1_affiliation_acronym "WHOI BCO-DMO";
    String people_1_person_name "Shannon Rauch";
    String people_1_person_nid "51498";
    String people_1_role "BCO-DMO Data Manager";
    String people_1_role_type "related";
    String project "SW Pac N2 fixation";
    String projects_0_acronym "SW Pac N2 fixation";
    String projects_0_description 
"NSF Award Abstract:
The availability of nitrogen in the surface ocean plays a critical role regulating rates of primary productivity in the ocean, and thus through modification of the carbon cycle, nitrogen has the capacity to influence climate. The dominant source of biologically available nitrogen to the ocean is through a process known as di-nitrogen (N2) fixation, which involves the reduction of N2 gas dissolved in seawater to ammonium by microbes referred to as diazotrophs. While significant progress has been made identifying a diversity of marine diazotrophs in recent years using molecular tools, quantifying global rates of N2 fixation, and identifying which ocean basin supports the highest fluxes, has remained a vexing question. This research will quantify rates of N2 fixation as well as its importance for supporting production in the southwest Pacific Ocean. Results from this research will shed light on the sensitivities of N2 fixation (temperature, iron concentrations) as well as the extent of spatial and temporal coupling of nitrogen sources and sinks in the ocean. The work will be carried out by an early career scientist, and involve mentoring of young women, middle school girls and minorities, training of undergraduate and graduate researchers, and international collaborations.
Identifying the spatial distribution of the largest di-nitrogen (N2) fixation fluxes to the ocean remains a critical goal of chemical oceanography. The spatial distribution can inform our understanding of the environmental sensitivities of N2 fixation and the capacity for the dominant marine nitrogen (N) source and sink processes to respond to each other and thus influence the global carbon cycle and climate. In addition to temperature, two factors are at the heart of the current debate over what influences the spatial distribution of N2 fixation in the ocean: 1) the presence of adequate iron to meet the needs of N2 fixing microbes, and, 2) the absolute concentrations as well as ratios of surface ocean nitrate and phosphate concentrations that are low relative to the \"Redfield\" ratio, which are thought to favor N2 fixing microbes. This project will test the effects of gradients in atmospheric dust deposition on N2 fixation rates when surface waters have relatively constant but favorable nitrate to phosphate concentrations. The work will be carried out in the southwest Pacific, a region highlighted by new modeling work for its unique geochemical characteristics that are expected to favor significant N2 fixation fluxes. Nitrate+nitrite d15N as well as total dissolved nitrogen (TDN) concentration and d15N will be measured in water column samples collected on a French cruise and sediment traps were deployed to capture the sinking particulate N flux. The results will be compared with published work to evaluate which ocean regions support the largest N2 fixation fluxes.
More information:
This project was part of the Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE) cruise in the Southwest Pacific between New Caledonia (166°28' E; 22°14' S) and Tahiti (149°36' W; 17°34' S) 0-2000 m​
* OUTPACE cruise (doi: https://dx.doi.org/10.17600/15000900)
* OUTPACE website: https://outpace.mio.univ-amu.fr/?lang=en";
    String projects_0_end_date "2018-07";
    String projects_0_geolocation "Southwest Pacific Ocean between New Caledonia and Tahiti along ~18 deg S";
    String projects_0_name "Quantifying nitrogen fixation along unique geochemical gradients in the southwest Pacific Ocean";
    String projects_0_project_nid "710562";
    String projects_0_project_website "http://scope.soest.hawaii.edu/data/lava/lava.html";
    String projects_0_start_date "2015-08";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 19.373;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "time";
    String summary "This data set includes water column nitrate+nitrite and total dissolved nitrogen d15N measurements. These measurements were used to address the source of nitrate+nitrite in surface waters observed after the 2018 Kilauea eruption entered the ocean, leading to enhanced surface ocean chlorophyll. The results are consistent with an upwelling source of nitrate+nitrite from ~400 m driven by hot lava entering the ocean, leading to increased buoyancy of waters, driving \\roils\\ (see F. J. Sansone, and J. A. Resing, 1995, J. Geophys. Res. Oceans). These data are also used as evidence that biological nitrogen fixation did not contribute to the nitrate+nitrite observed in surface waters.";
    String time_coverage_end "2018-07-14";
    String time_coverage_start "2018-07-14";
    String title "[HOT LAVA Nitrogen] - Water column nitrate+nitrite d15N and d18O and total dissolved nitrogen d15N measurements from R/V Ka`imikai-O-Kanaloa cruise KOK1806 (HOT LAVA) in July 2018 (Quantifying nitrogen fixation along unique geochemical gradients in the southwest Pacific Ocean)";
    String version "1";
    Float64 Westernmost_Easting -154.829;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact