BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [ETNP Iodine Speciation] - Iodine speciation measurements aboard R/V Roger
Revelle and R/V Falkor in April and June 2018, respectively. (The role of
cryptic nutrient cycling within sinking particles on trace element transport in
oxygen minimum zones)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_776552)
Range: longitude = -128.00002 to -102.0°E, latitude = 14.0 to 22.66672°N, depth = 1.0 to 3000.0m, time = 2018-03-30T03:45:07Z to 2018-07-13T23:11:09Z
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  cruise_id {
    String bcodmo_name "cruise_id";
    String description "cruise identifier";
    String long_name "Cruise Id";
    String units "unitless";
  }
  Bottle {
    Int16 _FillValue 32767;
    Int16 actual_range 1, 19123;
    String bcodmo_name "bottle";
    String description "bottle number";
    String long_name "Bottle";
    String units "unitless";
  }
  Station {
    Byte _FillValue 127;
    String _Unsigned "false";
    Byte actual_range 1, 34;
    String bcodmo_name "station";
    String description "station number";
    String long_name "Station";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 1.0, 3000.0;
    String axis "Z";
    String bcodmo_name "depth";
    Float64 colorBarMaximum 8000.0;
    Float64 colorBarMinimum -8000.0;
    String colorBarPalette "TopographyDepth";
    String description "depth";
    String ioos_category "Location";
    String long_name "Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  Iodate {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 534.8;
    String bcodmo_name "unknown";
    String description "iodate concentration";
    String long_name "Iodate";
    String units "nanoMolar";
  }
  Iodide {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0, 1188.2;
    String bcodmo_name "iodide";
    String description "iodide concentration";
    String long_name "Iodide";
    String units "nanoMolar";
  }
  Total_Iodine {
    Float32 _FillValue NaN;
    Float32 actual_range 339.0, 1399.0;
    String bcodmo_name "iodide";
    String description "total iodine concentration";
    String long_name "Total Iodine";
    String units "nanoMolar";
  }
  Excess_Iodine {
    Float32 _FillValue NaN;
    Float32 actual_range -165.0, 895.0;
    String bcodmo_name "iodide";
    String description "excess iodine concentration";
    String long_name "Excess Iodine";
    String units "nanoMolar";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -128.00002, -102.0;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "longitude; east is positive";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 14.0, 22.66672;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "latitude; north is positive";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  Date {
    String bcodmo_name "date";
    String description "sampling date";
    String long_name "Date";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  Time_UTC {
    String bcodmo_name "time_utc";
    String description "UTC time";
    String long_name "Time UTC";
    String units "unitless";
  }
  source_file {
    String bcodmo_name "file_name";
    String description "name of submitted file";
    String long_name "Source File";
    String units "unitless";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.522381507e+9, 1.531523469e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "ISO formatted UTC date and time";
    String ioos_category "Time";
    String long_name "ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "ISO_DateTime_UTC";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"Iodate was measured using spectrophotometry based off of Rue et al. 1997.
Iodide measured voltammetry based off of Luther et al. 1988. Iodate was
converted to triiodide and measured on the spectrophotometer at 350 nm. Iodide
was measured on a hanging drop mercury electrode at approximately -0.3 V.
Excel was used to process CSV files from the spectrophotometer. Excel was also
used to process data from the voltammeter.";
    String awards_0_award_nid "746075";
    String awards_0_award_number "OCE-1636332";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1636332";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Henrietta N Edmonds";
    String awards_0_program_manager_nid "51517";
    String cdm_data_type "Other";
    String comment 
"ETNP Iodine Speciation 
   from the Eastern Tropical North Pacific Ocean on R/V Revelle cruise RR1804 and R/V Falkor FK180624, April/May and June/July 2018 
   PI: J. Moffett (USC); contact: R. Moriyasu (USC) 
   version date: 2019-09-16";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2019-09-12T15:42:17Z";
    String date_modified "2020-03-23T20:49:58Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.26008/1912/bco-dmo.776552.1";
    Float64 Easternmost_Easting -102.0;
    Float64 geospatial_lat_max 22.66672;
    Float64 geospatial_lat_min 14.0;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -102.0;
    Float64 geospatial_lon_min -128.00002;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 3000.0;
    Float64 geospatial_vertical_min 1.0;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2024-11-08T05:42:52Z (local files)
2024-11-08T05:42:52Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_776552.das";
    String infoUrl "https://www.bco-dmo.org/dataset/776552";
    String institution "BCO-DMO";
    String instruments_0_acronym "Perkin Elmer Lambda 35";
    String instruments_0_dataset_instrument_nid "776855";
    String instruments_0_description "The Lambda 35 is a double beam UV/Vis spectrophotometer from Perkin Elmer, packing pre-aligned Tungsten and Deuterium Lamps. It has a wavelength range of 190-1100nm and a variable bandwidth range of 0.5 to 4nm.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB20/";
    String instruments_0_instrument_name "Perkin Elmer Lambda 35 Spectrophotometer";
    String instruments_0_instrument_nid "696";
    String instruments_0_supplied_name "Perkin Elmer Lamda 35";
    String instruments_1_acronym "Voltammetry Analyzers";
    String instruments_1_dataset_instrument_nid "776854";
    String instruments_1_description "Instruments that obtain information about an analyte by applying a potential and measuring the current produced in the analyte.";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB35/";
    String instruments_1_instrument_name "Voltammetry Analyzers";
    String instruments_1_instrument_nid "698";
    String instruments_1_supplied_name "BASi Controlled Growth Mercury Electrode";
    String keywords "bco, bco-dmo, biological, bottle, chemical, cruise, cruise_id, data, dataset, date, depth, dmo, erddap, excess, Excess_Iodine, file, iodate, iodide, iodine, iso, latitude, longitude, management, oceanography, office, preliminary, source, source_file, station, time, Time_UTC, total, Total_Iodine";
    String license "https://www.bco-dmo.org/dataset/776552/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/776552";
    Float64 Northernmost_Northing 22.66672;
    String param_mapping "{'776552': {'Latitude': 'flag - latitude', 'Depth': 'flag - depth', 'Longitude': 'flag - longitude', 'ISO_DateTime_UTC': 'flag - time'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/776552/parameters";
    String people_0_affiliation "University of Southern California";
    String people_0_affiliation_acronym "USC";
    String people_0_person_name "James W. Moffett";
    String people_0_person_nid "50800";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "University of Southern California";
    String people_1_affiliation_acronym "USC";
    String people_1_person_name "Rintaro Moriyasu";
    String people_1_person_nid "776858";
    String people_1_role "Contact";
    String people_1_role_type "related";
    String people_2_affiliation "Woods Hole Oceanographic Institution";
    String people_2_affiliation_acronym "WHOI BCO-DMO";
    String people_2_person_name "Nancy Copley";
    String people_2_person_nid "50396";
    String people_2_role "BCO-DMO Data Manager";
    String people_2_role_type "related";
    String project "OMZ Nutrient Cycling";
    String projects_0_acronym "OMZ Nutrient Cycling";
    String projects_0_description 
"NSF Award Abstract:
The major process controlling the internal cycling of biologically active trace metals in the oceans is through uptake onto and remineralization from sinking particles. Uptake can occur through active biological uptake into living cells as micronutrients, or chemical adsorption onto sinking materials. This latter process is often referred to as scavenging. The relative importance of these processes is often unclear, especially for elements that are both biologically active and also \"particle reactive.\" The latter characteristic is associated with sparing solubility in seawater and the formation of strong complexes with surface sites, with examples such as iron. Recent evidence suggests that the simplistic view of a sinking particle as a passive surface for metal complexation may require some revision. Investigators James Moffett and Seth John propose to study the chemistry of transition metals within large sinking particles and the resultant effects on metal biogeochemical cycling. They will collaborate with a group at the University of Washington, recently funded to study the microbiology and molecular biology of these particles. The central hypothesis of this project is that reducing microbial microenvironments within large particles support high rates of nitrogen and sulfur cycling, greatly enhancing the particles' influence on metal chemistry. The investigators will study these processes in the Eastern Tropical North Pacific Oxygen Minimum Zone (OMZ). This regime was selected because of the wide range of redox conditions in the water column, and strong preliminary evidence that microenvironments within sinking particles have major biogeochemical impacts.

The primary objective is to investigate the interactions of metals with particles containing microenvironments that are more highly reducing than the surrounding waters. Such microenvironments arise when the prevailing terminal electron acceptor (oxygen, or nitrate in oxygen minimum zones) becomes depleted and alternative terminal electron acceptors are utilized. Within reducing microenvironments metal redox state and coordination chemistry are different from the bulk water column, and these microenvironments may dominate metal particle interactions. For example, reduction of sulfate to sulfide could bind metals that form strong sulfide complexes, such as cadmium and zinc, processes previously thought to be confined to sulfidic environments. Reducing microenvironments may account for the production of reduced species such as iron(II), even when their formation is thermodynamically unfavorable in the bulk water column. Tasks include observational characterization of dissolved and particulate trace metals and stable isotopes in the study area, sampling and in situ manipulation of particles using large-dimension sediment traps, shipboard experimental incubations under a range of redox conditions, and modeling, providing insight from microscopic to global scales. The metal chemistry data will be interpreted within a rich context of complimentary data including rates of nitrogen and sulfur cycling, phylogenetics and proteomic characterization of the concentration of key enzymes. Broader impacts include training of a postdoctoral scientist, international collaborations with Mexican scientists, and involvement of undergraduate students in the research.";
    String projects_0_end_date "2019-08";
    String projects_0_geolocation "Eastern Tropical North Pacific";
    String projects_0_name "The role of cryptic nutrient cycling within sinking particles on trace element transport in oxygen minimum zones";
    String projects_0_project_nid "746076";
    String projects_0_start_date "2016-09";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 14.0;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String summary "Iodine speciation measurements aboard R/V Roger Revelle and R/V Falkor in April and June 2018, respectively.";
    String time_coverage_end "2018-07-13T23:11:09Z";
    String time_coverage_start "2018-03-30T03:45:07Z";
    String title "[ETNP Iodine Speciation] - Iodine speciation measurements aboard R/V Roger Revelle and R/V Falkor in April and June 2018, respectively. (The role of cryptic nutrient cycling within sinking particles on trace element transport in oxygen minimum zones)";
    String version "1";
    Float64 Westernmost_Easting -128.00002;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact