BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  Hydrographic, nutrient and oxygen data from CTD bottles and beam transmission
and fluorescence data from CTD profiles during R/V Point Sur PS1809 (HRR legs
1, 2, 3) at the Gulf Mexico, Louisiana and Texas coast, Sept-Oct 2017
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_784290)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Subset | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
   or a List of Values ?
   Maximum ?
 
 cruise_id (unitless) ?      
   - +  ?
 leg_name (unitless) ?          "HRR1"    "HRR3"
 HRR_Leg (unitless) ?          1    3
 chf_sci (unitless) ?          "Campbell"    "Whilden/Thyng"
 Sta_Sequence (unitless) ?          1    107
 Station (unitless) ?          "5a"    "WF"
 latitude (degrees_north) ?          27.09325    29.49068
  < slider >
 longitude (degrees_east) ?          -97.26842    -93.53278
  < slider >
 Water_Depth (meters) ?          "100"    "NaN"
 time (ISO Date Time UTC, UTC) ?          2017-09-23T00:32Z    2017-10-01T08:44Z
  < slider >
 Year (unitless) ?      
   - +  ?
 Month (mm) ?          9    10
 Day (dd) ?          1    30
 time2 (Time, unitless) ?          "00:11"    "23:57"
 Niskin_Bottle_id (unitless) ?          "1"    "SB"
 depth (Bottle Depth, m) ?          0.3    208.0
  < slider >
 Nutrient_Bottle_id (unitless) ?          "1"    "NaN"
 NO3_umol_L (micromol/liter) ?          -99.0    16.9
 NO3_mg_L_N (milligrams/liter) ?          -99.0    0.24
 HPO4_umol_L (micromol/liter) ?          -99.0    12.71
 HPO4_mg_L_P (milligrams/liter) ?          -99.0    0.39
 HSIO3_umol_L (micromol/liter) ?          -99.0    112.85
 HSIO3_mg_L_SiO3 (milligrams/liter) ?          -99.0    8.59
 NH4_umol_L (micromol/liter) ?          -99.0    30.14
 NH4_mg_L_N (milligrams/liter) ?          -99.0    0.42
 NO2_umol_L (micromol/liter) ?          -99.0    4.76
 NO2_mg_L_N (milligrams/liter) ?          -99.0    0.07
 Urea_umol_L (micromol/liter) ?          -99.0    40.87
 Urea_mg_L_N (milligrams/liter) ?          -99.0    0.57
 NO3_NO2_uM (microMolar) ?          -99.0    17.02
 Salinity_Bottle_id (unitless) ?          "122"    "NaN"
 Sample_Salinity (practical salinity units) ?          -99.0    36.901
 CTD_Salinity (practical salinity units) ?          -99.0    36.4722
 Oxygen_Bottle_id (unitless) ?          1    835
 Burrette_Reading (unitless) ?          -99.0    1.376
 DO_mL_L (milliliters/liter) ?          -99.0    5.18
 DO_mg_L (milligrams/liter) ?          -99.0    11.3
 DO_mM_L (millimol/liter) ?          -99.0    0.4
 Salinity_derived (practical salinity units) ?          -99.0    36.54
 Potl_Temp_derived (degrees Celsius) ?          -99.0    29.69
 DO_derived (milliliters/liter) ?          -99.0    4.91
 Density_derived (kilograms/meter^3) ?          -99.0    26.78
 Conductivity (Siemans/meter) ?          -99.0    5.97
 Beam_Transmission (unitless) ?          -99.0    95.68
 PAR_Irradiance (micromol /meter^2/second) ?          -99.0    2195.1
 Fluorescence_CDOM_mg_m3 (milligrams/meter^3) ?          -99.0    20.75
 Fluorescence_ECO_AFL_FL_mg_m3 (milligrams/meter^3) ?          -99.0    4.38
 BTL_File_Depth (meters) ?          -99.0    207.79
 Comments (unitless) ?          "Bad oxygen data; C..."    "Was unknown sample..."
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more info)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  cruise_id {
    String bcodmo_name "cruise_id";
    String description "official cruise identifier (R2R)";
    String long_name "Cruise Id";
    String units "unitless";
  }
  leg_name {
    String bcodmo_name "leg";
    String description "cruise leg name given by participants";
    String long_name "Leg Name";
    String units "unitless";
  }
  HRR_Leg {
    Byte _FillValue 127;
    Byte actual_range 1, 3;
    String bcodmo_name "leg";
    String description "Leg of cruise (HRR1; HRR2; HRR3)";
    String long_name "HRR Leg";
    String units "unitless";
  }
  chf_sci {
    String bcodmo_name "Chief Scientist name";
    String description "chief scientist";
    String long_name "Chf Sci";
    String units "unitless";
  }
  Sta_Sequence {
    Byte _FillValue 127;
    Byte actual_range 1, 107;
    String bcodmo_name "station";
    String description "Order of stations";
    String long_name "Sta Sequence";
    String units "unitless";
  }
  Station {
    String bcodmo_name "station";
    String description "Name of sampling station";
    String long_name "Station";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range 27.09325, 29.49068;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Latitude of sampling station";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -97.26842, -93.53278;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Longitude of sampling station";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees_east";
  }
  Water_Depth {
    String bcodmo_name "depth_w";
    String description "Maximum depth of bathymetry at station";
    String long_name "Water Depth";
    String units "meters";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.50612672e+9, 1.50684744e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "Date and time; ISO formatted: yyyy-mm-ddTHH:MMZ";
    String ioos_category "Time";
    String long_name "ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "ISO_DateTime_UTC";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  Year {
    Int16 _FillValue 32767;
    Int16 actual_range 2017, 2017;
    String bcodmo_name "bottle";
    String description "Year water samples were taken in the format yyyy";
    String long_name "Year";
    String units "unitless";
  }
  Month {
    Byte _FillValue 127;
    Byte actual_range 9, 10;
    String bcodmo_name "bottle";
    String description "Month water samples were taken";
    String long_name "Month";
    String units "mm";
  }
  Day {
    Byte _FillValue 127;
    Byte actual_range 1, 30;
    String bcodmo_name "bottle";
    String description "Day water samples were taken";
    String long_name "Day";
    String units "dd";
  }
  time2 {
    String bcodmo_name "bottle";
    String description "Time water samples were taken; HH:MM UTC";
    String long_name "Time";
    String units "unitless";
  }
  Niskin_Bottle_id {
    String bcodmo_name "bottle";
    String description "Niskin bottle identifier";
    String long_name "Niskin Bottle Id";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 0.3, 208.0;
    String axis "Z";
    String bcodmo_name "depth";
    String description "Depth at which Niskin bottle was closed";
    String ioos_category "Location";
    String long_name "Bottle Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  Nutrient_Bottle_id {
    String bcodmo_name "bottle";
    String description "Sample bottle number containing nutrient water sample";
    String long_name "Nutrient Bottle Id";
    String units "unitless";
  }
  NO3_umol_L {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 16.9;
    String bcodmo_name "NO3";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Nutrient analysis of nitrate content";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRAIGGS/";
    String units "micromol/liter";
  }
  NO3_mg_L_N {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 0.24;
    String bcodmo_name "NO3";
    String description "Nutrient analysis of nitrate content";
    String long_name "NO3 Mg L N";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRAIGGS/";
    String units "milligrams/liter";
  }
  HPO4_umol_L {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 12.71;
    String bcodmo_name "PO4";
    String description "Nutrient analysis of hydrogen phosphate content";
    String long_name "HPO4 Umol L";
    Float32 missing_value NaN;
    String units "micromol/liter";
  }
  HPO4_mg_L_P {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 0.39;
    String bcodmo_name "PO4";
    String description "Nutrient analysis of hydrogen phosphate content";
    String long_name "HPO4 Mg L P";
    Float32 missing_value NaN;
    String units "milligrams/liter";
  }
  HSIO3_umol_L {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 112.85;
    String bcodmo_name "SiO3";
    String description "Nutrient analysis of hydrogen silicate content";
    String long_name "HSIO3 Umol L";
    Float32 missing_value NaN;
    String units "micromol/liter";
  }
  HSIO3_mg_L_SiO3 {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 8.59;
    String bcodmo_name "SiO3";
    String description "Nutrient analysis of hydrogen silicate content";
    String long_name "HSIO3 Mg L Si O3";
    Float32 missing_value NaN;
    String units "milligrams/liter";
  }
  NH4_umol_L {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 30.14;
    String bcodmo_name "Ammonium";
    Float64 colorBarMaximum 5.0;
    Float64 colorBarMinimum 0.0;
    String description "Nutrient analysis of ammonium content";
    String long_name "Mole Concentration Of Ammonium In Sea Water";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AMONAAZX/";
    String units "micromol/liter";
  }
  NH4_mg_L_N {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 0.42;
    String bcodmo_name "Ammonium";
    String description "Nutrient analysis of ammonium content";
    String long_name "NH4 MG L N";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AMONAAZX/";
    String units "milligrams/liter";
  }
  NO2_umol_L {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 4.76;
    String bcodmo_name "NO2";
    Float64 colorBarMaximum 1.0;
    Float64 colorBarMinimum 0.0;
    String description "Nutrient analysis of nitrogen dioxide content";
    String long_name "Mole Concentration Of Nitrite In Sea Water";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRIAAZX/";
    String units "micromol/liter";
  }
  NO2_mg_L_N {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 0.07;
    String bcodmo_name "NO2";
    String description "Nutrient analysis of nitrogen dioxide content";
    String long_name "NO2 Mg L N";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/NTRIAAZX/";
    String units "milligrams/liter";
  }
  Urea_umol_L {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 40.87;
    String bcodmo_name "Urea";
    String description "Nutrient analysis of urea content";
    String long_name "Urea Umol L";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/UREAAAZX/";
    String units "micromol/liter";
  }
  Urea_mg_L_N {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 0.57;
    String bcodmo_name "Urea";
    String description "Nutrient analysis of urea content";
    String long_name "Urea Mg L N";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/UREAAAZX/";
    String units "milligrams/liter";
  }
  NO3_NO2_uM {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 17.02;
    String bcodmo_name "NO3_NO2";
    Float64 colorBarMaximum 50.0;
    Float64 colorBarMinimum 0.0;
    String description "Total nitrogen present in water sample";
    String long_name "Mole Concentration Of Nitrate In Sea Water";
    Float32 missing_value NaN;
    String units "microMolar";
  }
  Salinity_Bottle_id {
    String bcodmo_name "bottle";
    String description "Sample bottle number containing salinity water sample";
    String long_name "Salinity Bottle Id";
    String units "unitless";
  }
  Sample_Salinity {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 36.901;
    String bcodmo_name "sal_bottle";
    Float64 colorBarMaximum 37.0;
    Float64 colorBarMinimum 32.0;
    String description "Salinity of collected water sample";
    String long_name "Sea Water Practical Salinity";
    Float32 missing_value NaN;
    String units "practical salinity units";
  }
  CTD_Salinity {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 36.4722;
    String bcodmo_name "sal_ctd";
    Float64 colorBarMaximum 37.0;
    Float64 colorBarMinimum 32.0;
    String description "Salinity recorded from CTD";
    String long_name "Sea Water Practical Salinity";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PSALST01/";
    String units "practical salinity units";
  }
  Oxygen_Bottle_id {
    Int16 _FillValue 32767;
    Int16 actual_range 1, 835;
    String bcodmo_name "bottle";
    String description "Sample bottle number containing oxygen water sample";
    String long_name "Oxygen Bottle Id";
    String units "unitless";
  }
  Burrette_Reading {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 1.376;
    String bcodmo_name "unknown";
    String description "Burrette reading of oxygen water sample";
    String long_name "Burrette Reading";
    Float32 missing_value NaN;
    String units "unitless";
  }
  DO_mL_L {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 5.18;
    String bcodmo_name "dissolved Oxygen";
    String description "Calculated dissolved oxygen content in water sample";
    String long_name "DO M L L";
    Float32 missing_value NaN;
    String units "milliliters/liter";
  }
  DO_mg_L {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 11.3;
    String bcodmo_name "dissolved Oxygen";
    String description "Calculated dissolved oxygen content in water sample";
    String long_name "DO Mg L";
    Float32 missing_value NaN;
    String units "milligrams/liter";
  }
  DO_mM_L {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 0.4;
    String bcodmo_name "dissolved Oxygen";
    String description "Calculated dissolved oxygen content in water sample";
    String long_name "DO M M L";
    Float32 missing_value NaN;
    String units "millimol/liter";
  }
  Salinity_derived {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 36.54;
    String bcodmo_name "sal";
    Float64 colorBarMaximum 37.0;
    Float64 colorBarMinimum 32.0;
    String description "Derived salinity from BTL file";
    String long_name "Sea Water Practical Salinity";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/PSALST01/";
    String units "practical salinity units";
  }
  Potl_Temp_derived {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 29.69;
    String bcodmo_name "potemp";
    String description "Derived potential temperature from BTL file";
    String long_name "Potl Temp Derived";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/POTMCV01/";
    String units "degrees Celsius";
  }
  DO_derived {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 4.91;
    String bcodmo_name "dissolved Oxygen";
    String description "Derived dissolved oxygen content from BTL file";
    String long_name "DO Derived";
    Float32 missing_value NaN;
    String units "milliliters/liter";
  }
  Density_derived {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 26.78;
    String bcodmo_name "density";
    String description "Derived density from BTL file";
    String long_name "Density Derived";
    Float32 missing_value NaN;
    String units "kilograms/meter^3";
  }
  Conductivity {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 5.97;
    String bcodmo_name "conductivity";
    Float64 colorBarMaximum 40.0;
    Float64 colorBarMinimum 30.0;
    String description "Conductivity from BTL file";
    String long_name "Sea Water Electrical Conductivity";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/CNDC/";
    String units "Siemans/meter";
  }
  Beam_Transmission {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 95.68;
    String bcodmo_name "transmission";
    String description "Beam transmission from BTL file (percent)";
    String long_name "Beam Transmission";
    Float32 missing_value NaN;
    String units "unitless";
  }
  PAR_Irradiance {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 2195.1;
    String bcodmo_name "PAR";
    String description "PAR from BTL file";
    String long_name "PAR Irradiance";
    Float32 missing_value NaN;
    String units "micromol /meter^2/second";
  }
  Fluorescence_CDOM_mg_m3 {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 20.75;
    String bcodmo_name "CDOM";
    String description "CDOM fluorescence from BTL file";
    String long_name "Fluorescence CDOM Mg M3";
    Float32 missing_value NaN;
    String units "milligrams/meter^3";
  }
  Fluorescence_ECO_AFL_FL_mg_m3 {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 4.38;
    String bcodmo_name "chlorophyll a";
    String description "Chl-A fluorescence from BTL file";
    String long_name "Fluorescence ECO AFL FL Mg M3";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/";
    String units "milligrams/meter^3";
  }
  BTL_File_Depth {
    Float32 _FillValue NaN;
    Float32 actual_range -99.0, 207.79;
    String bcodmo_name "depth";
    String description "Average depth from BTL file";
    String long_name "BTL File Depth";
    Float32 missing_value NaN;
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String units "meters";
  }
  Comments {
    String bcodmo_name "comment";
    String description "Comments";
    String long_name "Comments";
    String units "unitless";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"Nutrient Analysis Equipment and Techniques:
 
Nutrient samples were collected,\\u00a0filtered (0.2 \\u00b5m Acropak-200
polyethersulfone filters, Pall) and frozen on board until analysis on shore up
to 3 months later. Nutrient analyses (phosphate, silicate, nitrate+nitrite,
nitrite, ammonium, and urea) were performed on a 6-channel Astoria-Pacific
autoanalyzer using standard methods (WHPO 1994). Ammonia analyses were based
on Solorzano (1969), using phenol/hypochlorite in alkaline medium with a
sodium nitroprusside catalyst. Urea analyses were based on Aminot and Kerouel
(1982) using diacetyl monoxime in acid solution.
 
Dissolved Oxygen Analysis Equipment and Techniques:
 
Samples were collected for dissolved oxygen analyses soon after the rosette
was brought on board. Using a Tygon or silicone drawing tube, nominal 125 ml
volume-calibrated iodine flasks were rinsed 3 times with minimal agitation,
then filled and allowed to overflow for at least 3 flask volumes. Reagents
(MnCl2 then NaI/NaOH) were added to fix the oxygen before stoppering. The
flasks were shaken twice (> 1-minute inversions) to assure thorough dispersion
of the precipitate. The lip of the flask stopper was filled with ultrapure
water to prevent access to atmospheric oxygen during the up to 3 hours between
sample collection and analysis.
 
Oxygen flask volumes were determined gravimetrically to determine flask
volumes at TAMU Geochemical and Environmental Research Group (GERG). This is
done once before using flasks for the first time and periodically thereafter
when a suspect volume is detected.
 
Dissolved oxygen analyses were performed with an automated Winkler oxygen
titrator (Langdon Enterprises, Miami) using amperometric end-point detection.
Thiosulfate (nominally 0.01 N) was standardized against 0.01 N potassium
iodate prior to sample analysis.
 
Salinity Analysis Equipment and Techniques:
 
Salinity samples were drawn into 200 mL Kimax high-alumina borosilicate
bottles, which were rinsed three times with sample prior to filling to the
shoulder. The bottles were sealed with plastic insert thimbles to reduce
evaporation. PSS78 salinity (UNESCO 1981) was calculated for each sample from
the measured conductivity ratios.
 
A Guildline Autosal 8400B salinometer (S/N 65715) was used for
salinity/conductivity measurements. The salinity analyses were performed after
samples had equilibrated to laboratory temperature, usually within 6 weeks
after collection. The salinometer was standardized for each group of analyses
using OSIL standard seawater, with frequent use of a secondary deep water
standard to check for drift during runs.";
    String awards_0_award_nid "715171";
    String awards_0_award_number "OCE-1760620";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String cdm_data_type "Other";
    String comment 
"HRR cruise bottle data: nutrients, salinity, oxygen, CTD bottle file electronic data 
   from the Gulf Mexico, Louisiana and Texas coast, Sept-Oct 2017 
   L. Campbell, S. DiMarco, K. Whilden, K. Thyng (TX A&M) 
   version date: 2019-12-12";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String date_created "2019-12-12T19:46:54Z";
    String date_modified "2020-01-16T20:28:44Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.1575/1912/bco-dmo.784290.1";
    Float64 Easternmost_Easting -93.53278;
    Float64 geospatial_lat_max 29.49068;
    Float64 geospatial_lat_min 27.09325;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -93.53278;
    Float64 geospatial_lon_min -97.26842;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 208.0;
    Float64 geospatial_vertical_min 0.3;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2024-04-26T12:24:54Z (local files)
2024-04-26T12:24:54Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_784290.html";
    String infoUrl "https://www.bco-dmo.org/dataset/784290";
    String institution "BCO-DMO";
    String instruments_0_acronym "Niskin bottle";
    String instruments_0_dataset_instrument_description "Used to collect water samples at discrete depths.";
    String instruments_0_dataset_instrument_nid "784602";
    String instruments_0_description "A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends.  The bottles can be attached individually on a hydrowire or deployed in 12, 24 or 36 bottle Rosette systems mounted on a frame and combined with a CTD.  Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0412/";
    String instruments_0_instrument_name "Niskin bottle";
    String instruments_0_instrument_nid "413";
    String instruments_1_acronym "CTD Sea-Bird";
    String instruments_1_dataset_instrument_nid "784601";
    String instruments_1_description "Conductivity, Temperature, Depth (CTD) sensor package from SeaBird Electronics, no specific unit identified. This instrument designation is used when specific make and model are not known. See also other SeaBird instruments listed under CTD. More information from Sea-Bird Electronics.";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/130/";
    String instruments_1_instrument_name "CTD Sea-Bird";
    String instruments_1_instrument_nid "447";
    String instruments_2_acronym "Nutrient Autoanalyzer";
    String instruments_2_dataset_instrument_description "Used for nutrient analyses: phosphate, silicate, nitrate+nitrite, nitrite, ammonium, and urea.";
    String instruments_2_dataset_instrument_nid "784599";
    String instruments_2_description "Nutrient Autoanalyzer is a generic term used when specific type, make and model were not specified.  In general, a Nutrient Autoanalyzer is an automated flow-thru system for doing nutrient analysis (nitrate, ammonium, orthophosphate, and silicate) on seawater samples.";
    String instruments_2_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB04/";
    String instruments_2_instrument_name "Nutrient Autoanalyzer";
    String instruments_2_instrument_nid "558";
    String instruments_2_supplied_name "6-channel Astoria-Pacific autoanalyzer";
    String instruments_3_acronym "salinometer";
    String instruments_3_dataset_instrument_description "Used to measure bottle sample salinity/conductivity.";
    String instruments_3_dataset_instrument_nid "784603";
    String instruments_3_description "The salinometer is an instrument for measuring the salinity of a water sample.";
    String instruments_3_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB30/";
    String instruments_3_instrument_name "Autosal salinometer";
    String instruments_3_instrument_nid "576";
    String instruments_3_supplied_name "Guildline Autosal 8400B salinometer";
    String instruments_4_acronym "Winkler Titrator";
    String instruments_4_dataset_instrument_description "Used to measure dissolved oxygen concentrations.";
    String instruments_4_dataset_instrument_nid "784600";
    String instruments_4_description "A Winkler Oxygen Titration system is used for determining concentration of dissolved oxygen in seawater.";
    String instruments_4_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB12/";
    String instruments_4_instrument_name "Winkler Oxygen Titrator";
    String instruments_4_instrument_nid "588";
    String instruments_4_supplied_name "Winkler oxygen titrator (Langdon Enterprises, Miami)";
    String keywords "afl, ammonia, ammonium, available, bco, bco-dmo, beam, Beam_Transmission, biological, bottle, Bottle_Depth, btl, BTL_File_Depth, burrette, Burrette_Reading, cdom, chemical, chemistry, chf, chf_sci, colored, comments, concentration, conductivity, cruise, cruise_id, CTD_Salinity, data, dataset, date, day, density, Density_derived, depth, derived, dissolved, dmo, DO_derived, DO_mg_L, DO_mL_L, DO_mM_L, earth, Earth Science > Oceans > Ocean Chemistry > Ammonia, Earth Science > Oceans > Ocean Chemistry > Nitrate, Earth Science > Oceans > Salinity/Density > Conductivity, Earth Science > Oceans > Salinity/Density > Salinity, eco, electrical, erddap, file, fluorescence, Fluorescence_CDOM_mg_m3, Fluorescence_ECO_AFL_FL_mg_m3, hpo4, HPO4_mg_L_P, HPO4_umol_L, hrr, HRR_Leg, hsio3, HSIO3_mg_L_SiO3, HSIO3_umol_L, irradiance, iso, latitude, leg, leg_name, longitude, management, matter, mole, mole_concentration_of_ammonium_in_sea_water, mole_concentration_of_nitrate_in_sea_water, mole_concentration_of_nitrite_in_sea_water, month, n02, name, nh4, NH4_mg_L_N, NH4_umol_L, niskin, Niskin_Bottle_id, nitrate, nitrite, no2, NO2_mg_L_N, NO2_umol_L, no3, NO3_mg_L_N, NO3_NO2_uM, NO3_umol_L, nutrient, Nutrient_Bottle_id, O2, ocean, oceanography, oceans, office, organic, oxygen, Oxygen_Bottle_id, par, PAR_Irradiance, photosynthetically, potl, Potl_Temp_derived, practical, preliminary, radiation, reading, salinity, Salinity_Bottle_id, Salinity_derived, Sample_Salinity, sci, science, sea, sea_water_electrical_conductivity, sea_water_practical_salinity, seawater, sequence, sta, Sta_Sequence, station, temperature, time, time2, transmission, umol, urea, Urea_mg_L_N, Urea_umol_L, water, Water_Depth, year";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "https://www.bco-dmo.org/dataset/784290/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/784290";
    Float64 Northernmost_Northing 29.49068;
    String param_mapping "{'784290': {'Latitude': 'flag - latitude', 'Bottle_Depth': 'flag - depth', 'Longitude': 'flag - longitude', 'ISO_DateTime_UTC': 'flag - time'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/784290/parameters";
    String people_0_affiliation "Texas A&M University";
    String people_0_affiliation_acronym "TAMU";
    String people_0_person_name "Lisa Campbell";
    String people_0_person_nid "50523";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Texas A&M University";
    String people_1_affiliation_acronym "TAMU";
    String people_1_person_name "Darren W. Henrichs";
    String people_1_person_nid "715174";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Texas A&M University";
    String people_2_affiliation_acronym "TAMU";
    String people_2_person_name "Steven DiMarco";
    String people_2_person_nid "740997";
    String people_2_role "Contact";
    String people_2_role_type "related";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Nancy Copley";
    String people_3_person_nid "50396";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "HRR";
    String projects_0_acronym "HRR";
    String projects_0_description 
"This project was recently funded by NSF award OCE-1760620. More information will be added as it becomes available.
Project summary from NSF RAPID proposal:Overview: Tropical cyclones (hurricanes and tropical storms) can produce substantial impacts in marine ecosystems, including alteration of tidal regimes, upwelling, vertical mixing, sediment resuspension, and terrestrial runoff that affect estuaries, coastal areas and the open ocean. The drastic perturbations following tropical cyclones have also been shown to produce immediate shifts in phytoplankton community composition. High temporal resolution observations from the Imaging FlowCytobot (IFCB) revealed that hurricanes in the Gulf of Mexico (GOM) initially caused blooms of diatoms, which subsequently were replaced by blooms of dinoflagellates. This change in the community structure was hypothesized to be related to the ability of dinoflagellates compared to diatoms to assimilate organic nitrogen compounds supplied by the high river discharge that resulted from the rainfall. This RAPID project will address two hypotheses:
1. Community structure will be a flagellate-dominated system as long as the high river discharge continues. Community structure will shift to a diatom-dominated system when environmental conditions return to normal. Continuous, high temporal resolution data from the IFCB time series will provide estimates of abundance and biovolume to assess the temporal variability of phytoplankton from the aftermath of the hurricane until the return to normal conditions.
2. Nitrogen will be the main driver of shifts in community metabolic responses.
Analysis of gene expression profiles, environmental conditions, and water quality parameters will provide a time series of metabolic functional responses. Metatranscriptomic analysis may also provide insight into taxa-specific metabolic responses related to nutrient and other environmental stresses as a consequence of Hurricane Harvey.
We propose two rapid response cruises to sample at 5 sites along a transect from Galveston to Port Aransas. At each station, CTD profiles and water samples from surface and the chlorophyll maximum for nutrient and carbonate chemistry analysis and RNA sequencing will be collected. Concurrently, the IFCB will operate continuously onboard for comparison with the ongoing time series at Surfside Beach. If the water column is strongly stratified, samples will be collected at the low salinity surface layer and the high salinity deeper layer. Time series analyses of the response of the phytoplankton community will include high frequency data of physical and hydrological variables, water quality measurements, and metatranscriptome analyses. Results will provide novel insights on the impact that extreme hurricanes exert on the phytoplankton community and ultimately in ecosystem functioning and resilience.
Intellectual Merit: Hurricane Harvey is the strongest hurricane to hit the GOM in decades; therefore, the impact of this hurricane on the phytoplankton community may be unprecedented in terms of response and duration. It is unknown how the phytoplankton community will respond and the time to return to \"normal\" condition. Immediate high temporal resolution sampling is the only way to fully capture the effects of tropical cyclones on coastal phytoplankton communities. And, in combination with metatranscriptomic analysis, the time series of metabolic responses can be elucidated.
Broader Impacts: If extreme storms are predicted to increase with future climate change, the taxa-specific responses provided by the IFCB time series are tremendously valuable for detecting changes, which have implications for ecosystem functioning. Over the past decade, the high temporal resolution phytoplankton time series at TOAST has proven to be invaluable in providing early warning for 8 harmful algal blooms. Given the unknown impact of Hurricane Harvey on the Texas coast (or the duration of the impact), the IFCB time series are invaluable to resource managers. Time series data have been successfully implemented into undergraduate Oceanography laboratory courses at TAMU to teach the value of ocean observing and assessment to the students' lives. Data from this Hurricane Harvey rapid response will also be included in future problem sets for students. As a strategy for targeting general audiences, outcomes of this project will also be produced for \"On the Ocean\", a weekly radio program on KAMU, the public radio station on TAMU campus; podcasts are also archived linked to the Oceanography department's website.
Related data from the The Texas Observatory for Algal Succession Time-Series (TOAST) can be found at the following:http://toast.tamu.edu/HRR_cruise";
    String projects_0_geolocation "Texas coast";
    String projects_0_name "RAPID: Hurricane Impact on Phytoplankton Community Dynamics and Metabolic Response";
    String projects_0_project_nid "715170";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 27.09325;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "cruise_id,Year";
    String summary "Hydrographic, nutrient and oxygen data from CTD bottles and beam transmission and fluorescence data from CTD profiles during R/V Point Sur PS1809 (HRR legs 1, 2, 3) at the Gulf Mexico, Louisiana and Texas coast, Sept-Oct 2017.";
    String time_coverage_end "2017-10-01T08:44Z";
    String time_coverage_start "2017-09-23T00:32Z";
    String title "Hydrographic, nutrient and oxygen data from CTD bottles and beam transmission and fluorescence data from CTD profiles during R/V Point Sur PS1809 (HRR legs 1, 2, 3) at the Gulf Mexico, Louisiana and Texas coast, Sept-Oct 2017";
    String version "1";
    Float64 Westernmost_Easting -97.26842;
    String xml_source "osprey2erddap.update_xml() v1.3";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact