BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  Depth profiles of seawater dissolved 232Th, 230Th, and 231Pa from R/V Sonne
cruise SO245 (UltraPac, GPpr09) during Dec 2015 to Jan 2016
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_813133)
Information:  Summary ? | License ? | ISO 19115 | Metadata | Background (external link) | Subset | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
   or a List of Values ?
   Maximum ?
 
 Station_ID (unitless) ?          2    15
 Start_Date_UTC (unitless) ?          "03/01/2016"    "30/12/2015"
 Start_Time_UTC (unitless) ?          "01:10"    "21:40"
 time (Start ISO Date Time UTC, UTC) ?          2015-12-27T03:29Z    2016-01-23T09:24Z
  < slider >
 End_Date_UTC (unitless) ?          "01/01/2016"    "28/12/2015"
 End_Time_UTC (unitless) ?          "01:12"    "23:56"
 End_ISO_DateTime_UTC (unitless) ?          "2015-12-28T18:42Z"    "2016-01-24T16:17Z"
 latitude (degrees_north) ?          -39.310683    -23.5001
  < slider >
 longitude (degrees_east) ?          -169.927017    -84.930117
  < slider >
 End_Latitude (Latitude, degrees North) ?          -39.3103    -23.490667
 End_Longitude (Longitude, degrees East) ?          -169.971433    -90.029317
 Event_ID (unitless) ?          1    21
 Sample_ID (unitless) ?          1    24
 depth (Sample Depth, m) ?          9.46    5231.51
  < slider >
 Th_230_D_CONC_BOTTLE_tf6m7p (uBq/kg) ?          0.21    31.56
 SD1_Th_230_D_CONC_BOTTLE_tf6m7p (uBq/kg) ?          0.07    0.76
 Flag_Th_230_D_CONC_BOTTLE_tf6m7p (unitless) ?      
   - +  ?
 Th_232_D_CONC_BOTTLE_lffbvx (pmol/kg) ?          0.0028    0.2242
 SD1_Th_232_D_CONC_BOTTLE_lffbvx (pmol/kg) ?          0.0047    0.0081
 Flag_Th_232_D_CONC_BOTTLE_lffbvx (unitless) ?      
   - +  ?
 Pa_231_D_CONC_BOTTLE_rrjlxc (uBq/kg) ?          0.3    8.89
 SD1_Pa_231_D_CONC_BOTTLE_rrjlxc (uBq/kg) ?          0.03    0.3
 Flag_Pa_231_D_CONC_BOTTLE_rrjlxc (unitless) ?      
   - +  ?
 Th_230_D_XS_CONC_BOTTLE (uBq/kg) ?          0.21    31.46
 SD1_Th_230_D_XS_CONC_BOTTLE (uBq/kg) ?          0.07    0.76
 Flag_Th_230_D_XS_CONC_BOTTLE (unitless) ?      
   - +  ?
 Pa_231_D_XS_CONC_BOTTLE (uBq/kg) ?          0.3    8.89
 SD1_Pa_231_D_XS_CONC_BOTTLE (uBq/kg) ?          0.03    0.3
 Flag_Pa_231_D_XS_CONC_BOTTLE (unitless) ?      
   - +  ?
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more info)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Station_ID {
    Byte _FillValue 127;
    Byte actual_range 2, 15;
    String bcodmo_name "station";
    String description "Station number";
    String long_name "Station ID";
    String units "unitless";
  }
  Start_Date_UTC {
    String bcodmo_name "date";
    String description "Start date (UTC); format: DD/MM/YYYY";
    String long_name "Start Date UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  Start_Time_UTC {
    String bcodmo_name "time";
    String description "Start time (UTC); format: hh:mm";
    String long_name "Start Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.45118694e+9, 1.45354104e+9;
    String axis "T";
    String bcodmo_name "ISO_DateTime_UTC";
    String description "Start date and time (UTC) formatted to ISO8601 standard: YYYY-MM-DDThh:mmZ";
    String ioos_category "Time";
    String long_name "Start ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String source_name "Start_ISO_DateTime_UTC";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String time_precision "1970-01-01T00:00Z";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  End_Date_UTC {
    String bcodmo_name "date";
    String description "End date (UTC); format: DD/MM/YYYY";
    String long_name "End Date UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/";
    String time_precision "1970-01-01";
    String units "unitless";
  }
  End_Time_UTC {
    String bcodmo_name "time";
    String description "End time (UTC); format: hh:mm";
    String long_name "End Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/AHMSAA01/";
    String units "unitless";
  }
  End_ISO_DateTime_UTC {
    String bcodmo_name "ISO_DateTime_UTC";
    String description "End date and time (UTC) formatted to ISO8601 standard: YYYY-MM-DDThh:mmZ";
    String long_name "End ISO Date Time UTC";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/DTUT8601/";
    String time_precision "1970-01-01T00:00Z";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue NaN;
    Float64 actual_range -39.310683, -23.5001;
    String axis "Y";
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "Start latitude";
    String ioos_category "Location";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String source_name "Start_Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue NaN;
    Float64 actual_range -169.927017, -84.930117;
    String axis "X";
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "Start longitude";
    String ioos_category "Location";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String source_name "Start_Longitude";
    String standard_name "longitude";
    String units "degrees_east";
  }
  End_Latitude {
    Float64 _FillValue NaN;
    Float64 actual_range -39.3103, -23.490667;
    String bcodmo_name "latitude";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String description "End latitude";
    String long_name "Latitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LATX/";
    String standard_name "latitude";
    String units "degrees North";
  }
  End_Longitude {
    Float64 _FillValue NaN;
    Float64 actual_range -169.971433, -90.029317;
    String bcodmo_name "longitude";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String description "End longitude";
    String long_name "Longitude";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/LONX/";
    String standard_name "longitude";
    String units "degrees East";
  }
  Event_ID {
    Byte _FillValue 127;
    Byte actual_range 1, 21;
    String bcodmo_name "event";
    String description "Event number";
    String long_name "Event ID";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P01/current/EVTAGFL/";
    String units "unitless";
  }
  Sample_ID {
    Byte _FillValue 127;
    Byte actual_range 1, 24;
    String bcodmo_name "sample";
    String description "Sample number";
    String long_name "Sample ID";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P02/current/ACYC/";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Float64 _FillValue NaN;
    Float64 actual_range 9.46, 5231.51;
    String axis "Z";
    String bcodmo_name "depth";
    String description "Sample depth";
    String ioos_category "Location";
    String long_name "Sample Depth";
    String nerc_identifier "https://vocab.nerc.ac.uk/collection/P09/current/DEPH/";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  Th_230_D_CONC_BOTTLE_tf6m7p {
    Float32 _FillValue NaN;
    Float32 actual_range 0.21, 31.56;
    String bcodmo_name "trace_element_conc";
    String description "Dissolved Th-230 concentration";
    String long_name "Th 230 D CONC BOTTLE Tf6m7p";
    String units "uBq/kg";
  }
  SD1_Th_230_D_CONC_BOTTLE_tf6m7p {
    Float32 _FillValue NaN;
    Float32 actual_range 0.07, 0.76;
    String bcodmo_name "trace_element_conc";
    String description "One standard deviation of Th_230_D_CONC_BOTTLE_tf6m7p";
    String long_name "SD1 Th 230 D CONC BOTTLE Tf6m7p";
    String units "uBq/kg";
  }
  Flag_Th_230_D_CONC_BOTTLE_tf6m7p {
    Byte _FillValue 127;
    Byte actual_range 1, 1;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Th_230_D_CONC_BOTTLE_tf6m7p";
    String long_name "Flag Th 230 D CONC BOTTLE Tf6m7p";
    String units "unitless";
  }
  Th_232_D_CONC_BOTTLE_lffbvx {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0028, 0.2242;
    String bcodmo_name "trace_element_conc";
    String description "Dissolved Th-232 concentration";
    String long_name "Th 232 D CONC BOTTLE Lffbvx";
    String units "pmol/kg";
  }
  SD1_Th_232_D_CONC_BOTTLE_lffbvx {
    Float32 _FillValue NaN;
    Float32 actual_range 0.0047, 0.0081;
    String bcodmo_name "trace_element_conc";
    String description "One standard deviation of Th_232_D_CONC_BOTTLE_lffbvx";
    String long_name "SD1 Th 232 D CONC BOTTLE Lffbvx";
    String units "pmol/kg";
  }
  Flag_Th_232_D_CONC_BOTTLE_lffbvx {
    Byte _FillValue 127;
    Byte actual_range 1, 1;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Th_232_D_CONC_BOTTLE_lffbvx";
    String long_name "Flag Th 232 D CONC BOTTLE Lffbvx";
    String units "unitless";
  }
  Pa_231_D_CONC_BOTTLE_rrjlxc {
    Float32 _FillValue NaN;
    Float32 actual_range 0.3, 8.89;
    String bcodmo_name "trace_element_conc";
    String description "Dissolved Pa-231 concentration";
    String long_name "Pa 231 D CONC BOTTLE Rrjlxc";
    String units "uBq/kg";
  }
  SD1_Pa_231_D_CONC_BOTTLE_rrjlxc {
    Float32 _FillValue NaN;
    Float32 actual_range 0.03, 0.3;
    String bcodmo_name "trace_element_conc";
    String description "One standard deviation of Pa_231_D_CONC_BOTTLE_rrjlxc";
    String long_name "SD1 Pa 231 D CONC BOTTLE Rrjlxc";
    String units "uBq/kg";
  }
  Flag_Pa_231_D_CONC_BOTTLE_rrjlxc {
    Byte _FillValue 127;
    Byte actual_range 1, 1;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Pa_231_D_CONC_BOTTLE_rrjlxc";
    String long_name "Flag Pa 231 D CONC BOTTLE Rrjlxc";
    String units "unitless";
  }
  Th_230_D_XS_CONC_BOTTLE {
    Float32 _FillValue NaN;
    Float32 actual_range 0.21, 31.46;
    String bcodmo_name "trace_element_conc";
    String description "Dissolved Th-230 concentration corrected for the dissolution of lithogenic minerals, thereby isolating the dissolved Th-230 produced by decay of dissolved uranium (see metadata for full explanation)";
    String long_name "Th 230 D XS CONC BOTTLE";
    String units "uBq/kg";
  }
  SD1_Th_230_D_XS_CONC_BOTTLE {
    Float32 _FillValue NaN;
    Float32 actual_range 0.07, 0.76;
    String bcodmo_name "trace_element_conc";
    String description "One standard deviation of Th_230_D_XS_CONC_BOTTLE";
    String long_name "SD1 Th 230 D XS CONC BOTTLE";
    String units "uBq/kg";
  }
  Flag_Th_230_D_XS_CONC_BOTTLE {
    Byte _FillValue 127;
    Byte actual_range 1, 1;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Th_230_D_XS_CONC_BOTTLE";
    String long_name "Flag Th 230 D XS CONC BOTTLE";
    String units "unitless";
  }
  Pa_231_D_XS_CONC_BOTTLE {
    Float32 _FillValue NaN;
    Float32 actual_range 0.3, 8.89;
    String bcodmo_name "trace_element_conc";
    String description "Dissolved Pa-231 concentration corrected for the dissolution of lithogenic minerals (see metadata for full explanation)";
    String long_name "Pa 231 D XS CONC BOTTLE";
    String units "uBq/kg";
  }
  SD1_Pa_231_D_XS_CONC_BOTTLE {
    Float32 _FillValue NaN;
    Float32 actual_range 0.03, 0.3;
    String bcodmo_name "trace_element_conc";
    String description "One standard deviation of Pa_231_D_XS_CONC_BOTTLE";
    String long_name "SD1 Pa 231 D XS CONC BOTTLE";
    String units "uBq/kg";
  }
  Flag_Pa_231_D_XS_CONC_BOTTLE {
    Byte _FillValue 127;
    Byte actual_range 1, 1;
    String bcodmo_name "q_flag";
    Float64 colorBarMaximum 150.0;
    Float64 colorBarMinimum 0.0;
    String description "Quality flag for Pa_231_D_XS_CONC_BOTTLE";
    String long_name "Flag Pa 231 D XS CONC BOTTLE";
    String units "unitless";
  }
 }
  NC_GLOBAL {
    String access_formats ".htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson,.odvTxt";
    String acquisition_description 
"Dissolved data:  
 Water samples were collected with a Sea-Bird Electronics CTD carousel fitted
with 24 12-liter PVC Niskin bottles.The carousel was lowered from the ship
with steel wire. Niskin bottles were equipped with nylon-coated closure
springs and Viton O-rings. After collection seawater was drained with Teflon-
lined TygonTM tubing and filtered through Pall AcropakTM 500 filters on deck
(gravity filtration, 0.8/0.45 \\u03bcm pore size) into Fisher I-Chem series 300
LDPE cubitainers. Approximately 10L was collected per desired depth. Prior to
the cruise, the tubing, filters, and cubitainers were cleaned by immersion in
1.2 M HCl (Fisher Scientific Trace Metal Grade) for 4-5 days. Once filtered,
samples were adjusted to a pH ~2 with ultra-clean 6 M HCl (Fisher Scientific
OPTIMA grade), double-bagged, stored in pallet boxes on-deck until the end of
the cruise and then at room temperature once shipped to the participating
laboratories analysis.
 
Analytical methods for dissolved radionuclides:  
 In the on-shore laboratory, ~5L of seawater was transferred into a new acid-
cleaned cubitainer, weighed to determine sample size, taking into account the
weight of the cubitainer and of the acid added at sea. Then weighed aliquots
of the artificial isotope yield monitors 229Th (20 pg) and 233Pa (0.5 pg) and
15 mg dissolved Fe were added to each sample. After allowing 1 day for spike
equilibration, the pH of each sample was raised to 8.3-8.7 by adding ~12 mL of
concentrated NH4OH (Fisher Scientific OPTIMA grade) which caused iron
(oxy)hydroxide precipitates to form. Each sample cubitainer was fitted with a
nozzle cap, inverted, and the Fe precipitate was allowed to settle for 2 days.
After 2 days, the nozzle caps were opened and the pH~8.3-8.7 water was slowly
drained, leaving only the iron oxyhydroxide precipitate and 250-500mL of
water. The Fe precipitate was transferred to centrifuge tubes for
centrifugation and rinsing with Milli-Q H2O (>18 M\\u03a9) to remove the major
seawater ions. The precipitate was then dissolved in 16 M HNO3 (Fisher
Scientific OPTIMA grade) and transferred to a Teflon beaker for a high-
temperature (180-200\\u00b0C) digestion with HClO4 and HF (Fisher Scientific
OPTIMA grade) on a hotplate in a HEPA-filtered laminar flow hood. After total
dissolution of the sample, another precipitation of iron (oxy)hydroxide
followed and the precipitate was washed with Mill-Q H2O, centrifuged, and
dissolved in 12 M HCl for a series of anion-exchange chromatography using 6 mL
polypropylene columns each containing a 1 mL bed of Bio-rad resin (AG1-X8,
100-200 mesh size) and a 45 \\u03bcm porous polyethylene frit (Anderson et al.
2012). The final column elutions were dried down at 180\\u00b0C in the presence
of 2 drops of HClO4 and taken up in approximately 1 mL of 0.16 M HNO3/0.026 M
HF for mass spectrometric analysis.
 
Concentrations of 232Th, 230Th, and 231Pa were calculated by isotope dilution,
relative to the calibrated tracers 229Th and 233Pa added at the beginning of
sample processing. Analyses were carried out on a Thermo-Finnegan ELEMENT XR
Single Collector Magnetic Sector ICP-MS, equipped with a high-performance
Interface pump (Jet Pump), and specially-designed sample (X) and skimmer (Jet)
cones to ensure the highest possible sensitivity. All measurements were made
in low-resolution mode (\\u2206m/M\\u2248300), peak jumping in Escan mode across
the central 5% of the flat-topped peaks. Measurements were made on a
MasCom\\u2122 SEM; 229Th, 230Th,231Pa, and 233Pa were measured in Counting
mode, while the 232Th signals were large enough that they were measured in
Analog mode. Two solutions of SRM129, a natural U standard, were run multiple
times throughout each run. One solution was in a concentration range where
238U and 235U were both measured in counting mode, allowing us to determine
the mass bias/amu (typical values varied from -0.01/amu to 0.03/amu). In the
other, more concentrated solution, 238U was measured in Analog mode and 235U
was measured in Counting mode, yielding a measurement of the Analog/Counting
Correction Factor. These corrections assume that the mass bias and Analog
Correction Factor measured on U isotopes can be applied to Th and Pa isotope
measurements. Each sample measurement was bracketed by measurement of an
aliquot of the run solution, used to correct for the instrumental background
count rates. To correct for tailing of 232Th into the minor Th and Pa
isotopes, a series of 232Th standards were run at concentrations bracketing
the expected 232Th concentrations in the samples. The analysis routine for
these standards was identical to the analysis routine for samples, so we could
see the changing beam intensities at the minor masses as we increased the
concentration of the 232Th standards. The 232Th count rates in our Pa
fractions are quite small, reflecting mainly reagent blanks, compared to the
232Th signal intensity in the Th fraction. The regressions of 230Th, 231Pa,
and 233Pa signals as a function of the 232Th signal in the standards was used
to correct for tailing of 232Th in samples.
 
Water samples were analyzed in batches of 15. Procedural blanks were
determined by processing two 4-5 L of Milli-Q water in an acid-cleaned
cubitainer acidified to pH ~2 with 6 M HCl as a sample in each batch. An
aliquot of two intercalibrated working standard solutions of 232Th, 230Th and
231Pa, SW STD 2010-1 referred to by Anderson et al. (2012) and SW STD 2015-1
which has lower 232Th activity (more similar to Pacific seawater conditions),
were also processed like a sample in each batch. Samples were corrected using
the pooled average of all procedural blanks run during processing of SO245
samples. The average procedural blanks for 232Th, 230Th, and 231Pa were about
7 pg, 0.5 fg, and 0.03 fg respectively.
 
Derived parameters:  
Th_230_D_XS_CONC_BOTTLE \\- The dissolved excess Th-230 concentration refers to
the measured dissolved Th-230 corrected for a contribution of Th-230 due to
the partial dissolution of uranium-bearing minerals, or lithogenics. Thereby
the dissolved excess represents solely the fraction of Th-230 produced in the
water by decay of dissolved uranium-234. We estimate the lithogenic Th-230
using measuring dissolved Th-232 and a lithogenic Th-230/Th-232 ratio of
4.0e-6 (atom ratio) as determined by Roy-Barman et al. (2002) and a conversion
factor to convert picomoles to micro-Becquerels.
 
Th_230_D_XS_CONC_BOTTLE = Th_230_D_CONC_BOTTLE \\u2013 4.0e-6 *1.7473e5 *
Th_232_D_CONC_BOTTLE
 
Pa_231_D_XS_CONC_BOTTLE \\- The dissolved excess Pa-231 concentration refers to
the measured dissolved Pa-231 corrected for a contribution of Pa-231 due to
the partial dissolution of uranium-bearing minerals, or lithogenics. Thereby
the dissolved excess represents solely the fraction of Pa-231 produced in the
water by decay of dissolved uranium-235. We estimate the lithogenic Pa-231
using measuring dissolved Th-232 and a lithogenic Pa-231/Th-232 ratio of
8.8e-8 (atom ratio) which is derived from assuming an average upper
continental crustal U/Th ratio (Taylor and McClennan, 1995) and secular
equilibrium between Pa-231 and U-235 in the lithogenic material. An additional
conversion factor is needed to convert picomoles to micro-Becquerels.
 
Pa_231_D_XS_CONC_BOTTLE = Pa_231_D_CONC_BOTTLE \\u2013 8.8e-8 * 4.0370e5 *
Th_232_D_CONC_BOTTLE
 
The correction for dissolved 231Pa and 230Th derived from dissolution of
lithogenic particles, when calculating xs230Th\\u00a0 and xs231Pa\\u00a0 is
small. Therefore, even for a sample where the 232Th, used to make the
correction, is flagged as bad, the error contributed in calculating
xs230Th\\u00a0and xs231Pa is small, so they are flagged as questionable (2).
See the Processing Description for complete\\u00a0quality flag definitions.";
    String awards_0_award_nid "810770";
    String awards_0_award_number "OCE-1555726";
    String awards_0_data_url "http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1555726";
    String awards_0_funder_name "NSF Division of Ocean Sciences";
    String awards_0_funding_acronym "NSF OCE";
    String awards_0_funding_source_nid "355";
    String awards_0_program_manager "Henrietta N Edmonds";
    String awards_0_program_manager_nid "51517";
    String cdm_data_type "Other";
    String comment 
"Depth profiles of seawater dissolved 232Th, 230Th, and 231Pa 
   from R/V Sonne cruise SO245 (UltraPac, GPpr09) 
  PI: Robert F. Anderson (LDEO) 
  Co-PI: Martin Q. Fleisher (LDEO) 
  Contact: Frank J. Pavia (LDEO) 
  Version date: 03 June 2020";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_type "institution";
    String creator_url "https://www.bco-dmo.org/";
    String data_source "extract_data_as_tsv version 2.3  19 Dec 2019";
    String dataset_current_state "Final and no updates";
    String date_created "2020-05-27T20:19:10Z";
    String date_modified "2020-06-04T20:08:16Z";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.26008/1912/bco-dmo.813133.1";
    Float64 Easternmost_Easting -84.930117;
    Float64 geospatial_lat_max -23.5001;
    Float64 geospatial_lat_min -39.310683;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -84.930117;
    Float64 geospatial_lon_min -169.927017;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 5231.51;
    Float64 geospatial_vertical_min 9.46;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2021-10-16T02:38:20Z (local files)
2021-10-16T02:38:20Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_813133.html";
    String infoUrl "https://www.bco-dmo.org/dataset/813133";
    String institution "BCO-DMO";
    String instruments_0_acronym "Niskin bottle";
    String instruments_0_dataset_instrument_nid "813207";
    String instruments_0_description "A Niskin bottle (a next generation water sampler based on the Nansen bottle) is a cylindrical, non-metallic water collection device with stoppers at both ends. The bottles can be attached individually on a hydrowire or deployed in 12, 24, or 36 bottle Rosette systems mounted on a frame and combined with a CTD. Niskin bottles are used to collect discrete water samples for a range of measurements including pigments, nutrients, plankton, etc.";
    String instruments_0_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L22/current/TOOL0412/";
    String instruments_0_instrument_name "Niskin bottle";
    String instruments_0_instrument_nid "413";
    String instruments_0_supplied_name "12-liter PVC Niskin bottles";
    String instruments_1_acronym "CTD Sea-Bird";
    String instruments_1_dataset_instrument_nid "813206";
    String instruments_1_description "Conductivity, Temperature, Depth (CTD) sensor package from SeaBird Electronics, no specific unit identified. This instrument designation is used when specific make and model are not known. See also other SeaBird instruments listed under CTD. More information from Sea-Bird Electronics.";
    String instruments_1_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/130/";
    String instruments_1_instrument_name "CTD Sea-Bird";
    String instruments_1_instrument_nid "447";
    String instruments_1_supplied_name "Sea-Bird Electronics CTD";
    String instruments_2_acronym "ICP Mass Spec";
    String instruments_2_dataset_instrument_nid "813209";
    String instruments_2_description "An ICP Mass Spec is an instrument that passes nebulized samples into an inductively-coupled gas plasma (8-10000 K) where they are atomized and ionized. Ions of specific mass-to-charge ratios are quantified in a quadrupole mass spectrometer.";
    String instruments_2_instrument_external_identifier "https://vocab.nerc.ac.uk/collection/L05/current/LAB15/";
    String instruments_2_instrument_name "Inductively Coupled Plasma Mass Spectrometer";
    String instruments_2_instrument_nid "530";
    String instruments_2_supplied_name "Thermo-Finnegan ELEMENT XR Single Collector Magnetic Sector ICP-MS";
    String instruments_3_dataset_instrument_nid "813208";
    String instruments_3_description "A machine with a rapidly rotating container that applies centrifugal force to its contents, typically to separate fluids of different densities (e.g., cream from milk) or liquids from solids.";
    String instruments_3_instrument_name "Centrifuge";
    String instruments_3_instrument_nid "629890";
    String keywords "bco, bco-dmo, biological, bottle, chemical, conc, data, dataset, date, depth, dmo, end, End_Date_UTC, End_ISO_DateTime_UTC, End_Latitude, End_Longitude, End_Time_UTC, erddap, event, Event_ID, flag, Flag_Pa_231_D_CONC_BOTTLE_rrjlxc, Flag_Pa_231_D_XS_CONC_BOTTLE, Flag_Th_230_D_CONC_BOTTLE_tf6m7p, Flag_Th_230_D_XS_CONC_BOTTLE, Flag_Th_232_D_CONC_BOTTLE_lffbvx, iso, latitude, lffbvx, longitude, management, oceanography, office, Pa_231_D_CONC_BOTTLE_rrjlxc, Pa_231_D_XS_CONC_BOTTLE, preliminary, rrjlxc, sample, Sample_Depth, Sample_ID, sd1, SD1_Pa_231_D_CONC_BOTTLE_rrjlxc, SD1_Pa_231_D_XS_CONC_BOTTLE, SD1_Th_230_D_CONC_BOTTLE_tf6m7p, SD1_Th_230_D_XS_CONC_BOTTLE, SD1_Th_232_D_CONC_BOTTLE_lffbvx, start, Start_Date_UTC, Start_Time_UTC, station, Station_ID, tf6m7p, Th_230_D_CONC_BOTTLE_tf6m7p, Th_230_D_XS_CONC_BOTTLE, Th_232_D_CONC_BOTTLE_lffbvx, time";
    String license "https://www.bco-dmo.org/dataset/813133/license";
    String metadata_source "https://www.bco-dmo.org/api/dataset/813133";
    Float64 Northernmost_Northing -23.5001;
    String param_mapping "{'813133': {'Start_ISO_DateTime_UTC': 'flag - time', 'Sample_Depth': 'flag - depth', 'Start_Longitude': 'flag - longitude', 'Start_Latitude': 'flag - latitude'}}";
    String parameter_source "https://www.bco-dmo.org/mapserver/dataset/813133/parameters";
    String people_0_affiliation "Lamont-Doherty Earth Observatory";
    String people_0_affiliation_acronym "LDEO";
    String people_0_person_name "Robert F. Anderson";
    String people_0_person_nid "50572";
    String people_0_role "Principal Investigator";
    String people_0_role_type "originator";
    String people_1_affiliation "Lamont-Doherty Earth Observatory";
    String people_1_affiliation_acronym "LDEO";
    String people_1_person_name "Martin  Q. Fleisher";
    String people_1_person_nid "51612";
    String people_1_role "Co-Principal Investigator";
    String people_1_role_type "originator";
    String people_2_affiliation "Lamont-Doherty Earth Observatory";
    String people_2_affiliation_acronym "LDEO";
    String people_2_person_name "Frank J. Pavia";
    String people_2_person_nid "643657";
    String people_2_role "Contact";
    String people_2_role_type "related";
    String people_3_affiliation "Woods Hole Oceanographic Institution";
    String people_3_affiliation_acronym "WHOI BCO-DMO";
    String people_3_person_name "Shannon Rauch";
    String people_3_person_nid "51498";
    String people_3_role "BCO-DMO Data Manager";
    String people_3_role_type "related";
    String project "UltraPac Trace Elements";
    String projects_0_acronym "UltraPac Trace Elements";
    String projects_0_description 
"NSF Award Abstract:
With funding from this RAPID award, an American research team at the Lamont-Doherty Earth Observatory of Columbia University will study the supply and removal of trace elements in the South Pacific Subtropical Gyre (SPSG). This will be done in the context of an international program (UltraPac) under the direction of Dr. Tim Ferdelman of the Max Planck Institute in Breman, Germany, who has invited the Lamont-Doherty team to join the German scientists aboard their expedition on the Research Vessel Sonne (December 2015 - January 2016) between Antofagasta, Chile and Wellington, New Zealand. UltraPac is a coordinated interdisciplinary study of the SPSG, including research on microbiology, molecular biology, zooplankton, aerosols, trace metals, nitrogen fixation, carbon and nutrient biogeochemistry, among other topics. The American team will measure dissolved and particulate concentrations of long-lived, naturally-occurring radioisotopes in the uranium and thorium decay series that can be used to provide constraints on the rates of supply and removal of trace elements within this regime. The project will also provide education, training and professional development for two PhD students that would otherwise be unavailable through other aspects of their PhD research. It will also provide an opportunity for the students to network with foreign collaborators, which will be very beneficial to their long-term career development.
This project will enable the Lamont-Doherty scientists to quantify the rates of supply and removal of trace elements in the severely undersampled SPSG, the ocean's largest biogeographic province, characterized by a hyper-oligotrophic (low biological productivity) ecosystem and ultra-low dust fluxes. Evaluating the supply of trace elements from dust provides critical information about sources of essential micronutrients that influence the ecology and biogeochemistry of the SPSG. The award will cover the travel expenses for two people to participate in the cruise, shipping to and from the cruise, and instrument fees to analyze samples collected on the cruise. Comparing scavenging results from the SPSG with results from recent studies of other biogeographic providences, including the North Pacific Subtropical Gyre, the Subarctic North Pacific, the North Atlantic Subtropical Gyre and the Eastern Tropical South Pacific, will build toward the team's long-range goal of characterizing the intensity of trace element removal from the ocean in terms of environmental, ecological and biogeochemical characteristics of ocean biogeographic provinces. The deep water column of the SPSG is influenced by the hydrothermal plume emanating from the East Pacific Rise. Comparing SPSG results with those from regions lacking significant influence by hydrothermal plumes will also enable them to constrain the role of these plumes in defining the global distribution of trace elements in the deep ocean. This effort should provide rates of supply and removal of biologically essential micronutrients, and of other trace elements, in an end-member ocean regime that is not scheduled for sampling by a GEOTRACES ocean section, thus filling a gap in the global database for trace elements and isotopes under development by GEOTRACES. Results will be obtained using GEOTRACES-compliant methods, and made available through the GEOTRACES database for use by investigators in other fields.";
    String projects_0_end_date "2016-09";
    String projects_0_geolocation "South Pacific Gyre between Peru and Tahiti";
    String projects_0_name "Supply and removal of trace elements in the subtropical South Pacific";
    String projects_0_project_nid "810771";
    String projects_0_start_date "2015-10";
    String publisher_name "Biological and Chemical Oceanographic Data Management Office (BCO-DMO)";
    String publisher_type "institution";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing -39.310683;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "Flag_Th_230_D_CONC_BOTTLE_tf6m7p,Flag_Th_232_D_CONC_BOTTLE_lffbvx,Flag_Pa_231_D_CONC_BOTTLE_rrjlxc,Flag_Th_230_D_XS_CONC_BOTTLE,Flag_Pa_231_D_XS_CONC_BOTTLE";
    String summary "This dataset contains depth profiles of seawater dissolved 232Th, 230Th, and 231Pa from R/V Sonne cruise SO245 (UltraPac, GPpr09).";
    String time_coverage_end "2016-01-23T09:24Z";
    String time_coverage_start "2015-12-27T03:29Z";
    String title "Depth profiles of seawater dissolved 232Th, 230Th, and 231Pa from R/V Sonne cruise SO245 (UltraPac, GPpr09) during Dec 2015 to Jan 2016";
    String version "1";
    Float64 Westernmost_Easting -169.927017;
    String xml_source "osprey2erddap.update_xml() v1.5";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact