BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    
 
 
EXPOCODE cruise date StationID BottleID latitude longitude depth Temperature Salinity NO3_plus_NO2 SRP DOP DOP_flag region method reference
unitless unitless unitless unitless unitless degrees_north degrees_east m degrees Celsius psu uM uM uM unitless unitless unitless unitless
BIOSOPE 2004-10-28 21 21 -8.32545 -141.2752 5.6 27.793 35.56 1.54 0.39 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-28 21 18 -8.32545 -141.2752 15.1 27.773 35.559 1.54 0.42 0.18 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-28 21 16 -8.32545 -141.2752 20.8 27.764 35.559 1.54 0.42 0.19 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-28 21 14 -8.32545 -141.2752 30.6 27.755 35.558 1.59 0.41 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-28 21 12 -8.32545 -141.2752 40.2 27.745 35.558 1.59 0.41 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-28 21 10 -8.32545 -141.2752 49.7 27.742 35.558 1.64 0.41 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-31 36 22 -8.99582 -136.8478 5.3 27.76 35.615 1.49 0.29 0.29 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-31 36 18 -8.99582 -136.8478 20.4 27.715 35.614 1.59 0.3 0.27 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-31 36 16 -8.99582 -136.8478 29.7 27.709 35.616 1.54 0.29 0.29 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-31 36 14 -8.99582 -136.8478 40.2 27.671 35.621 1.59 0.31 0.27 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-31 36 10 -8.99582 -136.8478 60.5 27.577 35.627 1.64 0.32 0.28 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-10-31 36 6 -8.99582 -136.8478 80.4 27.293 35.719 1.54 0.37 0.24 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-03 53 20 -11.73528 -134.09633 9.8 27.805 35.833 0.31 0.24 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-03 53 18 -11.73528 -134.09633 24.0 27.696 35.975 0.05 0.26 0.3 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-03 53 16 -11.73528 -134.09633 39.2 27.559 36.001 0.09 0.22 0.34 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-03 53 14 -11.73528 -134.09633 49.3 27.503 36.003 0.09 0.22 0.31 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-03 53 11 -11.73528 -134.09633 69.9 27.424 36.016 0.14 0.23 0.3 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-03 53 8 -11.73528 -134.09633 91.7 26.864 36.435 0.25 0.29 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-04 57 19 -13.55333 -132.10686 15.485 27.501 36.135 0 0.21 0.29 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-04 57 17 -13.55333 -132.10686 30.076 26.847 36.344 0 0.21 0.28 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-04 57 15 -13.55333 -132.10686 40.937 26.738 36.381 0 0.22 0.26 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-04 57 13 -13.55333 -132.10686 59.685 26.23 36.581 0 0.22 0.25 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-04 57 10 -13.55333 -132.10686 80.657 25.818 36.582 0 0.22 0.23 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-04 57 7 -13.55333 -132.10686 99.957 25.417 36.551 0 0.24 0.18 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-05 61 19 -15.5343 -129.92754 14.9 27.068 36.338 0.05 0.19 0.27 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-05 61 17 -15.5343 -129.92754 35.3 26.87 36.33 0.05 0.2 0.25 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-05 61 15 -15.5343 -129.92754 45.1 26.593 36.383 0.09 0.21 0.23 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-05 61 13 -15.5343 -129.92754 65.1 26.437 36.496 0.05 0.2 0.23 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-05 61 10 -15.5343 -129.92754 84.2 26.069 36.552 0.05 0.18 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-05 61 7 -15.5343 -129.92754 108.5 25.459 36.551 0.05 0.2 0.19 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-06 65 19 -17.23447 -127.97176 20.2 26.487 36.533 0 0.21 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-06 65 16 -17.23447 -127.97176 40.1 26.114 36.566 0 0.22 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-06 65 14 -17.23447 -127.97176 60.2 25.991 36.574 0 0.24 0.18 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-06 65 11 -17.23447 -127.97176 79.7 25.887 36.574 0 0.19 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-06 65 8 -17.23447 -127.97176 105.2 25.413 36.576 0 0.2 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-06 65 5 -17.23447 -127.97176 141.6 24.592 36.474 0.1 0.19 0.36 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-07 69 19 -18.74717 -125.55151 19.2 25.657 36.531 0 0.16 0.27 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-07 69 16 -18.74717 -125.55151 39.2 25.372 36.582 0 0.17 0.26 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-07 69 14 -18.74717 -125.55151 54.8 25.275 36.584 0 0.15 0.26 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-07 69 11 -18.74717 -125.55151 79.8 24.634 36.541 0 0.15 0.24 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-07 69 8 -18.74717 -125.55151 104.8 24.002 36.432 0 0.19 0.19 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-07 69 6 -18.74717 -125.55151 132.7 22.513 36.157 0.44 0.22 0.18 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-08 72 19 -20.45467 -122.89305 25.1 24.519 36.386 0 0.14 0.19 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-08 72 16 -20.45467 -122.89305 55.6 24.33 36.391 0 0.15 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-08 72 14 -20.45467 -122.89305 74.6 24.325 36.398 0.05 0.16 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-08 72 12 -20.45467 -122.89305 84.7 24.321 36.402 0.15 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-08 72 8 -20.45467 -122.89305 124.8 23.511 36.267 0 0.14 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-08 72 5 -20.45467 -122.89305 149.9 22.815 36.142 0.15 0.19 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-09 76 19 -22.05007 -120.38205 19.8 24.277 36.4 0.05 0.14 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-09 76 16 -22.05007 -120.38205 40.6 24.227 36.432 0.05 0.14 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-09 76 14 -22.05007 -120.38205 59.3 24.077 36.399 0 0.15 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-09 76 11 -22.05007 -120.38205 79.7 23.145 36.198 0 0.13 0.19 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-09 76 8 -22.05007 -120.38205 109.6 22.418 36.069 0 0.12 0.18 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-09 76 5 -22.05007 -120.38205 140.3 21.738 35.943 0 0.13 0.15 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-10 80 19 -23.55372 -117.88925 30.8 23.385 36.318 0 0.13 0.17 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-10 80 16 -23.55372 -117.88925 59.6 23.042 36.314 0 0.15 0.15 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-10 80 14 -23.55372 -117.88925 81.0 22.4 36.137 0 0.13 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-10 80 8 -23.55372 -117.88925 139.3 22.094 36.172 0 0.22 0.08 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-10 80 5 -23.55372 -117.88925 178.7 20.57 35.816 0.15 0.19 0.11 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-12 88 19 -25.96975 -114.00505 29.7 22.079 36.029 0 0.13 0.13 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-12 88 17 -25.96975 -114.00505 41.0 22.079 36.031 0.12 0.15 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-12 88 14 -25.96975 -114.00505 69.3 21.892 36.062 0 0.12 0.14 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-12 88 12 -25.96975 -114.00505 89.5 21.596 36.009 0 0.13 0.13 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-12 88 10 -25.96975 -114.00505 120.1 20.754 35.848 0 0.12 0.17 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-12 88 7 -25.96975 -114.00505 187.1 19.103 35.515 0.15 0.19 0.3 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-20 121 19 -27.77275 -107.28623 29.0 21.283 35.923 0 0.12 0.13 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-20 121 16 -27.77275 -107.28623 62.1 21.179 35.957 0 0.14 0.11 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-20 121 14 -27.77275 -107.28623 90.5 20.832 35.945 0.05 0.13 0.14 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-20 121 12 -27.77275 -107.28623 120.9 20.428 35.857 0 0.14 0.13 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-20 121 7 -27.77275 -107.28623 199.4 19.223 35.548 0.07 0.16 0.11 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-21 125 12 -28.53627 -104.308 105.7 20.023 35.761 0 0.13 0.12 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-21 125 10 -28.53627 -104.308 140.9 19.556 35.647 0 0.13 0.12 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-21 125 7 -28.53627 -104.308 183.0 18.103 35.258 0.1 0.14 0.1 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-22 129 19 -29.2252 -101.48098 25.1 19.985 35.478 0 0.12 0.15 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-22 129 16 -29.2252 -101.48098 50.5 19.219 35.461 0 0.12 0.15 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-22 129 14 -29.2252 -101.48098 64.8 18.982 35.436 0 0.12 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-22 129 12 -29.2252 -101.48098 88.9 18.536 35.365 0 0.12 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-22 129 10 -29.2252 -101.48098 120.6 18.378 35.371 0 0.13 0.14 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-22 129 7 -29.2252 -101.48098 159.4 17.286 35.167 1.31 0.23 0.12 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-23 133 19 -30.042 -98.39228 19.8 19.768 35.457 0.05 0.14 0.13 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-23 133 16 -30.042 -98.39228 45.3 18.677 35.341 0 0.13 0.14 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-23 133 14 -30.042 -98.39228 59.3 18.881 35.458 0 0.13 0.15 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-23 133 12 -30.042 -98.39228 85.1 18.74 35.462 0 0.13 0.14 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-23 133 10 -30.042 -98.39228 110.0 18.61 35.444 0 0.13 0.14 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-23 133 7 -30.042 -98.39228 149.7 18.378 35.395 0.05 0.15 0.15 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-24 137 19 -30.78638 -95.4272 15.0 18.02 34.858 0 0.15 0.17 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-24 137 16 -30.78638 -95.4272 34.9 18.04 34.86 0 0.15 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-24 137 14 -30.78638 -95.4272 49.7 17.609 34.828 0 0.15 0.17 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-24 137 12 -30.78638 -95.4272 69.2 17.157 34.866 0 0.15 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-24 137 10 -30.78638 -95.4272 99.7 16.951 34.894 0.15 0.16 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-24 137 7 -30.78638 -95.4272 119.5 16.923 34.916 0.39 0.2 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 21 -31.869 -91.41518 4.8 18.2178 34.6901 0.19 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 19 -31.869 -91.41518 15.1 18.0481 34.6903 0.22 0.19 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 16 -31.869 -91.41518 29.8 17.987 34.6865 0.19 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 14 -31.869 -91.41518 40.0 17.0367 34.6049 0.19 0.23 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 12 -31.869 -91.41518 60.4 16.5443 34.6732 0.21 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 10 -31.869 -91.41518 78.2 16.2068 34.6223 0.24 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 7 -31.869 -91.41518 99.4 16.0308 34.6164 0.31 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 5 -31.869 -91.41518 110.6 15.906 34.5944 0.31 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 4 -31.869 -91.41518 125.1 15.6364 34.5412 0.3 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 3 -31.869 -91.41518 149.6 15.3149 34.4724 0.36 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 2 -31.869 -91.41518 189.4 14.5498 34.3375 0.46 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-28 162 1 -31.869 -91.41518 249.9 11.5617 34.2521 1 0.15 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-30 176 3 -31.91738 -91.40722 303.7 9.96 34.2079 1.3 0.1 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-30 176 9 -31.91738 -91.40722 401.5 7.4869 34.3241 2.07 0.06 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-30 176 11 -31.91738 -91.40722 600.8 5.711 34.2776 1.89 0.07 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-30 176 12 -31.91738 -91.40722 800.5 4.7847 34.2718 2.16 0.07 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-30 176 13 -31.91738 -91.40722 1001.4 3.8903 34.364 2.58 0.07 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-30 176 15 -31.91738 -91.40722 2001.1 2.1899 34.631 2.61 0.09 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-01 178 19 -32.39545 -86.78242 14.8 17.3278 34.353 0.05 0.31 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-01 178 16 -32.39545 -86.78242 30.0 17.1962 34.3562 2.28 0.32 0.24 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-01 178 14 -32.39545 -86.78242 40.6 16.1555 34.3047 2.33 0.34 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-01 178 12 -32.39545 -86.78242 53.3 15.2465 34.2622 3.06 0.39 0.19 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-01 178 10 -32.39545 -86.78242 70.1 14.9522 34.3008 0.37 0.18 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-01 178 7 -32.39545 -86.78242 95.5 14.7349 34.2853 2.91 0.41 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-02 182 19 -32.68325 -84.0737 14.7 17.4407 34.2435 3.64 0.39 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-02 182 16 -32.68325 -84.0737 30.0 16.4748 34.2111 3.08 0.35 0.23 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-02 182 14 -32.68325 -84.0737 40.0 15.4507 34.1856 3.64 0.37 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-02 182 12 -32.68325 -84.0737 59.7 14.8119 34.2245 3.96 0.45 0.17 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-02 182 10 -32.68325 -84.0737 80.2 14.5688 34.2093 4.81 0.52 0.13 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-02 182 7 -32.68325 -84.0737 99.3 13.9043 34.1051 6.22 0.56 0.1 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-03 186 19 -33.02312 -81.20049 14.2 17.2028 34.2707 2.77 0.37 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-03 186 16 -33.02312 -81.20049 35.4 16.578 34.2861 2.72 0.38 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-03 186 14 -33.02312 -81.20049 49.9 16.1802 34.2571 2.67 0.37 0.21 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-03 186 12 -33.02312 -81.20049 70.4 15.108 34.2019 3.3 0.38 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-03 186 10 -33.02312 -81.20049 90.5 14.6581 34.2009 4.32 0.48 0.19 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-03 186 7 -33.02312 -81.20049 116.4 14.1259 34.1446 5.97 0.56 0.15 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-04 190 21 -33.354 -78.11878 4.7 17.5647 33.947 0.1 0.27 0.26 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-04 190 18 -33.354 -78.11878 14.1 16.1316 33.9486 0.24 0.28 0.24 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-04 190 16 -33.354 -78.11878 20.3 15.8947 33.9434 0.73 0.31 0.23 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-04 190 14 -33.354 -78.11878 30.0 15.3185 34.0051 2.33 0.36 0.33 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-04 190 12 -33.354 -78.11878 41.1 14.813 33.9936 3.3 0.43 0.25 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-04 190 9 -33.354 -78.11878 50.6 13.8693 33.9535 4.61 0.58 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-05 194 21 -33.60613 -75.83113 5.6 16.8075 34.0462 0.07 0.36 0.28 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-05 194 18 -33.60613 -75.83113 14.7 16.7961 34.0458 0.07 0.36 0.28 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-05 194 16 -33.60613 -75.83113 20.4 16.7886 34.0448 0.07 0.36 0.26 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-05 194 14 -33.60613 -75.83113 29.7 16.2083 34.0331 0.05 0.35 0.52 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-05 194 12 -33.60613 -75.83113 39.5 15.7484 34.0473 0.14 0.36 0.31 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-05 194 9 -33.60613 -75.83113 50.2 15.0761 34.0504 1.63 0.53 0.22 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-07 204 21 -33.9332 -73.36405 5.0 15.9309 34.2456 0.29 0.51 0.44 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-07 204 18 -33.9332 -73.36405 9.0 15.9306 34.2456 0.29 0.57 0.42 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-07 204 16 -33.9332 -73.36405 15.4 15.9307 34.2457 0.52 0.43 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-07 204 14 -33.9332 -73.36405 19.6 15.9158 34.2453 0.68 0.55 0.43 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-07 204 12 -33.9332 -73.36405 24.8 15.918 34.2434 0.61 0.46 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-07 204 9 -33.9332 -73.36405 35.7 13.9263 34.2717 0.67 0.38 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 213 21 -34.51367 -72.41662 4.4 1.62 0.38 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 213 18 -34.51367 -72.41662 10.0 1.72 0.37 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 213 16 -34.51367 -72.41662 15.1 1.81 0.29 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 213 14 -34.51367 -72.41662 19.8 1.84 0.33 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 213 12 -34.51367 -72.41662 30.2 2.02 0.25 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 213 9 -34.51367 -72.41662 39.7 2.11 0.24 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 21 -26.05263 -114.01095 5.1 22.408 36.021 0 0.12 0.18 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 19 -26.05263 -114.01095 18.4 22.292 36.028 0 0.13 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 16 -26.05263 -114.01095 50.4 22.108 36.046 0 0.13 0.17 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 13 -26.05263 -114.01095 71.3 21.906 36.022 0 0.12 0.17 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 12 -26.05263 -114.01095 89.5 21.427 35.976 0 0.12 0.17 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 10 -26.05263 -114.01095 118.8 20.76 35.845 0 0.13 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 8 -26.05263 -114.01095 140.3 20.235 35.74 0 0.13 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 7 -26.05263 -114.01095 158.9 19.711 35.634 0 0.17 0.13 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 5 -26.05263 -114.01095 181.1 18.658 35.438 0.49 0.21 0.14 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 4 -26.05263 -114.01095 199.5 17.851 35.312 1.75 0.29 0.12 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 3 -26.05263 -114.01095 228.6 16.806 35.144 3.45 0.39 0.1 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-14 104 2 -26.05263 -114.01095 270.7 14.858 34.858 5.78 0.55 0.27 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-16 118 24 -26.07065 -114.0013 302.6 13.392 34.716 0.72 0.08 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-16 118 23 -26.07065 -114.0013 403.4 9.079 34.391 1.47 0.04 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-16 118 22 -26.07065 -114.0013 600.0 6.093 34.31 1.84 0.05 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-16 118 21 -26.07065 -114.0013 800.9 4.983 34.298 2.19 0.06 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-16 118 20 -26.07065 -114.0013 1000.4 4.099 34.401 2.57 0.07 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-11-16 118 19 -26.07065 -114.0013 2001.5 2.06 34.64 2.57 0.07 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 21 -33.99632 -73.36961 5.2 15.7198 34.241 0.56 0.36 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 18 -33.99632 -73.36961 10.1 15.726 34.2411 0.56 0.34 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 16 -33.99632 -73.36961 14.8 15.7066 34.2398 0.59 0.49 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 15 -33.99632 -73.36961 20.0 15.647 34.2366 0.7 0.4 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 14 -33.99632 -73.36961 25.0 15.5861 34.2323 0.89 0.35 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 12 -33.99632 -73.36961 29.9 14.2374 34.2538 1.77 0.46 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 11 -33.99632 -73.36961 35.4 12.5 34.3388 2.11 0.3 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 9 -33.99632 -73.36961 40.2 12.2614 34.34 2.15 0.27 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 7 -33.99632 -73.36961 45.3 11.9656 34.3743 2.33 0.28 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 6 -33.99632 -73.36961 49.9 11.6311 34.3525 2.31 0.16 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 5 -33.99632 -73.36961 75.4 11.0336 34.3805 2.51 0.17 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-06 198 4 -33.99632 -73.36961 100.7 10.8903 34.4941 2.73 0.12 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-08 210 12 -33.8605 -73.34022 148.6 10.1481 34.5037 2.66 0.23 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-08 210 10 -33.8605 -73.34022 200.4 9.524 34.521 2.77 0.27 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-08 210 8 -33.8605 -73.34022 250.3 9.0263 34.5245 2.86 0.2 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-08 210 6 -33.8605 -73.34022 301.0 8.3728 34.4905 2.84 0.14 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-08 210 4 -33.8605 -73.34022 399.9 7.1448 34.4149 2.41 0.28 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
BIOSOPE 2004-12-08 210 2 -33.8605 -73.34022 503.4 6.1605 34.3557 2.63 0.13 2 South Pacific Wet oxidation Raimbault; P.; Garcia; N.; and Cerutti; F.: Distribution of inorganic and organic nutrients in the South Pacific Ocean   evidence for long-term accumulation of organic matter in nitrogen-depleted waters; Biogeosciences; 5; 281 298; https://doi.org/10.5194/bg-5-281-2008; 2008
OUTPACE 2015-02-22 out_c_006 2 -17.9418 159.9255 149.612 21.1097 35.6954 3.17 0.3 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-22 out_c_006 3 -17.9418 159.9255 124.97 21.6266 35.701 2.84 0.28 0.11 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-22 out_c_006 6 -17.9418 159.9255 104.741 22.2953 35.6949 1.54 0.2 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-22 out_c_006 9 -17.9418 159.9255 71.201 24.2831 35.5917 0 0.11 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-22 out_c_006 11 -17.9418 159.9255 54.034 26.108 35.3997 0.02 0.08 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-22 out_c_006 13 -17.9418 159.9255 36.026 28.1106 35.1108 0.01 0.02 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-22 out_c_006 15 -17.9418 159.9255 24.133 28.2469 35.0871 0 0.06 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-22 out_c_006 18 -17.9418 159.9255 16.624 28.3636 35.083 0 0 0.3 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-22 out_c_006 19 -17.9418 159.9255 9.869 29.0101 35.0684 0 0.04 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-22 out_c_006 23 -17.9418 159.9255 5.674 29.1668 35.0605 0.01 0.03 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-23 out_c_010 1 -18.6078 162.1248 199.39 21.19 35.7321 5.38 0.47 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-23 out_c_010 2 -18.6078 162.1248 150.278 22.437 35.6937 3.71 0.34 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-23 out_c_010 3 -18.6078 162.1248 124.977 22.9537 35.6891 2.8 0.31 0.11 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-23 out_c_010 6 -18.6078 162.1248 105.362 23.4386 35.6361 1.85 0.26 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-23 out_c_010 7 -18.6078 162.1248 88.2 24.105 35.6005 0.77 0.19 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-23 out_c_010 9 -18.6078 162.1248 70.228 24.8337 35.5396 0.02 0.13 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-23 out_c_010 11 -18.6078 162.1248 53.239 25.6637 35.4598 0.05 0.09 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-23 out_c_010 19 -18.6078 162.1248 9.532 28.8666 35.1928 0 0.03 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-23 out_c_010 23 -18.6078 162.1248 5.156 28.7881 35.1893 0.02 0.03 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 2 -19.4955 165.0093 150.423 23.1483 35.723 3.96 0.36 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 3 -19.4955 165.0093 125.914 24.0126 35.6618 2.2 0.3 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 6 -19.4955 165.0093 105.281 24.4989 35.5594 0.77 0.2 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 7 -19.4955 165.0093 88.519 24.9601 35.5193 0.53 0.18 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 9 -19.4955 165.0093 71.304 25.6016 35.4301 0.03 0.15 0.11 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 11 -19.4955 165.0093 54.427 26.5235 35.3327 0 0.09 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 13 -19.4955 165.0093 36.312 27.2729 35.2424 0.04 0.06 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 15 -19.4955 165.0093 25.55 28.6367 34.9615 0.02 0.02 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 18 -19.4955 165.0093 16.584 28.8649 34.8805 0.03 0.01 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 19 -19.4955 165.0093 9.307 29.0252 34.8698 0.04 0.01 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_019 23 -19.4955 165.0093 5.867 29.0497 34.8703 0.04 0 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_020 18 -19.4907 165.0082 399.801 14.1636 35.1108 12.44 0.91 0.02 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_020 19 -19.4907 165.0082 300.448 18.4446 35.5233 6.42 0.52 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_020 20 -19.4907 165.0082 250.75 20.1137 35.6471 6.2 0.48 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-24 out_c_020 23 -19.4907 165.0082 201.534 21.6462 35.7286 5.9 0.43 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 1 -19.2248 164.6495 498.685 10.0638 34.7033 19.35 1.39 0.02 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 2 -19.2248 164.6495 397.374 13.8547 35.0991 12.45 0.92 0.02 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 3 -19.2248 164.6495 301.335 17.6994 35.4372 8.53 0.73 0.03 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 4 -19.2248 164.6495 201.723 21.9705 35.7195 4.32 0.4 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 5 -19.2248 164.6495 151.621 23.7621 35.6817 2.49 0.33 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 7 -19.2248 164.6495 101.88 24.7562 35.549 0.87 0.22 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 9 -19.2248 164.6495 88.455 25.1377 35.4966 0.6 0.18 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 11 -19.2248 164.6495 70.614 25.6466 35.4305 0.11 0.13 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 13 -19.2248 164.6495 53.546 26.3693 35.3512 0 0.1 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 15 -19.2248 164.6495 35.433 28.6084 35.0282 0.01 0.02 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 17 -19.2248 164.6495 24.525 28.8869 34.9671 0.04 0.02 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 21 -19.2248 164.6495 9.353 29.0802 34.7613 0.02 0 0.2 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-02-26 out_c_027 23 -19.2248 164.6495 5.246 29.1519 34.729 0.04 0.01 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 1 -19.2242 164.5877 200.313 21.7826 35.76 4.95 0.47 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 2 -19.2242 164.5877 150.328 23.1248 35.6841 3.07 0.35 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 3 -19.2242 164.5877 125.297 23.7495 35.6472 2.32 0.3 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 6 -19.2242 164.5877 105.935 24.1396 35.6123 1.84 0.28 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 7 -19.2242 164.5877 88.384 24.8467 35.542 0.92 0.24 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 9 -19.2242 164.5877 70.699 25.335 35.4755 0.02 0.18 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 11 -19.2242 164.5877 54.042 25.8532 35.4102 0 0.17 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 13 -19.2242 164.5877 35.199 26.7792 35.315 0 0.13 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 15 -19.2242 164.5877 23.849 27.9162 35.1543 0 0.06 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_066 23 -19.2242 164.5877 5.571 29.7346 34.9416 0.02 0.03 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_067 20 -19.2233 164.5787 250.608 20.2184 35.7055 7.23 0.63 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-02 out_c_067 24 -19.2233 164.5787 200.079 22.2707 35.7364 4.72 0.43 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 2 -19.9832 168.0118 151.045 20.937 35.691 2.55 0.22 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 3 -19.9832 168.0118 126.501 21.5116 35.6935 1.44 0.18 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 6 -19.9832 168.0118 105.855 21.783 35.6978 1.27 0.16 0.11 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 7 -19.9832 168.0118 88.882 22.3304 35.6987 1.15 0.15 0.11 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 11 -19.9832 168.0118 53.776 24.0523 35.668 0.01 0.06 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 13 -19.9832 168.0118 35.421 25.8663 35.6501 0 0.04 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 15 -19.9832 168.0118 24.702 27.7499 35.3656 0 0.03 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 18 -19.9832 168.0118 16.393 28.5439 35.3564 0 0.03 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 19 -19.9832 168.0118 9.559 28.7332 35.3627 0 0.05 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_070 23 -19.9832 168.0118 5.22 28.7346 35.363 0.01 0.06 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_071 17 -19.98 168.0157 499.394 9.3131 34.6711 20 1.4 0.02 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_071 19 -19.98 168.0157 300.722 16.0504 35.3514 8.38 0.67 0.02 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_071 20 -19.98 168.0157 249.251 18.3246 35.5894 4.65 0.39 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-04 out_c_071 24 -19.98 168.0157 199.244 19.7116 35.6617 3.29 0.28 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 1 -22.0002 169.9943 201.308 19.9059 35.6543 4.08 0.33 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 2 -22.0002 169.9943 150.638 21.0615 35.6963 2.18 0.2 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 6 -22.0002 169.9943 105.517 21.9409 35.704 1.15 0.16 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 9 -22.0002 169.9943 71.977 23.1991 35.6721 1.34 0.21 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 11 -22.0002 169.9943 53.927 24.9936 35.5573 0.14 0.09 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 13 -22.0002 169.9943 35.681 26.5018 35.4286 0.01 0.03 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 15 -22.0002 169.9943 24.513 27.4658 35.3497 0.01 0.08 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 18 -22.0002 169.9943 14.794 29.1201 35.041 0.01 0.03 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 19 -22.0002 169.9943 9.231 29.5253 34.8793 0.01 0.04 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_074 23 -22.0002 169.9943 4.536 29.5124 34.9081 0 0.04 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_075 17 -21.9997 169.9965 500.478 10.7505 34.7908 17.56 1.24 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_075 18 -21.9997 169.9965 400.579 13.4786 35.0155 13.58 1.03 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_075 19 -21.9997 169.9965 301.476 17.2649 35.4654 6.65 0.52 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_075 20 -21.9997 169.9965 250.999 18.9462 35.5835 4.93 0.41 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-05 out_c_075 24 -21.9997 169.9965 200.413 19.981 35.6633 3.66 0.31 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 1 -21.3732 172.1198 200.244 21.4935 35.723 3.71 0.33 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 2 -21.3732 172.1198 150.474 22.9121 35.7016 1.92 0.22 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 3 -21.3732 172.1198 135.713 23.4521 35.6961 0.95 0.19 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 6 -21.3732 172.1198 119.568 23.9103 35.6763 0.25 0.14 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 7 -21.3732 172.1198 100.854 24.3012 35.671 0.06 0.12 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 11 -21.3732 172.1198 60.128 26.0567 35.6228 0.03 0.03 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 13 -21.3732 172.1198 40.762 27.9061 35.3923 0.04 0.04 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 15 -21.3732 172.1198 28.196 28.6292 35.062 0.02 0.04 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 18 -21.3732 172.1198 18.222 29.2885 35.0298 0.03 0.03 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 19 -21.3732 172.1198 11.144 29.5601 34.916 0.02 0.03 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_078 23 -21.3732 172.1198 5.277 29.5789 34.8974 0.01 0.01 0.21 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_079 19 -21.3758 172.1193 300.323 18.3841 35.5233 5.83 0.47 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_079 20 -21.3758 172.1193 250.223 19.9928 35.6532 4.31 0.37 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-06 out_c_079 24 -21.3758 172.1193 200.495 21.2807 35.7148 4 0.35 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 2 -20.7697 174.25 174.107 21.0716 35.6822 3.4 0.26 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 3 -20.7697 174.25 149.591 21.7706 35.6859 2.96 0.25 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 6 -20.7697 174.25 134.802 21.9997 35.6749 2.25 0.21 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 7 -20.7697 174.25 114.789 22.582 35.6722 1.8 0.19 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 9 -20.7697 174.25 90.043 23.4817 35.6655 0.43 0.13 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 11 -20.7697 174.25 69.994 24.5541 35.6398 0.09 0.1 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 13 -20.7697 174.25 44.595 27.1876 35.4954 0.02 0.02 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 15 -20.7697 174.25 32.058 27.9005 35.4931 0.02 0.02 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 18 -20.7697 174.25 20.85 28.1977 35.3869 0.01 0.02 0.21 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 19 -20.7697 174.25 12.247 29.6206 35.0084 0.02 0.04 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-07 out_c_082 23 -20.7697 174.25 5.579 29.9017 35.0171 0 0.04 0.21 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-09 out_c_091 19 -20.9963 178.6087 300.431 16.8371 35.4182 6.93 0.55 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-09 out_c_091 20 -20.9963 178.6087 250.549 18.5004 35.5717 4.71 0.4 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-09 out_c_091 24 -20.9963 178.6087 200.003 19.6061 35.6521 3.58 0.3 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 2 -20.4417 -178.5105 175.482 21.3639 35.6715 2.58 0.26 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 3 -20.4417 -178.5105 150.782 22.0512 35.6751 2.48 0.24 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 6 -20.4417 -178.5105 134.919 22.401 35.659 1.45 0.19 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 7 -20.4417 -178.5105 114.486 23.0034 35.6546 0.32 0.14 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 9 -20.4417 -178.5105 90.177 23.8338 35.6631 0.02 0.09 0.11 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 11 -20.4417 -178.5105 69.23 24.6423 35.6497 0.03 0.09 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 13 -20.4417 -178.5105 45.274 26.5594 35.5484 0.04 0.07 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 15 -20.4417 -178.5105 33.108 28.0026 35.3435 0.01 0.02 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 18 -20.4417 -178.5105 21.738 29.4012 35.2132 0.01 0.01 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 19 -20.4417 -178.5105 12.988 29.5315 35.2097 0.01 0.01 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_094 23 -20.4417 -178.5105 5.765 29.6064 35.2114 0.01 0.01 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-10 out_c_095 24 -20.44 -178.5105 201.656 21.0113 35.6709 3.14 0.29 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 1 -20.0028 -175.6542 200.655 19.5649 35.61 3.54 0.33 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 3 -20.0028 -175.6542 151.548 20.7522 35.6633 2.75 0.26 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 6 -20.0028 -175.6542 135.72 21.3419 35.6841 2.42 0.26 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 7 -20.0028 -175.6542 114.375 22.1146 35.6777 2.29 0.22 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 9 -20.0028 -175.6542 90.083 22.8714 35.6798 0.05 0.14 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 11 -20.0028 -175.6542 70.779 23.7673 35.678 0.02 0.08 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 13 -20.0028 -175.6542 45.479 26.2259 35.5802 0 0.04 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 15 -20.0028 -175.6542 32.586 27.0351 35.5117 0.01 0.02 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 18 -20.0028 -175.6542 21.675 27.5472 35.4813 0.02 0.05 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 19 -20.0028 -175.6542 12.071 28.8867 35.4173 0.01 0.02 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_098 23 -20.0028 -175.6542 5.859 29.186 35.4111 0.02 0.02 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_099 19 -20.0057 -175.6475 297.671 15.8426 35.2641 8.13 0.64 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-11 out_c_099 20 -20.0057 -175.6475 251.052 17.9689 35.4858 5.16 0.43 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 1 -19.5237 -172.7885 199.819 20.0378 35.6254 2.58 0.21 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 2 -19.5237 -172.7885 176.144 20.4695 35.6191 1.79 0.21 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 3 -19.5237 -172.7885 150.828 21.1151 35.6802 2.14 0.26 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 6 -19.5237 -172.7885 128.237 22.0573 35.6961 2.49 0.27 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 7 -19.5237 -172.7885 107.803 22.9046 35.7075 1.45 0.21 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 9 -19.5237 -172.7885 84.702 24.0045 35.7257 0.01 0.13 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 11 -19.5237 -172.7885 65.499 25.2848 35.7064 0.01 0.1 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 13 -19.5237 -172.7885 43.298 26.9282 35.5955 0.01 0.06 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 15 -19.5237 -172.7885 30.363 28.897 35.1336 0.02 0.06 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 18 -19.5237 -172.7885 19.214 29.4943 34.9667 0.05 0.06 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 19 -19.5237 -172.7885 10.713 29.8033 34.8934 0 0.08 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_102 23 -19.5237 -172.7885 5.749 29.8378 34.8955 0.04 0.08 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_103 18 -19.5368 -172.7813 398.84 13.0843 35.028 12.23 0.89 0.02 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_103 19 -19.5368 -172.7813 299.852 17.1736 35.4628 4.14 0.36 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_103 20 -19.5368 -172.7813 251.183 18.509 35.5306 4.23 0.35 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-12 out_c_103 24 -19.5368 -172.7813 199.781 20.1418 35.6274 2.23 0.22 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-15 out_c_109 3 -18.2462 -170.8275 299.423 16.5467 35.2847 7.63 0.65 0.03 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-15 out_c_109 4 -18.2462 -170.8275 201.193 21.1541 35.79 3.27 0.35 0.06 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-15 out_c_109 5 -18.2462 -170.8275 149.422 22.2933 35.7545 2.33 0.27 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-15 out_c_109 9 -18.2462 -170.8275 69.187 25.2403 35.7155 0.1 0.11 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-15 out_c_109 11 -18.2462 -170.8275 55.913 26.165 35.6565 0.05 0.11 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-15 out_c_109 13 -18.2462 -170.8275 42.428 27.0212 35.5692 0.04 0.07 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-15 out_c_109 15 -18.2462 -170.8275 27.399 29.2191 35.25 0.01 0.04 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-15 out_c_109 19 -18.2462 -170.8275 11.932 29.9674 35.0821 0.03 0.01 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-15 out_c_109 23 -18.2462 -170.8275 5.589 30.1582 35.0823 0.01 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 2 -18.179 -170.7433 152.048 22.5548 35.7511 1.53 0.24 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 3 -18.179 -170.7433 125.479 23.5083 35.7499 0.56 0.14 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 6 -18.179 -170.7433 83.501 25.0636 35.7323 0.01 0.13 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 7 -18.179 -170.7433 69.165 25.7374 35.6852 0.04 0.11 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 9 -18.179 -170.7433 56.784 26.2317 35.6751 0.03 0.12 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 11 -18.179 -170.7433 41.743 27.1323 35.5734 0.02 0.08 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 13 -18.179 -170.7433 26.734 29.657 35.1263 0.02 0.04 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 15 -18.179 -170.7433 19.3 29.9321 35.052 0 0.02 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 18 -18.179 -170.7433 12.192 29.9305 35.052 0 0.02 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 19 -18.179 -170.7433 6.832 29.9301 35.0521 0.01 0.03 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_150 23 -18.179 -170.7433 5.536 29.9213 35.0404 0.04 0.04 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_151 19 -18.1745 -170.7385 296.94 17.3588 35.3801 6.13 0.54 0.01 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_151 20 -18.1745 -170.7385 249.471 19.6111 35.6375 4.72 0.44 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-20 out_c_151 24 -18.1745 -170.7385 203.571 21.1383 35.8012 3.82 0.39 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 1 -18.2007 -169.0728 500.745 8.3926 34.4702 23.6 1.67 0.02 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 2 -18.2007 -169.0728 400.327 11.7201 34.7873 15.26 1.09 0.02 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 3 -18.2007 -169.0728 300.133 16.2255 35.2339 8.14 0.69 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 4 -18.2007 -169.0728 201.756 20.6276 35.7976 4.05 0.43 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 5 -18.2007 -169.0728 150.41 22.5011 35.9628 2.17 0.33 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 7 -18.2007 -169.0728 100.557 23.9781 35.8336 0.17 0.16 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 9 -18.2007 -169.0728 75.644 25.1626 35.7859 0.01 0.16 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 11 -18.2007 -169.0728 64.877 25.8702 35.7322 0.02 0.14 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 13 -18.2007 -169.0728 55.238 26.5672 35.6835 0.01 0.14 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 15 -18.2007 -169.0728 45.061 27.1103 35.64 0.01 0.14 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 19 -18.2007 -169.0728 25.372 29.5928 35.092 0.01 0.15 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-21 out_c_152 23 -18.2007 -169.0728 5.121 29.5913 35.0912 0 0.13 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 3 -18.4307 -165.916 300.473 16.6876 35.2856 9.31 0.84 0.01 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 4 -18.4307 -165.916 250.333 19.096 35.6115 5.33 0.54 0.03 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 5 -18.4307 -165.916 200.136 20.6863 35.7901 3.57 0.4 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 7 -18.4307 -165.916 151.482 21.9888 35.8632 2.22 0.33 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 9 -18.4307 -165.916 135.556 22.5416 35.8842 1.09 0.27 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 11 -18.4307 -165.916 120.897 22.9518 35.8358 0.03 0.19 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 13 -18.4307 -165.916 92.261 24.0959 35.7425 0.03 0.13 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 15 -18.4307 -165.916 60.245 25.8864 35.7067 0.05 0.13 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 19 -18.4307 -165.916 27.203 29.1759 35.2162 0.02 0.16 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-23 out_c_158 23 -18.4307 -165.916 6.641 29.3923 35.2119 0.02 0.28 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-24 out_c_163 17 -18.4282 -165.9315 300.778 16.5252 35.2632 9.39 0.85 0.03 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-24 out_c_163 18 -18.4282 -165.9315 201.358 20.441 35.7541 3.59 0.4 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-24 out_c_163 19 -18.4282 -165.9315 135.785 22.5385 35.8361 0.64 0.21 0.11 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-24 out_c_163 20 -18.4282 -165.9315 51.297 25.5336 35.7204 0.02 0.09 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-24 out_c_163 21 -18.4282 -165.9315 30.392 27.4317 35.5138 0.02 0.1 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-24 out_c_163 22 -18.4282 -165.9315 20.518 29.1495 35.24 0.01 0.14 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-24 out_c_163 23 -18.4282 -165.9315 10.765 29.3295 35.2115 0.01 0.16 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-24 out_c_163 24 -18.4282 -165.9315 4.536 29.33 35.2112 0.02 0.16 0.16 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 6 -18.4952 -165.8647 24.93 29.0887 35.2838 0.3 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 7 -18.4952 -165.8647 24.884 29.0861 35.2853 0.31 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 8 -18.4952 -165.8647 24.65 29.0859 35.2851 0.31 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 9 -18.4952 -165.8647 24.766 29.0914 35.2841 0.34 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 10 -18.4952 -165.8647 25.007 29.1355 35.2781 0.32 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 11 -18.4952 -165.8647 24.789 29.1446 35.2767 0.31 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 12 -18.4952 -165.8647 24.919 29.151 35.2758 0.32 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 13 -18.4952 -165.8647 24.715 29.1561 35.275 0.32 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 14 -18.4952 -165.8647 24.957 29.171 35.272 0.33 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_194 15 -18.4952 -165.8647 24.9 29.1723 35.2719 0.31 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 1 -18.4912 -165.7915 297.703 17.446 35.3891 8.39 0.76 0.03 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 2 -18.4912 -165.7915 249.476 19.2293 35.6368 6.43 0.57 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 3 -18.4912 -165.7915 200.423 20.5635 35.79 4.02 0.44 0.03 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 5 -18.4912 -165.7915 177.151 21.5321 35.8984 3.3 0.39 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 6 -18.4912 -165.7915 150.217 22.3648 35.9228 1.79 0.3 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 7 -18.4912 -165.7915 135.77 22.6788 35.9188 0.98 0.26 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 8 -18.4912 -165.7915 119.977 22.995 35.8702 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 11 -18.4912 -165.7915 91.416 23.9651 35.8364 0.03 0.14 0.14 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 13 -18.4912 -165.7915 60.733 26.0231 35.6996 0.04 0.11 0.15 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 15 -18.4912 -165.7915 42.233 27.5218 35.5054 0.04 0.11 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 18 -18.4912 -165.7915 27.279 29.1138 35.2593 0.03 0.13 0.2 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 19 -18.4912 -165.7915 17.216 29.1201 35.2572 0.02 0.14 0.18 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_198 23 -18.4912 -165.7915 7.256 29.1152 35.2573 0.01 0.14 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_199 18 -18.4842 -165.7792 400.514 12.1328 34.7933 14.94 1.12 0.03 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_199 19 -18.4842 -165.7792 299.662 16.7745 35.2969 9.33 0.81 0.04 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_199 20 -18.4842 -165.7792 249.952 18.976 35.6011 6.09 0.6 0.03 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-28 out_c_199 24 -18.4842 -165.7792 197.741 20.8194 35.8205 3.96 0.44 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-30 out_c_209 1 -18.395 -163.001 300.274 17.3308 35.3652 7.86 0.7 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-30 out_c_209 2 -18.395 -163.001 249.174 19.704 35.6867 5.28 0.51 0.08 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-30 out_c_209 3 -18.395 -163.001 199.327 21.6561 35.8918 3.3 0.39 0.12 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-30 out_c_209 6 -18.395 -163.001 165.23 22.4648 35.8405 0.76 0.23 0.13 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-30 out_c_209 7 -18.395 -163.001 139.975 23.4434 35.83 0.09 0.14 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-30 out_c_209 9 -18.395 -163.001 110.896 24.8161 35.8136 0.04 0.14 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-30 out_c_209 11 -18.395 -163.001 84.853 25.5853 35.7833 0.05 0.14 0.21 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-30 out_c_209 13 -18.395 -163.001 55.934 27.5651 35.6242 0.01 0.14 0.23 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-30 out_c_209 15 -18.395 -163.001 40.378 29.1064 35.0712 0.03 0.14 0.23 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 1 -18.265 -159.9913 300.275 17.9544 35.4622 7.88 0.74 0.05 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 2 -18.265 -159.9913 248.139 19.9578 35.7574 5.73 0.59 0.07 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 3 -18.265 -159.9913 198.698 22.1014 36.0304 4.16 0.47 0.1 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 6 -18.265 -159.9913 174.734 22.5011 36.0166 3 0.39 0.09 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 7 -18.265 -159.9913 148.103 23.5544 36.1056 2.62 0.4 0.11 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 9 -18.265 -159.9913 115.952 24.3329 35.9205 0.24 0.18 0.17 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 11 -18.265 -159.9913 88.08 25.5851 35.9202 0.03 0.17 0.19 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 13 -18.265 -159.9913 57.892 27.7516 35.7116 0.02 0.16 0.21 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 15 -18.265 -159.9913 41.565 29.1439 35.2885 0.01 0.17 0.21 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 18 -18.265 -159.9913 26.44 29.2301 35.2578 0.03 0.16 0.22 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
OUTPACE 2015-03-31 out_c_212 23 -18.265 -159.9913 5.482 29.2015 35.1762 0.01 0.17 0.2 2 South Pacific Wet oxidation Moutin; T.; Wagener; T.; Caffin; M.; Fumenia; A.; Gimenez; A.; Baklouti; M.; Bouruet-Aubertot; P.; Pujo-Pay; M.; Leblanc; K.; Lefevre; D.; Helias Nunige; S.; Leblond; N.; Grosso; O.; and de Verneil; A.: Nutrient availability and the ultimate control of the biological carbon pump in the western tropical South Pacific Ocean; Biogeosciences; 15; 2961 2989; https://doi.org/10.5194/bg-15-2961-2018; 2018.
KH-11-10 2011-12-02 0 30.0 145.0 0.0 0.01 0.01 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-02 0 30.0 145.0 50.0 23.78 34.79 0.01 0 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-02 0 30.0 145.0 75.0 23.7 34.79 0.01 0.01 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-02 0 30.0 145.0 100.0 19.27 34.78 0.24 0.05 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-02 0 30.0 145.0 124.0 18.3 34.75 2.09 0.18 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-02 0 30.0 145.0 150.0 17.72 34.72 3.63 0.2 0.42 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 0.0 0.02 0.03 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 5.0 26.94 34.87 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 8.0 26.93 34.87 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 29.0 26.77 34.9 0.01 0 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 49.0 26.32 35.06 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 74.0 25.25 35.13 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 99.0 22.07 35.03 0.01 0.01 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 124.0 20.05 34.93 0.19 0.04 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 134.0 19.61 34.89 0.15 0.04 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-05 1 23.0 155.0 148.0 19.44 34.88 0.05 0 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 0.0 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 6.0 26.81 34.91 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 10.0 26.81 34.91 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 19.0 26.81 34.91 0.01 0 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 30.0 26.64 35.06 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 51.0 26.39 35.14 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 75.0 24.61 35.2 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 99.0 21.11 35.04 0.01 0.02 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 116.0 20.18 34.98 0.49 0.07 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-07 2 23.0 160.0 149.0 19.29 34.89 1.07 0.09 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-08 3 23.0 165.0 0.0 0.01 0.03 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-08 3 23.0 165.0 5.0 27.36 35.12 0.01 0.03 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-08 3 23.0 165.0 9.0 27.36 35.12 0.01 0.04 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-08 3 23.0 165.0 19.0 27.36 35.12 0.01 0.03 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-08 3 23.0 165.0 30.0 27.36 35.12 0.01 0.03 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-08 3 23.0 165.0 48.0 27.36 35.12 0.01 0.03 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-08 3 23.0 165.0 97.0 25.54 35.35 0.01 0.03 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-08 3 23.0 165.0 119.0 24.14 35.35 0.01 0.03 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-08 3 23.0 165.0 148.0 22.07 35.25 1.14 0.12 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 0.0 0.01 0.01 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 5.0 26.24 35.28 0.01 0.01 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 10.0 26.24 35.28 0.01 0.01 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 20.0 26.24 35.28 0.01 0.01 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 31.0 26.25 35.29 0.01 0.01 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 50.0 26.18 35.36 0.01 0 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 74.0 20.97 35.05 0.01 0.01 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 98.0 19.4 34.93 0.49 0.12 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 100.0 19.41 34.93 0.46 0.11 0.05 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-10 4 23.0 170.0 149.0 17.43 34.72 3.59 0.22 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 0.0 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 5.0 26.25 35.32 0.01 0 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 10.0 26.26 35.32 0.01 0 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 19.0 26.26 35.32 0.01 0 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 30.0 26.26 35.32 0.01 0.01 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 49.0 26.27 35.32 0.01 0 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 75.0 26.27 35.32 0.01 0.01 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 100.0 23.73 35.37 0.01 0.02 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 109.0 22.37 35.32 0.11 0.05 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-11 4B 23.0 174.92 150.0 20.1 35.09 1.19 0.13 0.03 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 0.0 0.01 0.01 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 5.0 26.48 35.33 0.01 0.01 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 9.0 26.43 35.32 0.01 0.01 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 19.0 26.41 35.32 0.01 0.01 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 30.0 26.41 35.32 0.01 0.01 0.26 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 51.0 26.41 35.32 0.01 0.01 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 74.0 26.36 35.32 0.01 0.01 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 100.0 25.52 35.34 0.01 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 119.0 23.39 35.33 0.01 0.03 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-13 5 23.0 -180.0 149.0 20.8 35.15 0.3 0.07 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 0.0 0.01 0.04 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 5.0 25.32 35.24 0.01 0.03 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 9.0 25.32 35.24 0.01 0.04 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 20.0 25.33 35.24 0.01 0.04 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 30.0 25.33 35.24 0.01 0.04 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 49.0 25.33 35.24 0.01 0.04 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 76.0 25.33 35.24 0.03 0.04 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 98.0 23.75 35.23 0.22 0.1 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 110.0 23.32 35.24 0.39 0.12 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-15 6 23.0 -170.0 150.0 20.51 35.12 2.09 0.22 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 0.0 0.01 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 5.0 25.07 35.33 0.01 0.03 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 10.0 25.08 35.33 0.01 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 20.0 25.08 35.33 0.01 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 30.0 25.08 35.33 0.01 0.02 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 50.0 25.09 35.33 0.01 0.02 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 75.0 25.09 35.33 0.01 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 97.0 24.11 35.3 0.06 0.05 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 99.0 23.91 35.31 0.04 0.05 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 125.0 21.65 35.19 0.66 0.07 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-17 7 23.0 -165.0 148.0 20.32 35.12 2.26 0.19 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 0.0 0.01 0.05 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 5.0 24.24 35.29 0.01 0.05 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 10.0 24.24 35.29 0.01 0.05 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 19.0 24.24 35.29 0.01 0.05 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 30.0 24.25 35.29 0.01 0.05 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 50.0 24.25 35.29 0.01 0.06 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 75.0 24.26 35.29 0.01 0.05 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 100.0 24.02 35.34 0.07 0.05 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 105.0 23.85 35.34 0.37 0.08 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2011-12-18 8 22.77 -158.09 148.0 21.73 35.26 1.02 0.12 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 0.0 0.01 0.22 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 5.0 25.23 36.48 0.01 0.24 0.14 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 11.0 25.22 36.48 0.01 0.23 0.1 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 20.0 25.12 36.53 0.01 0.22 0.08 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 30.0 24.77 36.59 0.01 0.2 0.09 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 50.0 24.09 36.55 0.01 0.19 0.15 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 75.0 23.18 36.46 0.01 0.19 0.03 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 99.0 22.91 36.43 0.01 0.19 0.07 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 123.0 22.51 36.35 0.01 0.17 0.09 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-07 15 -23.0 -120.0 149.0 22.05 36.27 0.01 0.16 0.1 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 0.0 0.01 0.11 0.21 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 6.0 24.43 36.33 0.01 0.12 0.2 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 10.0 24.42 36.33 0.01 0.12 0.23 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 20.0 24.39 36.33 0.01 0.12 0.2 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 30.0 24.25 36.33 0.01 0.13 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 50.0 23.26 36.21 0.01 0.12 0.19 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 75.0 22.11 36.12 0.01 0.12 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 99.0 21.44 36.01 0.01 0.11 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 124.0 20.85 35.91 0.01 0.11 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-10 16 -26.5 -120.0 148.0 19.84 35.71 0.01 0.12 0.2 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 0.0 0.01 0.08 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 5.0 22.65 35.71 0.01 0.09 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 10.0 22.64 35.71 0.01 0.09 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 20.0 22.35 35.69 0.01 0.09 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 30.0 22.23 35.67 0.01 0.09 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 49.0 20.07 35.55 0.01 0.09 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 75.0 19.1 35.39 0.01 0.1 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 100.0 18.16 35.26 0.01 0.12 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 125.0 17.44 35.15 0.01 0.13 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-11 17 -30.0 -120.0 150.0 16.81 35.07 0.1 0.16 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 0.0 0.01 0.12 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 5.0 21.74 35.57 0.01 0.13 0.19 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 10.0 21.73 35.57 0.01 0.13 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 20.0 21.74 35.56 0.01 0.13 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 31.0 20.36 35.43 0.01 0.13 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 50.0 19.67 35.48 0.01 0.12 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 75.0 19.12 35.47 0.01 0.12 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 100.0 18.73 35.44 0.01 0.13 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 124.0 17.94 35.28 0.01 0.14 0.14 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-13 18 -30.0 -107.0 149.0 17.58 35.24 0.05 0.17 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 0.0 0.01 0.16 0.15 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 5.0 22.07 35.31 0.01 0.15 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 10.0 21.7 35.31 0.01 0.16 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 19.0 21.55 35.35 0.01 0.15 0.19 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 30.0 19.91 35.08 0.01 0.16 0.15 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 50.0 19.01 35.27 0.01 0.14 0.19 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 75.0 18.66 35.36 0.01 0.14 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 99.0 18.28 35.33 0.01 0.14 0.13 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 125.0 17.44 35.13 0.03 0.17 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 126.0 17.42 35.12 0.05 0.18 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 19 -30.0 -100.0 150.0 16.88 35.06 0.89 0.21 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 0.0 0.01 0.18 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 5.0 23.59 35.94 0.01 0.19 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 10.0 23.53 35.94 0.01 0.19 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 20.0 23.4 35.93 0.01 0.19 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 29.0 23.26 35.92 0.01 0.19 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 49.0 20.53 35.5 0.01 0.19 0.15 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 75.0 19.55 35.48 0.01 0.18 0.15 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 99.0 19.13 35.49 0.01 0.18 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 124.0 18.7 35.42 0.01 0.19 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-16 20 -26.5 -100.0 149.0 18.59 35.45 0.02 0.19 0.14 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 0.0 0.01 0.26 0.2 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 5.0 24.12 35.87 0.01 0.26 0.04 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 10.0 23.94 35.87 0.01 0.3 0.21 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 20.0 23.75 35.87 0.01 0.3 0.2 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 29.0 23.47 35.87 0.01 0.29 0.2 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 49.0 20.89 35.73 0.01 0.25 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 75.0 20.28 35.71 0.01 0.23 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 99.0 19.58 35.63 0.01 0.21 0.1 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 124.0 19.2 35.58 0.01 0.23 0.08 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-17 21 -23.0 -100.0 149.0 19.04 35.55 0.03 0.24 0.15 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 0.0 0.02 0.34 0.28 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 5.0 24.33 35.93 0.02 0.34 0.27 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 10.0 24.34 35.93 0.02 0.36 0.31 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 21.0 24.33 35.93 0.02 0.36 0.29 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 30.0 22.93 35.93 0.01 0.3 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 49.0 22.38 35.94 0.01 0.3 0.22 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 74.0 20.91 35.84 0.01 0.3 0.21 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 99.0 20.38 35.81 0.01 0.27 0.15 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 125.0 20.05 35.78 0.01 0.27 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 148.0 19.68 35.72 0.13 0.28 0.14 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-11-10 2012-01-20 22 -20.0 -100.0 151.0 19.64 35.7 0.27 0.28 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 0.0 0.01 0.01 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 5.0 23.45 34.65 0.01 0.01 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 10.0 22.59 34.67 0.01 0.01 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 20.0 21.82 34.7 0.01 0.01 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 30.0 20.7 34.76 0.01 0.02 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 39.0 20.13 34.8 0.06 0.02 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 50.0 19.52 34.81 0 0.04 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 63.0 18.86 34.89 1.44 0.16 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 75.0 18.56 34.89 2.18 0.14 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 99.0 17.63 34.92 2.73 0.19 0.07 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-14 5 35.0 160.0 149.0 17.03 34.9 3.73 0.25 0.06 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 0.0 0.01 0 0.07 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 5.0 27.18 34.83 0.01 0 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 10.0 27.02 34.86 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 20.0 25.78 35.15 0.01 0 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 30.0 24.63 35.1 0.01 0 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 40.0 21.96 34.98 0.01 0.01 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 50.0 20.7 34.94 0.01 0.01 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 75.0 18.27 34.78 1.22 0.13 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 86.0 17.8 34.74 1.95 0.17 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 99.0 17.42 34.72 2.82 0.22 0.03 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-16 7 30.0 160.0 150.0 16.89 34.7 4.02 0.26 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 0.0 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 5.0 28.71 35.38 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 10.0 28.56 35.38 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 20.0 28.5 35.38 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 30.0 28.43 35.37 0.01 0.01 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 40.0 25.51 35.23 0.01 0 0.07 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 50.0 24.39 35.23 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 75.0 22.95 35.15 0.01 0 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 100.0 21.41 35.03 0.01 0.01 0.07 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 137.0 18.64 34.81 0.44 0.07 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-17 8 25.0 160.0 149.0 18.13 34.78 2.24 0.18 0.04 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 0.0 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 5.0 29.17 34.93 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 10.0 29.17 34.93 0.01 0.01 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 20.0 29.18 34.93 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 31.0 29.18 34.93 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 40.0 29.17 34.93 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 50.0 29.12 34.93 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 76.0 26.02 35.04 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 98.0 24.45 35.2 0.04 0.03 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 126.0 22.91 35.15 0 0.02 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-19 9 20.0 160.0 149.0 20.95 35.04 1.27 0.12 0.06 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 0.0 0.01 0.07 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 5.0 29.34 34.91 0.01 0.07 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 10.0 29.32 34.91 0.01 0.08 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 20.0 29.22 34.91 0.01 0.08 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 30.0 29.18 34.92 0.01 0.08 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 40.0 29.17 34.92 0.01 0.08 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 50.0 28.73 35.01 0.01 0.07 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 74.0 27.9 35.06 0.01 0.05 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 99.0 27.6 35.07 0.01 0.03 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 122.0 26.39 35.14 0.04 0.04 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-07-22 10 15.0 160.0 149.0 24.29 35.21 0.59 0.14 0.07 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 0.0 0.01 0.01 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 5.0 29.0 34.68 0.01 0.01 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 11.0 29.0 34.68 0.01 0.01 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 20.0 29.01 34.69 0.01 0.01 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 29.0 28.88 34.79 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 40.0 28.09 34.99 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 52.0 26.58 35.07 0.01 0.01 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 75.0 24.08 35.09 0.01 0.01 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 101.0 23.09 35.08 0.01 0.01 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 129.0 20.61 34.98 0.46 0.06 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-01 12 20.0 148.0 150.0 19.38 34.86 2.28 0.17 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 0.0 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 5.0 28.65 34.62 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 9.0 28.65 34.62 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 21.0 28.65 34.62 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 30.0 28.63 34.62 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 39.0 27.55 34.71 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 49.0 25.76 34.87 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 72.0 23.24 34.96 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 88.0 22.07 35.0 0.01 0.01 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 99.0 21.34 34.95 0.01 0.01 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-05 14 24.0 143.21 149.0 19.24 34.84 1.28 0.1 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 0.0 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 5.0 27.57 34.33 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 9.0 27.43 34.34 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 20.0 26.41 34.38 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 30.0 26.0 34.34 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 39.0 24.88 34.35 0.01 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 50.0 21.89 34.63 0.02 0 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 75.0 20.66 34.78 0.27 0.04 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 80.0 20.6 34.79 1.04 0.09 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 99.0 19.9 34.81 1.85 0.13 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-07 15 28.0 138.0 149.0 19.02 34.8 2.15 0.15 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 0.0 0.01 0.01 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 6.0 27.47 34.27 0.01 0.01 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 10.0 27.35 34.26 0.01 0.01 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 20.0 27.21 34.26 0.01 0 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 30.0 27.11 34.26 0.01 0.01 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 40.0 22.98 34.52 0.01 0.01 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 50.0 22.4 34.58 0.01 0.01 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 75.0 21.06 34.78 0.01 0.01 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 100.0 19.81 34.82 0 0.07 0.05 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 105.0 19.66 34.82 0.07 0.04 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-12-3 2012-08-09 16 31.0 134.07 150.0 18.91 34.79 2.34 0.16 0.06 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 0.0 0.02 0.02 0.32 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 5.0 27.75 35.02 0.01 0.01 0.3 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 10.0 27.74 35.02 0.01 0.01 0.3 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 20.0 27.72 35.01 0.01 0.01 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 31.0 27.67 35.01 0.01 0.01 0.25 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 50.0 27.67 35.01 0.01 0.01 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 75.0 27.21 35.02 0.02 0.01 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 100.0 24.4 35.16 0.01 0.01 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 124.0 23.19 35.12 0.2 0.04 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 126.0 23.15 35.12 0.26 0.05 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2013-12-16 0 20.0 160.01 149.0 20.36 35.01 2.38 0.17 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 0.0 0.02 0.21 0.23 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 10.0 29.04 35.25 0.02 0.22 0.21 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 21.0 29.04 35.25 0.01 0.22 0.21 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 30.0 29.01 35.26 0.01 0.22 0.19 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 50.0 28.41 35.66 0.01 0.23 0.21 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 76.0 27.44 35.77 0.01 0.21 0.2 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 98.0 26.75 35.9 0.01 0.23 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 126.0 25.68 36.05 0.59 0.31 0.11 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 139.0 24.75 36.21 2.09 0.41 0.06 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-02 4 -15.0 -170.0 149.0 24.57 36.22 3.02 0.47 0.03 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 0.0 0.02 0.13 0.2 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 4.0 27.8 35.45 0.01 0.13 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 9.0 27.79 35.45 0.01 0.13 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 20.0 27.75 35.44 0.01 0.13 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 30.0 27.66 35.44 0.01 0.13 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 49.0 26.64 35.53 0.01 0.1 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 75.0 25.43 35.6 0.01 0.07 0.14 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 99.0 24.43 35.61 0.01 0.07 0.14 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 124.0 23.63 35.57 0.01 0.09 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-05 5 -20.0 -170.06 150.0 23.34 35.59 0.11 0.13 0.1 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 0.0 0.01 0.03 0.18 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 5.0 26.34 35.55 0.01 0.03 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 10.0 26.34 35.55 0.01 0.03 0.14 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 21.0 26.32 35.55 0.01 0.03 0.17 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 30.0 25.41 35.54 0.01 0.03 0.16 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 50.0 23.0 35.54 0.01 0.03 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 75.0 22.36 35.54 0.01 0.07 0.13 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 100.0 21.32 35.58 0.4 0.15 0.07 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 109.0 21.1 35.6 0.93 0.2 0.1 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 124.0 20.53 35.61 2.26 0.27 0.05 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-08 6 -25.01 -170.7 148.0 19.64 35.58 3.22 0.33 0.03 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 0.0 0.01 0.03 0.14 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 10.0 23.88 35.44 0.01 0.03 0.14 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 21.0 23.75 35.44 0.01 0.03 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 31.0 23.04 35.46 0.01 0.03 0.11 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 49.0 20.07 35.48 0.01 0.06 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 75.0 18.11 35.44 0.01 0.1 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 99.0 17.25 35.47 0.03 0.14 0.11 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 107.0 16.79 35.46 0.84 0.22 0.06 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 124.0 16.51 35.45 3.23 0.35 0.02 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-09 7 -30.0 -170.0 149.0 15.96 35.42 4.87 0.45 0.04 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 0.0 0.01 0.08 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 6.0 22.01 35.23 0.01 0.08 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 10.0 22.01 35.23 0.01 0.08 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 21.0 21.6 35.28 0.01 0.08 0.11 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 30.0 21.83 35.22 0.01 0.08 0.11 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 49.0 20.37 35.38 0.01 0.08 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 75.0 17.65 35.31 0.01 0.08 0.12 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 99.0 16.79 35.32 0.01 0.1 0.1 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 123.0 15.94 35.29 0.15 0.18 0.09 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 126.0 15.85 35.29 0.68 0.28 0.02 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-13-7 2014-01-12 8 -35.0 -170.07 148.0 15.42 35.31 4.39 0.44 0.02 2 South Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 0.0 0.01 0 0.36 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 0.0 0.01 0.01 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 5.0 28.73 35.43 0.01 0 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 10.0 28.7 35.42 0.01 0 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 20.0 27.94 35.43 0.01 0 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 28.0 28.46 35.43 0.01 0 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 30.0 26.83 35.44 0.01 0 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 50.0 25.18 35.33 0.01 0.01 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 55.0 26.16 35.39 0.01 0 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 74.0 24.08 35.31 0.01 0.01 0.25 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 100.0 23.14 35.27 0.01 0.01 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 106.0 23.85 35.29 0.01 0.01 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 119.0 22.07 35.16 0.08 0.03 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 124.0 21.98 35.14 0.17 0.04 0.26 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-06-27 0 19.99 159.97 148.0 20.09 34.96 1.38 0.13 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 0.0 0.01 0.14 0.3 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 0.0 0.01 0.14 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 5.0 27.51 34.99 0.01 0.14 0.29 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 10.0 27.52 34.99 0.01 0.14 0.36 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 19.0 27.5 34.99 0.01 0.14 0.27 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 20.0 27.52 35.0 0.01 0.14 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 30.0 27.52 35.0 0.01 0.14 0.34 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 48.0 27.51 34.99 0.01 0.14 0.26 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 50.0 27.52 35.0 0.01 0.14 0.36 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 75.0 27.46 34.99 0.01 0.14 0.39 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 100.0 25.85 35.09 0.01 0.13 0.37 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 116.0 25.33 35.16 0.03 0.13 0.26 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 125.0 23.85 35.23 0.06 0.15 0.27 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 134.0 23.06 35.18 0.36 0.19 0.25 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-08 4 15.01 -170.02 149.0 22.46 35.2 0.59 0.21 0.31 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 0.0 0.01 0.12 0.25 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 0.0 0.01 0.12 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 5.0 27.49 35.16 0.01 0.12 0.26 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 10.0 27.49 35.16 0.01 0.12 0.27 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 20.0 27.48 35.16 0.01 0.12 0.26 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 20.0 27.49 35.18 0.01 0.11 0.29 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 30.0 27.36 35.21 0.01 0.1 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 47.0 26.34 35.33 0.01 0.06 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 51.0 26.17 35.39 0.01 0.05 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 74.0 23.96 35.39 0.01 0.05 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 100.0 22.62 35.39 0.01 0.07 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 100.0 23.06 35.46 0.01 0.05 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 124.0 22.1 35.36 0.06 0.09 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 138.0 21.4 35.26 0.72 0.15 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 144.0 21.17 35.26 1.59 0.19 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-09 5 20.02 -169.98 151.0 21.03 35.21 1.95 0.24 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 0.0 0.01 0.04 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 0.0 0.01 0.04 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 5.0 26.51 35.58 0.01 0.03 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 10.0 26.5 35.58 0.01 0.04 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 20.0 26.38 35.58 0.01 0.03 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 25.0 26.23 35.48 0.01 0.03 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 30.0 26.01 35.54 0.01 0.02 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 50.0 22.64 35.39 0.01 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 54.0 21.79 35.33 0.01 0.03 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 75.0 20.78 35.26 0.01 0.04 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 100.0 20.18 35.2 0.01 0.05 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 108.0 19.46 35.12 0.94 0.12 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 113.0 19.1 35.08 0.42 0.09 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 124.0 18.52 34.98 2.2 0.21 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-10 6 24.04 -170.0 149.0 17.99 34.93 2.55 0.23 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 0.0 0.03 0.02 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 0.0 0.01 0.02 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 5.0 26.01 35.21 0.04 0.03 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 10.0 25.85 35.27 0.06 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 19.0 25.6 35.2 0.03 0.02 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 27.0 25.43 35.26 0.01 0.02 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 30.0 21.25 35.1 0.11 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 50.0 19.44 34.97 0.07 0.04 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 50.0 19.87 34.99 0.01 0.03 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 73.0 17.57 34.79 0.05 0.07 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 93.0 16.98 34.76 0.07 0.07 0.28 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 99.0 16.69 34.74 0.78 0.19 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 103.0 16.37 34.71 2.84 0.31 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 124.0 15.99 34.67 4.09 0.42 0.04 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 140.0 15.69 34.63 4.36 0.3 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-20 7 30.04 -170.0 148.0 15.47 34.6 4.6 0.36 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 0.0 0.01 0.01 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 0.0 0.01 0.02 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 5.0 23.75 34.59 0.01 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 10.0 23.74 34.59 0.01 0.02 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 19.0 22.82 34.59 0.01 0.02 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 22.0 22.68 34.58 0.01 0.03 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 30.0 17.84 34.56 0.01 0.03 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 40.0 17.14 34.58 0.01 0.04 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 49.0 16.12 34.55 0.08 0.04 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 66.0 15.34 34.52 2.01 0.14 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 70.0 15.55 34.51 1.84 0.18 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 74.0 15.07 34.51 3.09 0.28 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 99.0 14.59 34.51 5.92 0.4 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 99.0 14.76 34.53 5.61 0.38 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 123.0 14.18 34.48 6.08 0.44 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-14-3 2014-07-21 8 35.01 -170.0 151.0 13.94 34.47 6.75 0.41 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 0.0 0.01 0.18 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 0.0 0.01 0.19 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 6.0 24.97 34.4 0.01 0.18 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 11.0 24.95 34.4 0.01 0.19 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 20.0 24.94 34.41 0.01 0.19 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 28.0 24.9 34.41 0.01 0.21 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 31.0 23.97 34.35 0.01 0.19 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 51.0 22.57 34.25 0.01 0.21 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 51.0 22.6 34.27 0.01 0.22 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 76.0 20.49 34.05 0.01 0.23 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 99.0 18.67 33.92 0.06 0.24 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 104.0 18.75 33.94 0.06 0.24 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-21 6 22.59 -120.0 119.0 17.14 33.9 2.38 0.68 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 0.0 0.01 0.16 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 0.0 0.01 0.17 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 6.0 24.32 34.68 0.01 0.17 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 10.0 24.25 34.67 0.01 0.17 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 20.0 24.0 34.67 0.01 0.17 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 26.0 23.96 34.66 0.01 0.18 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 31.0 23.95 34.67 0.01 0.18 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 50.0 22.27 34.65 0.01 0.16 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 57.0 20.99 34.59 0.01 0.13 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 74.0 20.56 34.56 0.01 0.15 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 100.0 19.91 34.62 0.01 0.13 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 116.0 19.19 34.61 0.03 0.12 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 125.0 19.15 34.64 0.01 0.12 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 140.0 18.62 34.63 0.57 0.17 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-24 7 23.0 -130.0 150.0 17.87 34.5 1.7 0.29 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 0.0 0.01 0.06 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 0.0 0.01 0.06 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 5.0 24.2 35.03 0.01 0.07 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 10.0 24.2 35.03 0.01 0.07 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 20.0 24.18 35.03 0.01 0.07 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 24.0 23.96 35.05 0.01 0.07 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 30.0 24.11 35.03 0.01 0.07 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 51.0 23.5 35.07 0.01 0.06 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 51.0 23.26 35.12 0.01 0.05 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 75.0 21.43 34.94 0.01 0.09 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 100.0 21.11 35.05 0.01 0.08 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 110.0 20.13 34.84 0.01 0.11 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 116.0 20.22 34.99 0.7 0.17 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 125.0 20.09 35.0 1.03 0.18 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-27 8 22.59 -140.0 150.0 18.97 34.84 1.16 0.18 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 0.0 0.01 0.1 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 0.0 0.01 0.1 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 5.0 26.52 34.66 0.01 0.1 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 10.0 26.5 34.66 0.01 0.1 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 20.0 26.5 34.68 0.01 0.08 0.23 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 25.0 26.46 34.63 0.01 0.1 0.24 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 31.0 26.44 34.88 0.01 0.05 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 50.0 25.95 35.22 0.01 0.02 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 51.0 25.85 34.92 0.01 0.04 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 75.0 24.55 35.18 0.01 0.03 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 100.0 22.64 35.21 0.01 0.04 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 106.0 22.21 35.18 0.01 0.07 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 118.0 21.74 35.14 0.63 0.21 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 124.0 21.41 35.11 0.96 0.18 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-08-30 9 23.01 -150.0 149.0 20.23 34.98 2.87 0.38 0.03 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 0.0 0.01 0.07 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 0.0 0.01 0.06 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 6.0 27.92 34.7 0.01 0.06 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 11.0 27.93 34.7 0.01 0.07 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 20.0 27.93 34.7 0.01 0.07 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 25.0 27.96 34.7 0.01 0.06 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 31.0 27.91 34.69 0.01 0.07 0.22 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 48.0 27.16 34.62 0.01 0.07 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 49.0 27.07 34.55 0.01 0.09 0.21 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 75.0 25.36 34.88 0.01 0.07 0.2 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 101.0 22.86 35.05 0.09 0.14 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 104.0 22.82 35.03 0.04 0.15 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 111.0 22.9 35.05 0.18 0.15 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 125.0 22.25 35.11 0.25 0.14 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 148.0 21.03 35.1 0.92 0.19 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-02 10 21.3 -160.0 149.0 21.1 35.1 0.8 0.17 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 0.0 0.01 0.04 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 0.0 0.01 0.04 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 5.0 28.73 34.9 0.01 0.05 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 10.0 28.75 34.93 0.01 0.04 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 20.0 28.63 35.1 0.01 0.02 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 29.0 28.29 35.12 0.01 0.01 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 29.0 28.35 35.04 0.01 0.03 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 51.0 26.81 35.15 0.01 0.01 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 57.0 25.96 35.19 0.01 0.03 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 74.0 25.2 35.23 0.01 0.01 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 100.0 23.26 35.24 0.01 0.03 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 108.0 22.21 35.19 0.01 0.08 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 121.0 21.14 35.13 0.66 0.15 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 124.0 21.7 35.17 0.97 0.17 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 144.0 19.45 35.0 1.96 0.28 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-13 11 21.3 -170.0 148.0 19.67 35.01 1.87 0.27 0.06 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 0.0 0.01 0.03 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 0.0 0.01 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 5.0 29.03 34.88 0.01 0.02 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 11.0 29.04 34.88 0.01 0.03 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 20.0 29.03 34.88 0.01 0.02 0.17 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 25.0 29.02 34.92 0.01 0.01 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 29.0 28.99 34.88 0.01 0.03 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 50.0 27.83 34.93 0.01 0.03 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 52.0 27.0 35.15 0.01 0.01 0.18 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 74.0 25.48 35.27 0.01 0.03 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 100.0 23.13 35.25 0.01 0.04 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 111.0 22.41 35.21 0.01 0.05 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 125.0 21.41 35.15 0.09 0.11 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 131.0 20.99 35.12 0.41 0.11 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-16 12 22.59 179.59 151.0 20.17 35.05 0.82 0.18 0.06 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 0.0 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 0.0 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 5.0 29.4 35.1 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 10.0 29.33 35.09 0.01 0.01 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 21.0 29.21 35.08 0.01 0.01 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 27.0 29.2 35.09 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 31.0 29.17 35.08 0.01 0.01 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 49.0 26.73 35.33 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 56.0 26.12 35.33 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 76.0 23.7 35.27 0.01 0.03 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 99.0 22.32 35.21 0.01 0.04 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 113.0 21.72 35.17 0.01 0.04 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 125.0 20.98 35.12 0.17 0.1 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 126.0 20.96 35.12 0.13 0.09 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-20 13 23.0 169.59 149.0 20.18 35.07 1 0.21 0.04 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 0.0 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 0.0 0.01 0 0.19 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 6.0 29.5 35.08 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 11.0 29.5 35.08 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 20.0 29.49 35.08 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 28.0 29.11 35.08 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 30.0 29.21 35.1 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 50.0 27.18 35.25 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 56.0 26.43 35.29 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 74.0 25.1 35.3 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 99.0 22.76 35.25 0.01 0.02 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 114.0 22.7 35.24 0.01 0.03 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 125.0 21.38 35.16 0.01 0.03 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 145.0 21.31 35.14 0.03 0.04 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-22 14 22.59 159.58 150.0 20.88 35.11 0.05 0.04 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 0.0 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 0.0 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 5.0 29.49 34.84 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 20.0 29.27 34.8 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 31.0 28.49 34.79 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 33.0 29.29 34.81 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 50.0 27.38 34.85 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 57.0 26.86 34.86 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 75.0 23.3 35.05 0.01 0.01 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 100.0 21.08 35.0 0.01 0.04 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 103.0 22.17 35.09 0.01 0.03 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 115.0 19.76 34.93 0.38 0.1 0.09 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 125.0 19.17 34.91 0 0.17 0.06 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 137.0 19.69 34.93 1 0.13 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-26 15 23.0 150.01 149.0 18.71 34.89 2.43 0.24 0.04 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 0.0 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 0.0 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 5.0 30.0 34.86 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 10.0 29.98 34.86 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 20.0 29.53 34.87 0.01 0 0.13 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 25.0 29.9 34.84 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 30.0 28.74 34.89 0.01 0 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 50.0 25.76 35.04 0.01 0 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 53.0 25.27 35.06 0.01 0.01 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 75.0 23.94 35.17 0.01 0.02 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 99.0 22.4 35.17 0.25 0.08 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 103.0 22.14 35.15 0.49 0.1 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 106.0 21.66 35.13 0.94 0.13 0.08 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 124.0 21.09 35.1 0 0.15 0.06 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 149.0 20.17 35.01 1.46 0.16 0.07 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-09-29 16 23.0 139.59 149.0 19.67 34.99 1.84 0.2 0.06 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 0.0 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 0.0 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 5.0 30.22 34.53 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 11.0 30.22 34.52 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 20.0 30.21 34.52 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 28.0 30.07 34.53 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 30.0 30.12 34.52 0.01 0 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 49.0 29.64 34.62 0.01 0 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 60.0 28.24 34.86 0.01 0 0.15 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 75.0 27.72 34.92 0.01 0 0.16 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 99.0 25.78 35.07 0.01 0.01 0.14 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 117.0 24.71 35.13 0.04 0.03 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 123.0 24.43 35.13 0.05 0.04 0.12 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 131.0 23.96 35.15 0.26 0.06 0.11 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
KH-17-4 2017-10-01 17 23.0 136.59 149.0 23.04 35.14 0.61 0.08 0.1 2 North Pacific Wet oxidation Hashihama; F.; Saito; H.; Shiozaki; T.; Ehama; M.; Suwa; S.; Sugiyama; T.; et al. (2020). Biogeochemical controls of particulate phosphorus distribution across the oligotrophic subtropical Pacific Ocean. Global Biogeochemical Cycles; 34; e2020GB006669. https://doi.org/10.1029/2020GB006669
AMT10 2000-04-13 A10-01 -35.08802 -49.30228 11.9 19.805 35.231 2.19 0.28 0.01 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-13 A10-01 -35.08802 -49.30228 28.3 19.757 35.241 0.18 0.06 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-13 A10-01 -35.08802 -49.30228 41.7 19.618 35.33 0.43 0.05 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-13 A10-01 -35.08802 -49.30228 45.1 19.524 35.338 0.23 0.03 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-13 A10-01 -35.08802 -49.30228 71.6 18.968 36.109 0.93 0.1 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-13 A10-01 -35.08802 -49.30228 140.0 16.017 35.695 0.37 0 0.07 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-13 A10-01 -35.08802 -49.30228 189.8 15.254 35.598 0.27 0.07 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-15 A10-02 -29.0474 -43.02333 11.1 23.626 36.423 0 0.39 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-15 A10-02 -29.0474 -43.02333 46.6 23.621 36.434 0 0.39 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 9.2 27.259 37.066 0.12 0 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 32.5 27.231 37.065 0.07 0 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 37.8 27.231 37.066 0 0 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 47.3 27.006 37.138 0.13 0 0.01 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 82.4 24.491 37.22 0.06 0 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 92.3 23.952 37.169 0 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 107.2 23.626 37.13 0 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 136.6 22.837 36.964 0.1 0 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 175.9 21.127 36.619 0.5 0 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-17 A10-04 -22.2481 -36.83975 251.3 16.708 35.727 4.13 0.39 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-06 -14.18388 -32.65223 22.2 27.89 37.038 0 0 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-06 -14.18388 -32.65223 66.5 26.657 37.19 0 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-06 -14.18388 -32.65223 101.9 24.617 37.144 0 0 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-06 -14.18388 -32.65223 136.4 23.832 37.045 0.24 0 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-06 -14.18388 -32.65223 151.6 23.27 36.934 0.29 0.13 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-06 -14.18388 -32.65223 250.0 15.901 35.64 5.47 0.45 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-07 -13.51312 -32.32762 181.6 21.681 36.677 1.13 0.23 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-07 -13.51312 -32.32762 230.4 16.679 35.774 6.04 0.58 0.05 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-07 -13.51312 -32.32762 296.3 12.926 35.218 16.41 1.15 0.01 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-19 A10-07 -13.51312 -32.32762 489.4 6.912 34.57 26.14 1.84 0.01 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-20 A10-08 -10.28605 -30.83139 9.6 28.581 36.429 0 0.01 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-20 A10-08 -10.28605 -30.83139 31.8 28.511 36.45 0.16 0 0.35 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-20 A10-08 -10.28605 -30.83139 55.9 27.695 36.714 0 0.06 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-20 A10-08 -10.28605 -30.83139 101.0 24.047 36.949 0.23 0.09 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-20 A10-08 -10.28605 -30.83139 119.3 22.727 36.754 0.65 0.21 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-20 A10-08 -10.28605 -30.83139 126.3 21.885 36.616 2.11 0.3 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-20 A10-08 -10.28605 -30.83139 168.0 16.831 35.823 12.24 0.91 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-21 A10-09 -6.34029 -28.9944 10.3 28.638 36.013 0.15 0.07 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-21 A10-09 -6.34029 -28.9944 18.4 28.619 36.013 0.14 0.04 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-21 A10-09 -6.34029 -28.9944 23.6 28.615 36.013 0.16 0.05 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-21 A10-09 -6.34029 -28.9944 33.3 28.614 36.014 0.41 0.07 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-21 A10-09 -6.34029 -28.9944 58.2 28.402 36.167 0.03 0.07 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-21 A10-09 -6.34029 -28.9944 73.5 26.953 36.544 0.17 0.04 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-21 A10-09 -6.34029 -28.9944 83.2 25.481 36.821 0.27 0.06 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-21 A10-09 -6.34029 -28.9944 107.6 21.149 36.344 2.39 0.3 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-21 A10-09 -6.34029 -28.9944 249.7 10.197 34.94 21.89 1.54 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-22 A10-10 -2.22507 -27.10071 53.0 22.498 35.998 0.17 0.16 0.28 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-22 A10-10 -2.22507 -27.10071 102.5 13.589 35.358 20.59 1.37 0.25 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-22 A10-10 -2.22507 -27.10071 179.2 12.791 35.246 23.01 1.54 0.4 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-22 A10-10 -2.22507 -27.10071 252.9 12.037 35.154 21.59 1.41 0.38 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-23 A10-11 1.94233 -25.26049 10.2 28.95 35.457 0.42 0.03 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-23 A10-11 1.94233 -25.26049 18.3 28.782 35.671 0.44 0.03 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-23 A10-11 1.94233 -25.26049 27.1 28.386 35.733 0.47 0 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-23 A10-11 1.94233 -25.26049 62.8 23.043 36.088 2.72 0.23 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-23 A10-11 1.94233 -25.26049 73.0 19.597 35.908 10.97 0.71 0.54 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-23 A10-11 1.94233 -25.26049 200.5 12.93 35.262 17.86 1.19 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-24 A10-12 6.09809 -23.4503 9.3 28.175 35.683 0.22 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-24 A10-12 6.09809 -23.4503 17.6 27.18 35.949 0.06 0 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-24 A10-12 6.09809 -23.4503 23.0 26.891 35.966 0.22 0 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-24 A10-12 6.09809 -23.4503 26.9 25.684 35.97 0.25 0 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-24 A10-12 6.09809 -23.4503 37.2 21.464 35.957 0.25 0.11 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-24 A10-12 6.09809 -23.4503 46.9 19.962 36.006 3.77 0.3 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-24 A10-12 6.09809 -23.4503 56.3 18.905 35.948 6.2 0.46 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-24 A10-12 6.09809 -23.4503 77.3 16.132 35.656 14.29 1.01 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-24 A10-12 6.09809 -23.4503 102.1 14.841 35.506 21.12 1.4 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-13 10.20415 -21.65501 2.8 26.356 35.912 0.03 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-13 10.20415 -21.65501 9.8 26.315 35.911 0.42 0 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-13 10.20415 -21.65501 16.9 23.011 35.848 0 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-13 10.20415 -21.65501 21.5 20.677 35.797 0.25 0.04 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-13 10.20415 -21.65501 33.5 17.705 35.727 1.45 0.21 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-13 10.20415 -21.65501 46.1 16.806 35.665 18.98 1.2 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-13 10.20415 -21.65501 103.7 14.414 35.46 28.08 1.59 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-14 12.46872 -20.65577 10.3 24.236 35.957 0.19 0.07 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-14 12.46872 -20.65577 50.0 17.461 35.764 0.34 0.18 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-25 A10-14 12.46872 -20.65577 150.6 13.002 35.298 26.82 1.62 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-28 A10-15 23.68236 -21.56264 10.6 20.828 36.951 0.13 0.03 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-28 A10-15 23.68236 -21.56264 23.6 20.739 36.948 0.08 0.01 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-28 A10-15 23.68236 -21.56264 42.4 20.714 36.946 0.05 0.07 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-28 A10-15 23.68236 -21.56264 71.4 20.456 36.931 0.32 0.03 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-28 A10-15 23.68236 -21.56264 77.0 19.803 36.86 0.04 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-28 A10-15 23.68236 -21.56264 81.4 19.74 36.853 0.43 0.09 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-28 A10-15 23.68236 -21.56264 114.6 19.444 36.808 2.16 0.12 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-28 A10-15 23.68236 -21.56264 161.4 18.082 36.516 7.21 0.39 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-29 A10-16 27.53359 -21.96233 10.2 19.411 36.911 0.83 0 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-29 A10-16 27.53359 -21.96233 17.9 19.393 36.911 0.94 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-29 A10-16 27.53359 -21.96233 22.6 19.41 36.917 0.18 0 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-29 A10-16 27.53359 -21.96233 32.8 19.41 36.917 0.19 0 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-29 A10-16 27.53359 -21.96233 55.9 19.413 36.918 0.24 0 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-29 A10-16 27.53359 -21.96233 82.1 19.079 36.863 0.33 0.01 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-29 A10-16 27.53359 -21.96233 107.7 18.898 36.846 0.89 0.03 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-04-29 A10-16 27.53359 -21.96233 172.0 18.241 36.718 1.3 0.06 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 10.2 16.546 36.314 0.09 0.03 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 18.1 16.552 36.314 0.14 0.04 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 23.1 16.532 36.313 0.43 0.16 0.24 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 32.9 16.47 36.31 0.43 0.03 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 42.7 16.451 36.309 0.57 0.04 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 53.0 16.452 36.308 0.72 0.07 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 62.7 16.453 36.307 0.49 0.06 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 76.8 16.416 36.299 0.54 0.03 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 102.3 15.897 36.193 2.96 0.15 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 152.1 15.16 36.06 5.16 0.28 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-01 A10-17 35.9994 -19.99471 202.0 14.275 35.924 8.76 0.49 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-02 A10-20 38.86688 -20.00355 8.9 15.201 36.03 0.43 0.03 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-02 A10-20 38.86688 -20.00355 17.0 15.196 36.033 0.23 0 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-02 A10-20 38.86688 -20.00355 22.5 15.201 36.035 0.34 0.02 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-02 A10-20 38.86688 -20.00355 42.5 15.11 36.041 0.73 0 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-02 A10-20 38.86688 -20.00355 61.1 15.038 36.03 1.36 0.08 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-02 A10-20 38.86688 -20.00355 110.2 14.907 36.035 3.05 0.13 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-02 A10-20 38.86688 -20.00355 125.3 14.771 35.997 2.96 0.13 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-02 A10-20 38.86688 -20.00355 138.9 14.703 35.979 3 0.14 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-02 A10-20 38.86688 -20.00355 198.4 14.199 35.894 6.47 0.29 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-05 A10-22 48.20472 -12.83378 9.7 12.02 35.584 5.36 0.35 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-05 A10-22 48.20472 -12.83378 22.4 12.019 35.584 5.41 0.34 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-05 A10-22 48.20472 -12.83378 32.1 12.017 35.584 2.99 0.14 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-05 A10-22 48.20472 -12.83378 51.3 11.713 35.577 4.32 0.27 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-05 A10-22 48.20472 -12.83378 76.0 11.638 35.573 4.34 0.2 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-05 A10-22 48.20472 -12.83378 98.7 11.564 35.572 7.85 0.42 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-05 A10-22 48.20472 -12.83378 122.7 11.548 35.571 4.51 0.21 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-05 A10-22 48.20472 -12.83378 147.9 11.533 35.57 6.96 0.4 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-06 A10-23 49.31969 -6.00458 9.8 10.772 35.322 4.62 0.34 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-06 A10-23 49.31969 -6.00458 17.8 10.762 35.323 5.54 0.37 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-06 A10-23 49.31969 -6.00458 22.4 10.769 35.322 4.33 0.24 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-06 A10-23 49.31969 -6.00458 32.1 10.763 35.323 4.95 0.24 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-06 A10-23 49.31969 -6.00458 42.7 10.765 35.323 4.62 0.24 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-06 A10-23 49.31969 -6.00458 52.5 10.764 35.324 6.11 0.42 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-06 A10-23 49.31969 -6.00458 61.9 10.765 35.323 6.17 0.35 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT10 2000-05-06 A10-23 49.31969 -6.00458 71.8 10.766 35.324 6.02 0.45 0.33 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-28 AMT12_32 -5.32086 -24.99598 0.7 28.061 35.9 0.02 0.23 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-28 AMT12_32 -5.32086 -24.99598 9.9 28.047 35.9 0.01 0.23 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-28 AMT12_32 -5.32086 -24.99598 24.5 28.039 35.961 0.02 0.19 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-28 AMT12_32 -5.32086 -24.99598 50.2 27.991 36.058 0.06 0.17 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-28 AMT12_32 -5.32086 -24.99598 74.6 27.916 36.082 0.08 0.19 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-28 AMT12_32 -5.32086 -24.99598 83.8 27.784 36.083 1.27 0.33 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-28 AMT12_32 -5.32086 -24.99598 124.5 17.166 35.789 18.35 1.24 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-30 AMT12_37 2.21134 -26.30656 23.5 28.236 35.396 0.01 0.12 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-30 AMT12_37 2.21134 -26.30656 48.6 27.685 35.541 0.01 0.11 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-30 AMT12_37 2.21134 -26.30656 62.7 24.427 35.774 1.46 0.32 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-30 AMT12_37 2.21134 -26.30656 99.2 15.991 35.608 22.56 1.43 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-31 AMT12_39 5.91607 -28.48376 1.5 28.309 35.664 0.01 0.05 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-31 AMT12_39 5.91607 -28.48376 9.9 28.305 35.662 0.01 0.07 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-31 AMT12_39 5.91607 -28.48376 24.7 28.28 35.832 0.01 0.08 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-31 AMT12_39 5.91607 -28.48376 49.2 27.678 35.845 0.07 0.09 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-31 AMT12_39 5.91607 -28.48376 65.5 23.166 35.933 1.24 0.18 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-31 AMT12_39 5.91607 -28.48376 99.5 16.489 35.644 18.85 1.1 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-31 AMT12_39 5.91607 -28.48376 124.9 13.653 35.37 20.36 1.3 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-05-31 AMT12_39 5.91607 -28.48376 174.5 12.215 35.181 22.73 1.49 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-01 AMT12_41 9.56324 -30.67717 10.1 26.977 36.298 0.01 0.1 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-01 AMT12_41 9.56324 -30.67717 59.1 22.422 36.038 11.23 0.66 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-02 AMT12_44 12.23537 -32.28619 1.7 25.998 36.24 0 0.1 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-02 AMT12_44 12.23537 -32.28619 9.1 25.985 36.24 0.03 0.13 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-02 AMT12_44 12.23537 -32.28619 23.9 25.89 36.237 0 0.14 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-03 AMT12_46 15.4484 -34.23054 1.7 24.593 36.731 0 0.07 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-03 AMT12_46 15.4484 -34.23054 10.5 24.571 36.731 0 0.06 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-03 AMT12_46 15.4484 -34.23054 25.7 24.464 36.764 0 0.04 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-03 AMT12_46 15.4484 -34.23054 50.3 24.015 36.796 0 0.04 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-03 AMT12_46 15.4484 -34.23054 75.6 23.588 36.804 0 0.03 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-03 AMT12_46 15.4484 -34.23054 100.7 22.911 36.75 0.01 0.03 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-03 AMT12_46 15.4484 -34.23054 113.9 23.022 37.028 1.37 0.09 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-03 AMT12_46 15.4484 -34.23054 250.5 15.277 36.036 19.7 1.21 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-04 AMT12_48 19.05075 -36.45547 2.5 24.699 36.79 0 0.1 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-04 AMT12_48 19.05075 -36.45547 99.8 23.176 37.231 0 0.1 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-04 AMT12_48 19.05075 -36.45547 122.7 22.271 37.2 0.12 0.1 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-04 AMT12_48 19.05075 -36.45547 174.4 18.512 36.564 7.43 0.46 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-05 AMT12_50 22.23174 -34.90055 2.1 24.213 37.517 0 0.08 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-05 AMT12_50 22.23174 -34.90055 10.1 24.214 37.52 0 0.1 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-05 AMT12_50 22.23174 -34.90055 49.8 24.057 37.502 0 0.09 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-05 AMT12_50 22.23174 -34.90055 74.4 23.539 37.47 0 0.08 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-05 AMT12_50 22.23174 -34.90055 124.5 21.927 37.222 0.49 0.11 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-05 AMT12_50 22.23174 -34.90055 149.4 20.335 36.936 0.28 0.09 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-06 AMT12_53 24.32905 -32.57326 2.2 23.648 37.424 0.01 0.06 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-06 AMT12_53 24.32905 -32.57326 10.2 23.643 37.425 0.01 0.07 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-06 AMT12_53 24.32905 -32.57326 25.5 23.637 37.425 0.01 0.06 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-06 AMT12_53 24.32905 -32.57326 49.7 23.508 37.42 0.01 0.06 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-06 AMT12_53 24.32905 -32.57326 100.1 22.703 37.406 0.01 0.05 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-06 AMT12_53 24.32905 -32.57326 125.4 22.229 37.393 0.02 0.05 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-06 AMT12_53 24.32905 -32.57326 150.2 21.753 37.307 0.12 0.04 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-06 AMT12_53 24.32905 -32.57326 175.8 20.439 37.006 2.01 0.06 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-06 AMT12_53 24.32905 -32.57326 250.4 17.646 36.472 5.83 0.29 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-07 AMT12_55 27.21244 -29.29955 2.0 23.002 37.414 0.01 0.06 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-07 AMT12_55 27.21244 -29.29955 11.9 23.001 37.415 0 0.08 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-07 AMT12_55 27.21244 -29.29955 27.1 22.996 37.414 0 0.08 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-07 AMT12_55 27.21244 -29.29955 51.4 22.328 37.356 0 0.07 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-07 AMT12_55 27.21244 -29.29955 101.5 21.864 37.313 0 0.06 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-07 AMT12_55 27.21244 -29.29955 119.8 20.866 37.117 0.03 0.06 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-07 AMT12_55 27.21244 -29.29955 176.9 18.594 36.656 3.01 0.11 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-07 AMT12_55 27.21244 -29.29955 251.7 16.98 36.356 7.41 0.39 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-07 AMT12_55 27.21244 -29.29955 302.0 15.944 36.182 9.03 0.52 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-08 AMT12_57 30.29099 -25.72122 10.5 21.504 36.841 0.01 0.07 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-08 AMT12_57 30.29099 -25.72122 150.4 17.691 36.453 2.03 0.12 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-08 AMT12_57 30.29099 -25.72122 250.2 16.122 36.217 6.73 0.38 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-09 AMT12_59 33.62421 -21.71481 2.0 21.224 36.723 0.02 0.05 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-09 AMT12_59 33.62421 -21.71481 10.5 21.093 36.721 0.02 0.05 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-09 AMT12_59 33.62421 -21.71481 75.2 18.009 36.546 0.02 0.05 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-09 AMT12_59 33.62421 -21.71481 94.9 17.895 36.555 0.06 0.05 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-09 AMT12_59 33.62421 -21.71481 125.1 17.71 36.566 1.85 0.11 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-09 AMT12_59 33.62421 -21.71481 250.3 14.99 36.037 7 0.45 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-11 AMT12_64 41.49247 -20.02017 1.9 17.046 35.853 0.02 0.08 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-11 AMT12_64 41.49247 -20.02017 17.2 16.859 35.858 0.06 0.1 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-11 AMT12_64 41.49247 -20.02017 23.0 16.76 35.856 0.57 0.13 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-11 AMT12_64 41.49247 -20.02017 48.7 14.021 35.806 2.66 0.24 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-11 AMT12_64 41.49247 -20.02017 75.7 13.637 35.818 4.88 0.35 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-13 AMT12_68 47.68797 -12.68195 1.4 14.255 35.623 0.04 0.1 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-13 AMT12_68 47.68797 -12.68195 3.1 14.394 35.627 0.03 0.12 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-13 AMT12_68 47.68797 -12.68195 22.0 14.171 35.623 0.13 0.13 0.51 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT12 2003-06-13 AMT12_68 47.68797 -12.68195 34.7 13.781 35.633 0.2 0.19 0.39 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-04-30 AMT14_01 -47.03932 -50.25497 15.0 11.257 34.101 9.85 0.84 0.09 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-04-30 AMT14_01 -47.03932 -50.25497 20.2 11.259 34.101 9.76 0.86 0.08 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-04-30 AMT14_01 -47.03932 -50.25497 25.1 11.258 34.101 9.76 0.87 0.07 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-04-30 AMT14_01 -47.03932 -50.25497 30.0 11.258 34.101 9.79 0.88 0.07 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-02 AMT14_06 -41.03489 -41.55872 8.6 16.86 35.009 1.36 0.22 0.18 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-02 AMT14_06 -41.03489 -41.55872 18.6 16.86 35.008 1.25 0.23 0.02 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-02 AMT14_06 -41.03489 -41.55872 33.1 16.864 35.009 1.44 0.24 0.14 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-02 AMT14_06 -41.03489 -41.55872 65.0 16.237 34.974 2.21 0.26 0.13 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-03 AMT14_09 -38.88149 -38.58539 17.0 19.109 35.675 0.1 0.08 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-03 AMT14_09 -38.88149 -38.58539 27.1 19.111 35.675 0.05 0.09 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-03 AMT14_09 -38.88149 -38.58539 36.7 19.114 35.675 0.4 0.11 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-03 AMT14_09 -38.88149 -38.58539 67.2 17.87 35.862 1.7 0.28 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-04 AMT14_12 -35.96667 -34.78997 9.2 0.03 0.03 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-04 AMT14_12 -35.96667 -34.78997 22.6 19.573 35.589 0.03 0.03 0.17 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-04 AMT14_12 -35.96667 -34.78997 40.7 19.566 35.601 0.03 0.07 0.07 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-04 AMT14_12 -35.96667 -34.78997 87.1 16.572 35.568 0.24 0.15 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-04 AMT14_12 -35.96667 -34.78997 120.5 15.29 35.566 4.32 0.34 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-05 AMT14_15 -32.97375 -31.00796 14.7 22.105 35.622 0.03 0.03 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-05 AMT14_15 -32.97375 -31.00796 25.2 22.112 35.623 0.03 0.03 0.22 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-05 AMT14_15 -32.97375 -31.00796 44.9 22.113 35.623 0.03 0.03 0.35 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-05 AMT14_15 -32.97375 -31.00796 101.2 18.054 35.767 0.06 0.05 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-06 AMT14_19 -29.76885 -27.09417 6.5 0.03 0.01 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-06 AMT14_19 -29.76885 -27.09417 24.7 23.196 36.128 0.03 0.01 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-06 AMT14_19 -29.76885 -27.09417 44.0 23.2 36.129 0.03 0.01 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-06 AMT14_19 -29.76885 -27.09417 104.1 18.743 35.887 0.03 0.05 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-06 AMT14_19 -29.76885 -27.09417 153.8 16.816 35.685 0.27 0.12 0.22 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-07 AMT14_22 -28.08823 -25.10199 24.3 23.819 36.356 0.03 0 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-07 AMT14_22 -28.08823 -25.10199 123.7 18.604 35.888 0.11 0.05 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-07 AMT14_22 -28.08823 -25.10199 157.7 17.243 35.752 1.4 0.17 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-08 AMT14_26 -24.23124 -24.99512 15.0 25.16 36.87 0.03 0.02 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-08 AMT14_26 -24.23124 -24.99512 26.0 25.162 36.871 0.03 0.02 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-08 AMT14_26 -24.23124 -24.99512 47.6 25.109 36.995 0.03 0.03 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-08 AMT14_26 -24.23124 -24.99512 120.3 20.157 36.242 0.23 0.07 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-08 AMT14_26 -24.23124 -24.99512 164.7 17.563 35.829 1.42 0.12 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-09 AMT14_30 -20.92963 -25.00379 20.2 25.599 37.239 0.26 0.11 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-09 AMT14_30 -20.92963 -25.00379 35.8 25.59 37.236 0.04 0.1 0.23 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-09 AMT14_30 -20.92963 -25.00379 64.2 25.578 37.243 0.05 0.1 0.25 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-10 AMT14_33 -16.64452 -24.99619 19.4 25.585 37.282 0.03 0.09 0.26 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-10 AMT14_33 -16.64452 -24.99619 35.4 25.592 37.282 0.03 0.09 0.26 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-10 AMT14_33 -16.64452 -24.99619 64.2 25.597 37.282 0.03 0.09 0.27 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-10 AMT14_33 -16.64452 -24.99619 149.4 20.883 36.459 0.32 0.11 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-10 AMT14_33 -16.64452 -24.99619 224.3 15.296 35.528 9.68 0.56 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-11 AMT14_36 -12.27593 -24.99443 129.7 21.653 36.583 3.8 0.2 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-12 AMT14_38 -8.81756 -25.00206 13.7 27.907 36.354 0.06 0.03 0.22 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-12 AMT14_38 -8.81756 -25.00206 24.9 27.915 36.354 0.05 0.03 0.22 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-12 AMT14_38 -8.81756 -25.00206 45.7 27.913 36.353 0.06 0.03 0.21 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-12 AMT14_38 -8.81756 -25.00206 102.0 23.686 36.648 0.42 0.06 0.37 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-12 AMT14_38 -8.81756 -25.00206 153.1 17.59 35.902 16.88 0.8 0.33 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-13 AMT14_41 -4.46185 -25.01249 11.8 27.955 36.112 0.03 0.03 0.25 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-13 AMT14_41 -4.46185 -25.01249 21.5 27.958 36.112 0.03 0.03 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-13 AMT14_41 -4.46185 -25.01249 39.2 27.962 36.112 0.03 0.03 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-13 AMT14_41 -4.46185 -25.01249 89.8 23.044 36.218 1.71 0.14 0.37 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-13 AMT14_41 -4.46185 -25.01249 137.0 15.266 35.589 20.34 1 0.26 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-14 AMT14_44 -0.10135 -24.99662 8.0 27.296 36.3 0.03 0.03 0.48 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-14 AMT14_44 -0.10135 -24.99662 15.0 27.306 36.3 0.03 0.03 0.49 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-14 AMT14_44 -0.10135 -24.99662 26.8 27.126 36.323 0.03 0.03 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-14 AMT14_44 -0.10135 -24.99662 59.1 24.337 36.572 3.48 0.13 0.32 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-14 AMT14_44 -0.10135 -24.99662 91.7 17.098 35.863 10.71 0.6 0.22 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-15 AMT14_47 3.24473 -26.24346 6.4 28.34 34.893 0.06 0.03 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-15 AMT14_47 3.24473 -26.24346 11.3 28.48 35.085 0.03 0.03 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-15 AMT14_47 3.24473 -26.24346 21.6 28.484 35.403 0.03 0.03 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-15 AMT14_47 3.24473 -26.24346 48.8 27.186 35.823 0.05 0.03 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-15 AMT14_47 3.24473 -26.24346 74.8 17.422 35.711 21.29 1 0.23 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-16 AMT14_50 7.28897 -27.78171 8.0 27.176 35.601 0.04 0.03 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-16 AMT14_50 7.28897 -27.78171 15.0 27.18 35.601 0.04 0.03 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-16 AMT14_50 7.28897 -27.78171 25.9 27.182 35.607 0.03 0.03 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-16 AMT14_50 7.28897 -27.78171 59.8 19.727 35.928 9.28 0.37 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-16 AMT14_50 7.28897 -27.78171 75.5 16.157 35.679 25.79 1.18 0.28 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-17 AMT14_53 11.40053 -29.36786 18.5 25.666 36.196 0.03 0.03 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-17 AMT14_53 11.40053 -29.36786 33.8 25.669 36.196 0.03 0.03 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-17 AMT14_53 11.40053 -29.36786 79.9 18.127 35.767 22.48 1.14 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-18 AMT14_56 14.75553 -30.68309 13.0 23.923 36.359 0.03 0.03 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-18 AMT14_56 14.75553 -30.68309 24.4 23.921 36.36 0.03 0.03 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-18 AMT14_56 14.75553 -30.68309 44.0 23.815 36.391 0.03 0.03 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-18 AMT14_56 14.75553 -30.68309 100.2 21.952 36.879 9.44 0.41 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-18 AMT14_56 14.75553 -30.68309 150.5 16.767 36.215 23.19 1.05 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-19 AMT14_59 18.79636 -32.28879 15.6 23.608 36.566 0.03 0.03 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-19 AMT14_59 18.79636 -32.28879 29.9 23.585 36.564 0.03 0.03 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-19 AMT14_59 18.79636 -32.28879 53.4 23.555 36.684 0.03 0.03 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-19 AMT14_59 18.79636 -32.28879 187.8 18.574 36.617 9.87 0.47 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-20 AMT14_63 22.33456 -33.73347 14.6 23.744 37.503 0.03 0.01 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-20 AMT14_63 22.33456 -33.73347 27.9 23.631 37.497 0.03 0.01 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-20 AMT14_63 22.33456 -33.73347 49.5 23.435 37.494 0.03 0.01 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-20 AMT14_63 22.33456 -33.73347 114.5 21.138 37.071 0.74 0.02 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-20 AMT14_63 22.33456 -33.73347 172.0 18.879 36.685 5.63 0.22 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-21 AMT14_67 25.92199 -35.23629 16.9 37.31 22.43 0.03 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-21 AMT14_67 25.92199 -35.23629 31.1 37.308 22.349 0.03 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-21 AMT14_67 25.92199 -35.23629 56.0 37.267 22.187 0.03 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-21 AMT14_67 25.92199 -35.23629 129.9 37.064 20.995 0.05 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-21 AMT14_67 25.92199 -35.23629 195.2 36.622 18.687 4.08 0.07 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-22 AMT14_71 29.30054 -36.69945 17.1 20.772 36.94 0.03 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-22 AMT14_71 29.30054 -36.69945 31.6 20.774 36.94 0.03 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-22 AMT14_71 29.30054 -36.69945 56.2 20.478 36.914 0.03 0 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-22 AMT14_71 29.30054 -36.69945 130.4 19.55 36.818 0.14 0.01 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-22 AMT14_71 29.30054 -36.69945 195.9 17.983 36.509 4.28 0.18 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-23 AMT14_75 31.93115 -31.17635 99.3 18.854 36.628 0.03 0.01 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-23 AMT14_75 31.93115 -31.17635 179.2 18.013 36.545 4.04 0.09 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-25 AMT14_77 35.747 -22.85163 10.2 18.86 36.459 0.03 0 0.22 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-25 AMT14_77 35.747 -22.85163 19.3 18.829 36.457 0.03 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-25 AMT14_77 35.747 -22.85163 34.9 17.695 36.33 0.03 0 0.24 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-25 AMT14_77 35.747 -22.85163 89.3 16.947 36.292 0.83 0.03 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-25 AMT14_77 35.747 -22.85163 129.5 16.169 36.2 2.98 0.06 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-26 AMT14_80 38.66634 -19.96059 12.8 16.529 36.149 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-26 AMT14_80 38.66634 -19.96059 24.0 16.215 36.108 0.08 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-26 AMT14_80 38.66634 -19.96059 49.8 15.486 36.095 1.09 0.02 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-26 AMT14_80 38.66634 -19.96059 80.6 15.126 36.055 3.29 0.07 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-27 AMT14_83 41.98623 -18.79265 7.7 15.846 36.01 0.03 0.01 0.22 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-27 AMT14_83 41.98623 -18.79265 20.8 15.497 36.014 0.03 0.01 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-27 AMT14_83 41.98623 -18.79265 36.7 14.861 36.018 0.03 0.02 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-27 AMT14_83 41.98623 -18.79265 71.1 14.628 35.981 1.68 0.06 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-28 AMT14_86 47.81141 -16.77694 9.8 13.204 35.737 4.19 0.17 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-28 AMT14_86 47.81141 -16.77694 22.7 13.205 35.737 4.28 0.21 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-28 AMT14_86 47.81141 -16.77694 43.2 13.113 35.734 4.54 0.25 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-29 AMT14_88 48.99986 -16.39474 7.8 13.278 35.664 5.68 0.32 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-29 AMT14_88 48.99986 -16.39474 15.0 13.282 35.666 5.72 0.33 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-29 AMT14_88 48.99986 -16.39474 27.4 13.282 35.667 5.83 0.35 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-29 AMT14_88 48.99986 -16.39474 61.1 12.113 35.618 7.78 0.49 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT14 2004-05-29 AMT14_88 48.99986 -16.39474 91.2 11.989 35.617 8.24 0.55 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-21 4 47.92336 -14.61 12.4 16.505 35.666 0.1 0.18 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-21 4 47.92336 -14.61 35.9 16.508 35.666 0.12 0.12 0.55 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-22 6 45.98198 -18.39411 27.3 18.513 35.936 0.03 0.03 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-23 6 42.55828 -19.8356 11.8 19.869 35.976 0.03 0.03 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-23 6 42.55828 -19.8356 16.9 19.873 35.976 0.03 0.03 0.23 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-23 6 42.55828 -19.8356 31.6 19.879 35.976 0.03 0.03 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-23 6 42.55828 -19.8356 51.7 18.935 35.932 2.56 0.03 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-25 12 35.09471 -20.8471 16.9 23.969 36.668 0.03 0.01 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-25 12 35.09471 -20.8471 26.3 23.952 36.668 0.03 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-25 12 35.09471 -20.8471 52.0 19.374 36.295 0.03 0 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-25 12 35.09471 -20.8471 87.4 17.35 36.308 0.27 0.03 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-25 12 35.09471 -20.8471 151.6 15.97 36.179 5.75 0.27 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-26 14 31.25788 -20.72007 16.6 24.723 37.281 0.03 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-26 14 31.25788 -20.72007 117.0 18.414 36.596 4.03 0.18 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-27 16 29.12373 -16.96941 15.5 24.352 36.982 0.03 0.03 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-27 16 29.12373 -16.96941 30.1 24.394 37.021 0.03 0.03 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-27 16 29.12373 -16.96941 56.1 22.789 36.882 0.03 0.03 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-27 16 29.12373 -16.96941 116.8 18.345 36.673 0.3 0.03 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-27 16 29.12373 -16.96941 180.6 17.101 36.455 2.97 0.15 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-29 18 23.55763 -19.99271 11.6 25.065 36.844 0.03 0.02 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-29 18 23.55763 -19.99271 16.1 25.066 36.844 0.03 0.02 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-29 18 23.55763 -19.99271 26.3 25.055 36.844 0.03 0.03 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-29 18 23.55763 -19.99271 51.2 22.612 36.56 1.31 0.2 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-29 18 23.55763 -19.99271 73.2 19.745 36.723 5.05 0.35 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-30 20 21.37678 -18.83547 4.5 23.397 36.211 0.07 0.25 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-30 20 21.37678 -18.83547 7.7 23.392 36.211 0.06 0.27 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-30 20 21.37678 -18.83547 17.3 23.373 36.21 0.03 0.3 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-30 20 21.37678 -18.83547 32.3 23.479 36.333 0.07 0.31 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-09-30 20 21.37678 -18.83547 52.5 21.331 36.56 3.63 0.3 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-01 23 21.6936 -17.8272 26.8 21.139 36.054 7.86 0.75 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-02 26 21.35465 -17.37257 7.0 19.771 36.071 9.56 0.65 0.58 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-02 26 21.35465 -17.37257 11.9 18.86 35.999 15.03 1.03 0.3 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-02 26 21.35465 -17.37257 17.1 18.254 35.953 17.09 1.15 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-03 29 21.30735 -18.59319 21.7 23.082 36.124 0.18 0.15 0.36 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-03 29 21.30735 -18.59319 31.7 22.551 36.101 0.73 0.27 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-04 30 17.83822 -20.89145 11.2 26.701 36.401 0.03 0.06 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-04 30 17.83822 -20.89145 30.3 26.705 36.401 0.03 0.09 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-04 30 17.83822 -20.89145 70.5 19.186 36.373 12.52 0.91 0.24 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-04 30 17.83822 -20.89145 101.3 16.392 36.012 23.02 1.29 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-05 32 14.29584 -21.7599 1.9 28.186 35.916 0.03 0.02 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-05 32 14.29584 -21.7599 10.7 28.18 35.913 0.03 0.02 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-05 32 14.29584 -21.7599 50.9 21.097 36.347 1.6 0.27 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-05 32 14.29584 -21.7599 75.9 17.957 36.065 19 1.07 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-06 34 11.00187 -22.51456 11.4 28.934 35.383 0.03 0 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-06 34 11.00187 -22.51456 17.2 28.937 35.384 0.03 0 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-06 34 11.00187 -22.51456 26.3 27.324 35.884 0.03 0 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-06 34 11.00187 -22.51456 62.1 18.626 35.8 13.62 0.79 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-07 36 7.86131 -23.23139 12.3 28.902 35.526 0.03 0 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-07 36 7.86131 -23.23139 16.5 28.587 35.574 0.03 0 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-07 36 7.86131 -23.23139 26.2 28.029 35.696 0.03 0.01 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-07 36 7.86131 -23.23139 61.2 19.31 35.925 15.13 0.78 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-07 36 7.86131 -23.23139 81.5 16.177 35.679 19.72 1.18 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-08 38 4.76579 -23.90881 11.5 28.136 34.437 0.03 0.01 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-08 38 4.76579 -23.90881 21.0 28.218 34.514 0.03 0 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-08 38 4.76579 -23.90881 74.9 20.601 35.983 10.96 0.46 0.29 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-08 38 4.76579 -23.90881 110.4 14.932 35.524 23.72 1.32 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-09 39 2.51022 -24.435 12.0 27.858 35.447 0.03 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-09 39 2.51022 -24.435 22.4 27.858 35.451 0.03 0.01 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-09 39 2.51022 -24.435 31.4 27.842 35.464 0.03 0.01 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-09 39 2.51022 -24.435 75.0 23.721 35.929 2.56 0.24 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-10 41 0.06784 -24.97374 10.4 26.462 36.066 0.03 0.05 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-10 41 0.06784 -24.97374 15.5 26.465 36.066 0.03 0.05 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-10 41 0.06784 -24.97374 65.7 25.78 36.142 1.46 0.08 0.23 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-10 41 0.06784 -24.97374 99.8 22.82 36.474 3.95 0.28 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-12 44 -6.8467 -25.01279 47.8 25.847 36.231 0.03 0.1 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-12 44 -6.8467 -25.01279 101.2 22.418 36.604 0.55 0.25 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-13 46 -10.40847 -24.99297 31.1 25.367 36.403 0.03 0.09 0.17 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-13 46 -10.40847 -24.99297 56.3 25.371 36.404 0.03 0.09 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-13 46 -10.40847 -24.99297 181.3 16.511 35.764 11.41 0.79 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-14 48 -14.17693 -24.9905 21.3 24.639 37.01 0.03 0.08 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-14 48 -14.17693 -24.9905 36.3 24.258 37.092 0.03 0.11 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-14 48 -14.17693 -24.9905 61.3 24.123 37.088 0.03 0.13 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-14 48 -14.17693 -24.9905 141.1 19.833 36.302 2.43 0.4 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-14 48 -14.17693 -24.9905 201.4 15.286 35.532 8.09 0.68 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-15 50 -17.94819 -24.99475 26.9 23.769 37.181 0.03 0.14 0.17 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-15 50 -17.94819 -24.99475 46.2 23.747 37.176 0.03 0.14 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-15 50 -17.94819 -24.99475 81.3 23.636 37.157 0.03 0.14 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-15 50 -17.94819 -24.99475 174.0 20.326 36.422 0.75 0.22 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-15 50 -17.94819 -24.99475 253.2 15.128 35.496 8.67 0.62 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-16 52 -20.63716 -23.66898 24.2 23.289 37.058 0.03 0.14 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-16 52 -20.63716 -23.66898 44.4 23.29 37.06 0.03 0.14 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-16 52 -20.63716 -23.66898 79.6 23.192 37.055 0.03 0.15 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-16 52 -20.63716 -23.66898 169.5 20.438 36.444 0.46 0.17 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-18 56 -23.56162 -17.49831 88.0 21.629 36.707 0.03 0.18 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-18 56 -23.56162 -17.49831 182.5 18.366 36.017 1.75 0.33 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-18 56 -23.56162 -17.49831 278.0 13.76 35.285 10 0.76 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-19 58 -25.23409 -13.91123 22.1 20.874 36.523 0.03 0.13 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-19 58 -25.23409 -13.91123 41.7 20.876 36.522 0.03 0.13 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-19 58 -25.23409 -13.91123 71.4 20.842 36.517 0.03 0.15 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-19 58 -25.23409 -13.91123 150.4 18.429 35.997 0.98 0.25 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-19 58 -25.23409 -13.91123 202.1 15.965 35.592 4 0.41 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-20 60 -26.87763 -10.33284 22.5 19.577 36.243 0.03 0.16 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-20 60 -26.87763 -10.33284 37.1 19.576 36.243 0.03 0.18 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-20 60 -26.87763 -10.33284 62.2 19.563 36.252 0.03 0.18 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-20 60 -26.87763 -10.33284 151.7 18.089 35.912 0.45 0.22 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-20 60 -26.87763 -10.33284 221.8 15.319 35.48 5.39 0.51 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-21 62 -28.58019 -6.56848 17.4 18.685 36.014 0.03 0.16 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-21 62 -28.58019 -6.56848 26.6 18.662 36.013 0.03 0.16 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-21 62 -28.58019 -6.56848 51.9 18.441 35.999 0.03 0.17 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-21 62 -28.58019 -6.56848 112.4 17.209 35.739 3.56 0.35 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-21 62 -28.58019 -6.56848 161.7 14.557 35.319 9.11 0.66 0.02 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-23 66 -34.52173 -1.37466 36.7 15.785 35.367 0.03 0.17 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-23 66 -34.52173 -1.37466 86.3 15.271 35.307 0.22 0.2 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-23 66 -34.52173 -1.37466 121.9 14.763 35.225 0.6 0.25 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-24 68 -37.83334 1.23434 6.9 13.707 34.802 2.78 0.36 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-24 68 -37.83334 1.23434 12.7 13.71 34.802 2.73 0.34 0.17 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-24 68 -37.83334 1.23434 22.8 13.706 34.802 2.7 0.35 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-24 68 -37.83334 1.23434 43.0 13.373 34.865 2.35 0.33 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-24 68 -37.83334 1.23434 73.2 13.323 34.869 2.54 0.36 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-25 70 -40.00273 5.01506 12.1 11.095 34.471 8.3 0.75 0.07 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-25 70 -40.00273 5.01506 21.8 11.103 34.471 8.4 0.76 0.05 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT15 2004-10-25 70 -40.00273 5.01506 46.7 10.465 34.441 9.22 0.83 0.07 2 Southern Ocean UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 2.0 17.151 35.868 0.01 0.04 0.3 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 14.9 17.133 35.867 0.01 0.05 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 26.8 17.138 35.867 0.01 0.05 0.25 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 48.9 17.141 35.867 0.14 0.07 0.22 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 57.5 15.376 35.977 3.73 0.13 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 71.4 15.146 36.031 5.87 0.27 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 110.9 14.463 35.921 7.14 0.38 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 165.5 13.464 35.75 8.29 0.49 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 201.0 13.117 35.718 9.37 0.57 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-19 3 46.22974 -17.44212 302.8 12.402 35.669 10.22 0.65 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 1.2 18.529 35.966 0.01 0.03 0.34 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 4.8 18.53 35.966 0.01 0.03 0.31 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 10.6 18.527 35.966 0 0.03 0.27 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 20.0 18.525 35.966 0 0.03 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 40.2 17.746 35.951 0 0.03 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 45.3 15.759 35.947 0 0.04 0.25 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 46.9 15.669 35.958 0.32 0.1 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 58.2 15.129 35.942 2.87 0.12 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 70.3 14.969 35.988 5.31 0.24 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 98.1 14.727 35.971 6.25 0.32 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 198.2 13.468 35.794 8.75 0.48 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-20 4 44.34735 -19.33307 299.2 12.914 35.752 9.24 0.55 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-28 7 35.92254 -29.13092 12.2 21.758 36.423 0.01 0.01 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-28 7 35.92254 -29.13092 22.9 21.759 36.423 0.01 0.01 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-28 7 35.92254 -29.13092 40.9 21.76 36.423 0.01 0.01 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-28 7 35.92254 -29.13092 79.9 19.08 36.328 0.01 0.01 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-28 7 35.92254 -29.13092 84.6 18.496 36.306 0.04 0.02 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-28 7 35.92254 -29.13092 104.1 17.412 36.281 3.8 0.13 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-28 7 35.92254 -29.13092 141.0 16.194 36.223 4.78 0.22 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-28 7 35.92254 -29.13092 201.0 15.217 36.097 6.55 0.35 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-28 7 35.92254 -29.13092 300.1 13.868 35.865 10.02 0.57 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 23.3 23.7 36.784 0.01 0.01 0.24 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 43.4 23.701 36.784 0.01 0.01 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 68.6 20.614 36.621 0.01 0.01 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 78.9 19.734 36.592 0.01 0.02 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 88.9 19.223 36.585 0.01 0.01 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 99.7 18.734 36.564 0.2 0.02 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 117.6 18.509 36.561 1.17 0.06 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 149.3 18.111 36.541 3.37 0.18 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 198.5 17.746 36.482 4.33 0.15 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-30 9 31.29968 -32.04818 298.7 16.774 36.32 6.24 0.28 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 13.1 24.596 36.941 0 0 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 23.4 24.603 36.943 0 0 0.25 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 44.0 22.395 36.642 0 0 0.25 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 79.6 19.82 36.607 0 0 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 91.0 19.337 36.593 0.01 0.01 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 100.1 18.972 36.592 0.11 0.01 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 120.0 18.677 36.582 0.88 0.04 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 151.8 18.208 36.546 2.96 0.15 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 201.3 17.784 36.512 4.12 0.21 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-10-31 11 29.52611 -36.27322 300.6 16.357 36.254 7.11 0.33 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 15.5 25.322 37.259 0 0 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 28.8 25.326 37.259 0 0 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 50.9 25.297 37.25 0 0 0.23 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 101.1 19.856 36.715 0 0.01 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 111.1 19.59 36.681 0 0.01 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 115.9 19.385 36.662 0 0.01 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 125.7 19.157 36.667 0.3 0.02 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 174.0 18.213 36.55 3.46 0.11 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 201.5 17.871 36.506 4.37 0.16 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-01 13 27.78194 -38.80805 300.6 16.411 36.268 7.12 0.34 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 26.9 26.438 37.421 0.01 0.01 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 47.9 26.427 37.422 0.01 0.01 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 85.7 23.931 37.311 0.01 0.01 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 96.0 22.832 37.171 0.01 0.01 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 100.8 22.506 37.15 0.02 0.01 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 105.7 22.218 37.139 0.08 0.02 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 114.0 21.696 37.043 0.12 0.02 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 161.6 19.788 36.768 1.29 0.05 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 202.1 18.455 36.592 3.89 0.13 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-02 15 23.96198 -36.77857 300.8 16.746 36.324 7.07 0.32 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 17.9 26.557 37.492 0.01 0.01 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 30.9 26.56 37.492 0 0.01 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 57.8 26.515 37.499 0 0.01 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 91.8 23.642 37.359 0.01 0.01 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 110.3 22.822 37.333 0.01 0.01 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 120.5 22.68 37.322 0.01 0.01 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 127.1 22.362 37.294 0.1 0.02 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 135.7 21.901 37.256 0.42 0.04 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 195.2 20.508 37.107 2.88 0.1 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-03 18 21.05351 -35.27266 300.6 15.878 36.145 9.52 0.73 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-04 20 18.37798 -33.91454 15.9 26.955 37.199 0.01 0.01 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-04 20 18.37798 -33.91454 53.3 26.232 37.433 0.01 0.01 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-04 20 18.37798 -33.91454 89.5 23.333 37.352 0.01 0.01 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-04 20 18.37798 -33.91454 98.7 23.032 37.327 0.01 0.01 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-04 20 18.37798 -33.91454 110.3 22.39 37.273 0.02 0.02 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-04 20 18.37798 -33.91454 114.1 22.246 37.26 0.11 0.03 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-04 20 18.37798 -33.91454 129.1 21.42 37.153 0.93 0.06 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-04 20 18.37798 -33.91454 184.7 18.942 36.729 6.05 0.27 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-04 20 18.37798 -33.91454 297.4 15.018 35.987 10.02 0.94 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 1.4 27.551 36.287 0.01 0.01 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 11.2 27.558 36.287 0.01 0.01 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 20.1 27.563 36.287 0.01 0.01 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 37.0 27.568 36.287 0.01 0.01 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 70.6 22.789 37.086 0.01 0.05 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 81.3 21.888 37.018 2.98 0.18 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 84.5 21.517 36.977 4.84 0.27 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 90.9 20.388 36.769 6.91 0.42 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 126.3 17.192 36.268 15.2 0.87 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 199.8 13.977 35.735 23.64 1.05 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-05 22 15.12522 -32.2964 298.8 11.541 35.393 26.63 1.68 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 3.8 27.499 35.918 0.01 0.01 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 8.4 27.496 35.918 0.01 0.01 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 16.8 27.499 35.918 0.01 0.02 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 29.5 27.004 36.0 0 0.03 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 34.6 22.144 35.977 0.01 0.07 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 40.2 19.718 35.876 2.73 0.19 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 44.9 18.478 35.824 11.93 0.72 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 60.2 16.238 35.675 22.5 1.37 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 100.2 13.391 35.393 23.87 1.63 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 200.0 11.194 35.112 27.55 1.83 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-06 24 12.06969 -30.80251 300.7 10.574 35.092 23.87 2.01 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 7.5 28.121 35.347 0 0.01 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 14.0 28.111 35.348 0 0.01 0.25 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 25.6 28.128 35.357 0 0.01 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 48.5 26.471 36.268 0.01 0.03 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 58.3 24.439 36.27 0.14 0.05 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 59.2 24.144 36.256 0.92 0.09 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 68.5 22.21 36.137 3.32 0.18 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 88.5 18.967 35.976 13.62 0.72 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 198.3 11.331 35.117 26.5 1.67 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-07 26 9.43397 -29.52006 298.3 10.227 34.999 29.74 1.96 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 4.7 28.185 34.754 0 0.01 0.24 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 11.6 28.311 34.863 0 0.01 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 20.8 28.92 35.55 0 0.01 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 39.9 28.059 36.026 0.01 0.03 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 43.5 27.798 36.086 0.01 0.03 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 47.0 27.504 36.134 0.02 0.04 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 59.8 25.708 36.253 1.1 0.12 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 71.8 24.294 36.273 4.39 0.18 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 200.5 11.625 35.135 23.04 1.43 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-08 29 6.50656 -28.11006 299.7 10.035 34.948 27.85 1.85 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 9.9 28.131 35.48 0 0.03 0.28 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 18.8 28.127 35.477 0.01 0.03 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 34.0 28.349 35.842 0 0.04 0.24 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 54.5 27.832 35.795 0.01 0.04 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 73.4 27.357 36.016 0.01 0.07 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 77.5 27.156 36.057 0.01 0.08 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 80.8 27.15 36.039 0.25 0.11 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 89.2 22.487 35.91 7.01 0.4 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 116.7 16.154 35.62 19.74 1.22 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 198.8 13.572 35.354 20.24 1.34 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-09 32 3.4764 -26.65992 297.6 11.857 35.149 25.05 1.63 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 34 0.89227 -25.43576 11.0 27.249 36.066 0 0.1 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 34 0.89227 -25.43576 20.1 27.244 36.069 0 0.1 0.23 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 34 0.89227 -25.43576 69.1 26.643 36.168 0.03 0.12 0.19 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 34 0.89227 -25.43576 77.5 26.54 36.162 0.07 0.13 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 34 0.89227 -25.43576 81.4 26.494 36.158 0.19 0.15 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 34 0.89227 -25.43576 94.4 24.377 35.993 4.77 0.31 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 34 0.89227 -25.43576 128.4 14.892 35.508 18.95 1.25 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 34 0.89227 -25.43576 199.8 12.676 35.234 21.76 1.47 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 34 0.89227 -25.43576 299.0 10.678 34.994 26.25 1.79 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 35 -2.88793 -24.99891 10.2 26.883 36.267 0 0.18 0.25 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 35 -2.88793 -24.99891 19.2 26.887 36.267 0 0.19 0.23 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 35 -2.88793 -24.99891 34.1 26.893 36.267 0 0.2 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 35 -2.88793 -24.99891 78.7 20.601 35.938 10.35 0.81 0.17 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 35 -2.88793 -24.99891 83.3 18.427 35.78 15.57 1.13 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 35 -2.88793 -24.99891 87.2 17.437 35.707 20.65 1.44 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 35 -2.88793 -24.99891 119.5 14.092 35.42 22.18 1.57 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 35 -2.88793 -24.99891 201.3 12.972 35.273 23.95 1.7 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-10 35 -2.88793 -24.99891 300.1 11.413 35.081 29.41 2.02 0.05 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 2.4 25.694 36.279 0.01 0.11 0.3 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 14.3 25.601 36.277 0.01 0.12 0.3 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 25.7 25.594 36.278 0.01 0.12 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 45.5 25.588 36.278 0.01 0.12 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 60.9 25.546 36.275 0.01 0.12 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 70.6 25.519 36.272 0.01 0.12 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 85.6 25.292 36.272 0.01 0.13 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 92.3 25.126 36.59 0.01 0.12 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 98.8 24.931 36.66 0.04 0.11 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 103.6 24.742 36.707 0.17 0.13 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 110.2 23.654 36.619 2.19 0.29 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 120.3 22.182 36.558 3.66 0.44 0.05 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 129.6 20.723 36.377 5.56 0.57 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 156.9 17.421 35.927 14.1 1.02 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 199.6 13.238 35.332 23.53 1.59 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-12 37 -8.27609 -24.99577 300.1 8.963 34.801 31.27 2.09 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 17.9 25.62 36.667 0.01 0.21 0.28 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 31.5 25.618 36.669 0.01 0.2 0.26 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 57.7 24.42 36.908 0 0.19 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 110.3 23.333 37.051 0 0.24 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 123.9 22.906 36.947 0.03 0.28 0.21 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 128.4 22.33 36.81 0.12 0.31 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 136.5 21.594 36.653 0.54 0.38 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 140.9 21.06 36.555 1.09 0.44 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 150.2 19.365 36.233 3.65 0.61 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 195.6 14.523 35.459 13.55 1.21 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-13 38 -11.00024 -24.99922 300.4 10.25 34.948 28.64 2.19 0.05 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 1.9 25.301 36.836 0 0.2 0.31 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 19.0 25.297 36.847 0 0.2 0.28 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 35.2 25.135 36.87 0 0.19 0.28 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 63.9 24.808 37.165 0 0.19 0.27 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 99.8 23.935 37.192 0 0.21 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 139.1 23.114 37.05 0.01 0.24 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 146.6 22.962 37.011 0.05 0.26 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 149.7 22.82 36.977 0.22 0.27 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 159.5 21.936 36.768 1.15 0.36 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 221.0 15.003 35.502 9.98 0.89 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-14 40 -14.38067 -24.99658 300.8 11.758 35.057 19.41 1.47 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 2.1 24.605 36.972 0 0.29 0.28 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 21.7 24.496 36.965 0 0.28 0.26 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 39.5 23.519 36.896 0 0.27 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 71.7 22.924 36.903 0 0.26 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 139.0 22.174 36.842 0 0.26 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 155.2 22.14 36.848 0 0.26 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 165.9 22.113 36.842 0.02 0.27 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 174.5 22.003 36.814 0.05 0.26 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 179.1 21.98 36.807 0.06 0.26 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-15 42 -18.55974 -24.99919 300.6 13.159 35.22 14.02 1.08 0.07 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 1.8 24.137 36.937 0 0.28 0.27 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 18.0 24.106 36.933 0 0.28 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 33.1 23.416 36.851 0 0.26 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 60.1 22.482 36.85 0.01 0.25 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 115.1 21.861 36.789 0 0.26 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 127.9 21.527 36.709 0.01 0.26 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 138.7 20.838 36.554 0.05 0.25 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 144.7 20.47 36.472 0.21 0.27 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 152.4 19.208 36.218 0.75 0.32 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 209.0 15.991 35.608 5.21 0.56 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 44 -21.12928 -22.43899 300.3 13.163 35.198 12.03 0.97 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 46 -21.10335 -22.37868 41.2 23.269 36.862 0.03 0.16 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 46 -21.10335 -22.37868 75.2 22.462 36.825 0.03 0.15 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 46 -21.10335 -22.37868 129.8 21.876 36.783 0.03 0.15 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 46 -21.10335 -22.37868 159.7 21.577 36.725 1.41 0.28 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 46 -21.10335 -22.37868 170.0 21.08 36.605 2.42 0.34 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 46 -21.10335 -22.37868 173.7 20.511 36.488 2.48 0.36 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 46 -21.10335 -22.37868 179.1 19.811 36.351 2.68 0.37 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 46 -21.10335 -22.37868 200.7 18.169 36.004 4.16 0.44 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-16 46 -21.10335 -22.37868 272.1 14.728 35.42 9.56 0.72 0.07 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 1.4 23.742 36.839 0 0.25 0.28 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 19.9 23.744 36.838 0 0.26 0.25 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 35.6 23.267 36.778 0 0.27 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 64.5 21.819 36.701 0 0.26 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 128.7 21.3 36.681 0 0.23 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 139.1 21.223 36.664 0 0.22 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 164.6 20.902 36.577 0.09 0.23 0.05 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 179.2 18.829 36.096 0.81 0.31 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 225.0 16.206 35.634 4.95 0.54 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-17 47 -22.14294 -20.19863 299.9 13.73 35.281 11.41 0.93 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 1.5 22.98 36.54 0 0.29 0.29 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 39.1 21.848 36.47 0 0.29 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 70.6 20.536 36.442 0 0.27 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 149.9 20.137 36.411 0 0.26 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 159.9 20.054 36.389 0.01 0.26 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 163.6 20.044 36.386 0.01 0.25 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 170.1 19.969 36.367 0.02 0.25 0.05 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 175.0 19.925 36.356 0.04 0.24 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 245.9 17.037 35.735 3.02 0.43 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-18 49 -23.76301 -16.52736 300.4 14.507 35.363 7.96 0.71 0.03 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 18.5 20.742 36.088 0 0.26 0.21 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 31.4 19.621 36.03 0 0.27 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 56.3 18.63 35.961 0 0.26 0.23 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 81.1 18.213 35.929 0 0.26 0.21 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 101.1 18.076 35.948 0.01 0.25 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 116.2 17.915 35.921 0.01 0.25 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 128.2 17.775 35.895 0.17 0.25 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 135.2 17.676 35.874 0.45 0.26 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 150.8 17.529 35.842 0.91 0.28 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 170.7 17.337 35.797 1.69 0.32 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 191.0 15.97 35.53 4.28 0.48 0.07 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 201.5 15.434 35.444 5.52 0.57 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-19 50 -26.14092 -11.05722 299.4 13.133 35.187 10.29 0.85 0.04 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 2.0 21.274 36.044 0 0.28 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 13.1 21.24 36.041 0 0.29 0.21 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 23.4 20.021 36.013 0 0.29 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 43.3 19.653 36.025 0 0.3 0.17 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 85.0 17.527 35.715 0.01 0.29 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 93.9 17.359 35.704 0.32 0.32 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 97.7 17.067 35.654 1.33 0.39 0.15 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 103.2 16.715 35.601 2.24 0.44 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 112.7 16.319 35.534 3.85 0.53 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 147.5 15.157 35.359 7.43 0.72 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 200.3 13.853 35.212 9.9 0.86 0.08 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-20 51 -27.39677 -8.11673 300.8 12.115 35.053 13.17 1.05 0.05 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 1.3 21.472 36.144 0 0.25 0.25 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 17.0 20.799 36.121 0 0.24 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 31.1 20.277 36.082 0 0.23 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 56.1 19.797 36.059 0 0.23 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 109.6 18.059 35.788 0 0.24 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 121.4 17.352 35.694 0.15 0.24 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 128.0 16.922 35.625 1.23 0.31 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 133.6 16.755 35.611 2.37 0.38 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 149.5 16.304 35.543 3.82 0.47 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 190.8 14.684 35.296 8.45 0.73 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-21 53 -28.85446 -4.68811 299.4 12.449 35.076 13.79 1.05 0.07 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 8.1 18.6 35.708 0 0.22 0.26 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 15.4 17.992 35.676 0 0.21 0.27 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 28.4 17.573 35.646 0 0.2 0.25 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 46.8 17.084 35.631 0.04 0.21 0.21 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 55.4 16.981 35.622 0.13 0.22 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 64.0 16.856 35.607 0.55 0.25 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 70.3 16.824 35.606 0.86 0.26 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 74.9 16.775 35.604 1.39 0.27 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 96.1 16.555 35.587 1.76 0.29 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 199.7 15.415 35.429 2.61 0.36 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-22 55 -30.67318 -0.2998 299.5 13.917 35.221 7.16 0.63 0.05 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-23 57 -32.52798 4.23609 1.8 17.605 35.532 0 0.29 0.29 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-23 57 -32.52798 4.23609 8.1 17.618 35.534 0 0.29 0.27 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-23 57 -32.52798 4.23609 15.0 17.149 35.502 0 0.29 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-23 57 -32.52798 4.23609 55.3 16.414 35.502 0.05 0.3 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-23 57 -32.52798 4.23609 58.3 16.247 35.467 0.38 0.33 0.17 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-23 57 -32.52798 4.23609 69.5 16.187 35.489 1.14 0.38 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-23 57 -32.52798 4.23609 75.0 16.078 35.47 0.77 0.36 0.11 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-23 57 -32.52798 4.23609 86.1 15.995 35.477 0.18 0.34 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-23 57 -32.52798 4.23609 298.2 13.346 35.179 8.53 0.8 0.06 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 6.4 17.988 35.549 0.01 0.21 0.24 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 10.0 17.52 35.547 0 0.22 0.2 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 17.7 17.328 35.537 0 0.21 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 29.7 16.559 35.507 0 0.21 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 35.3 16.328 35.517 0.24 0.23 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 41.6 16.185 35.524 0.88 0.27 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 49.3 16.17 35.525 0.99 0.28 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 63.4 16.115 35.524 1.02 0.28 0.01 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 100.1 15.815 35.498 2.2 0.32 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 198.7 14.381 35.259 4.02 0.44 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 59 -33.64581 8.91522 303.8 13.121 35.131 8.29 0.67 0.07 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 1.7 18.358 35.532 0.03 0.08 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 4.9 18.381 35.53 0.03 0.08 0.18 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 9.5 17.581 35.517 0.04 0.09 0.19 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 14.9 17.214 35.516 0.46 0.13 0.13 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 19.9 16.911 35.51 1.38 0.19 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 24.7 16.188 35.509 1.6 0.22 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 26.6 16.088 35.512 1.81 0.25 0.16 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 30.7 16.045 35.515 2.01 0.27 0.14 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 39.9 15.99 35.517 2.37 0.3 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 60.4 15.934 35.514 2.86 0.33 0.12 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 99.4 15.852 35.506 4.3 0.4 0.1 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
AMT17 2005-11-24 61 -33.90676 10.30315 199.0 15.455 35.472 5.54 0.48 0.09 2 South Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-08 17 24 26.5075 -76.6375 11.0 0 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-08 17 23 26.5075 -76.6375 11.0 0 0 0.22 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-08 17 22 26.5075 -76.6375 15.0 0.23 0.01 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-08 17 21 26.5075 -76.6375 55.0 0.1 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-08 17 19 26.5075 -76.6375 201.0 0.93 0.04 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-08 17 17 26.5075 -76.6375 388.0 5.32 0.25 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-08 17 15 26.5075 -76.6375 624.0 15.15 0.98 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-08 17 11 26.5075 -76.6375 1316.0 18.46 1.26 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-08 17 1 26.5075 -76.6375 4687.0 20.28 1.44 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 23 24 26.5024 -75.9103 17.0 0 0 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 23 23 26.5024 -75.9103 57.0 0 0 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 23 22 26.5024 -75.9103 108.0 0 0 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 23 21 26.5024 -75.9103 208.0 0.99 0.01 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 23 20 26.5024 -75.9103 309.0 2.8 0.09 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 23 18 26.5024 -75.9103 510.0 7.9 0.4 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 23 11 26.5024 -75.9103 2029.0 19.5 1.17 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 23 9 26.5024 -75.9103 2639.0 19.2 1.24 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 23 1 26.5024 -75.9103 4819.0 23.1 1.42 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 24 23 26.4917 -75.7036 17.0 0 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-10 24 24 26.4917 -75.7036 17.0 0 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-11 27 24 26.5155 -75.0746 18.0 0 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-11 27 23 26.5155 -75.0746 58.0 0 0 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-11 27 22 26.5155 -75.0746 108.0 0.4 0.07 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-11 27 21 26.5155 -75.0746 208.0 1.7 0.04 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-11 27 20 26.5155 -75.0746 309.0 2.9 0.12 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-11 27 19 26.5155 -75.0746 409.0 5.3 0.24 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-11 27 14 26.5155 -75.0746 1116.0 21.8 1.41 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-11 27 7 26.5155 -75.0746 3246.0 18.6 1.22 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-11 27 4 26.5155 -75.0746 4167.0 20.2 1.28 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-12 32 24 26.5012 -73.9299 17.0 0.1 0.04 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-12 32 23 26.5012 -73.9299 57.0 0.1 0.04 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-12 32 22 26.5012 -73.9299 108.0 0.1 0.04 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-12 32 21 26.5012 -73.9299 208.0 1 0.07 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-12 32 20 26.5012 -73.9299 309.0 2.9 0.14 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-12 32 18 26.5012 -73.9299 510.0 8.5 0.51 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-12 32 14 26.5012 -73.9299 1116.0 21.2 1.5 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-12 32 5 26.5012 -73.9299 3743.0 18.2 1.24 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 24 26.4996 -72.486 19.0 0.08 0.03 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 23 26.4996 -72.486 59.0 0.11 0.02 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 22 26.4996 -72.486 110.0 0.07 0.03 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 21 26.4996 -72.486 210.0 0.7 0.05 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 20 26.4996 -72.486 361.0 3.7 0.17 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 18 26.4996 -72.486 714.0 14.6 0.97 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 14 26.4996 -72.486 1573.0 18.4 1.23 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 10 26.4996 -72.486 2791.0 19 1.25 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 5 26.4996 -72.486 4327.0 18.3 1.41 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-13 36 1 26.4996 -72.486 5290.0 22.5 1.62 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-14 40 24 26.49 -70.9867 20.0 0.1 0.05 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-14 40 23 26.49 -70.9867 59.0 0.1 0.02 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-14 40 22 26.49 -70.9867 110.0 0.37 0.02 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-14 40 21 26.49 -70.9867 211.0 2.2 0.08 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-14 40 20 26.49 -70.9867 362.0 4.7 0.23 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-14 40 19 26.49 -70.9867 512.0 7.8 0.45 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-14 40 10 26.49 -70.9867 2757.0 18.6 1.37 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-15 44 23 25.0008 -69.5062 59.0 0.1 0.06 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-15 44 22 25.0008 -69.5062 110.0 0.2 0.04 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-15 44 21 25.0008 -69.5062 210.0 2.3 0.11 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-15 44 19 25.0008 -69.5062 511.0 9.59 0.6 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-15 44 14 25.0008 -69.5062 1601.0 17.01 1.33 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-15 44 10 25.0008 -69.5062 2784.0 19.21 1.33 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-15 44 7 25.0008 -69.5062 3708.0 19.21 1.35 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-15 44 1 25.0008 -69.5062 5703.0 23.2 1.63 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 50 24 24.4958 -65.4635 19.0 0.1 0 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 50 23 24.4958 -65.4635 60.0 0.3 0.01 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 50 22 24.4958 -65.4635 110.0 0.2 0.01 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 50 21 24.4958 -65.4635 210.0 2.91 0.1 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 50 20 24.4958 -65.4635 361.0 6.22 0.28 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 50 19 24.4958 -65.4635 512.0 9 0.58 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 50 18 24.4958 -65.4635 714.0 19.9 1.33 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 50 16 24.4958 -65.4635 1118.0 22.3 1.41 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 50 1 24.4958 -65.4635 5662.0 22.3 1.61 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-19 56 24 24.5012 -61.063 21.0 0.1 0 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-19 56 23 24.5012 -61.063 62.0 0 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-19 56 22 24.5012 -61.063 163.0 0.8 0.01 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-19 56 20 24.5012 -61.063 363.0 6 0.32 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-19 56 19 24.5012 -61.063 513.0 12 0.66 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-19 56 18 24.5012 -61.063 714.0 22.2 1.32 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-19 56 10 24.5012 -61.063 2846.0 21.2 1.37 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-19 56 5 24.5012 -61.063 4639.0 21 1.32 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 24 24.5 -56.6665 22.0 0 0 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 23 24.5 -56.6665 63.0 0.1 0 0.22 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 22 24.5 -56.6665 113.0 0.1 0.01 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 21 24.5 -56.6665 213.0 2.4 0.08 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 20 24.5 -56.6665 364.0 6.01 0.3 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 19 24.5 -56.6665 515.0 12.55 0.71 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 14 24.5 -56.6665 1628.0 19.3 1.35 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 12 24.5 -56.6665 2187.0 20.4 1.35 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 10 24.5 -56.6665 2848.0 23.87 1.37 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-21 62 1 24.5 -56.6665 6001.0 27.64 1.71 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 24 24.5013 -54.4653 20.0 0 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 23 24.5013 -54.4653 60.0 0 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 22 24.5013 -54.4653 110.0 0.2 0 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 21 24.5013 -54.4653 210.0 2.7 0.09 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 20 24.5013 -54.4653 360.0 6.4 0.3 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 19 24.5013 -54.4653 510.0 11 0.66 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 18 24.5013 -54.4653 711.0 20.8 1.31 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 17 24.5013 -54.4653 913.0 25.3 1.73 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 15 24.5013 -54.4653 1316.0 20 1.34 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 9 24.5013 -54.4653 2945.0 20.9 1.41 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-22 65 3 24.5013 -54.4653 4785.0 23.1 1.55 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-23 69 24 24.4994 -52.1614 20.0 0.4 0.02 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-23 69 23 24.4994 -52.1614 60.0 0 0.01 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-23 69 22 24.4994 -52.1614 111.0 0.1 0.01 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-23 69 21 24.4994 -52.1614 211.0 3.8 0.16 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-23 69 15 24.4994 -52.1614 967.0 26.1 1.75 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-23 69 13 24.4994 -52.1614 1422.0 20.4 1.33 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-23 69 11 24.4994 -52.1614 2030.0 20.1 1.31 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-23 69 9 24.4994 -52.1614 2639.0 20.9 1.38 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-23 69 3 24.4994 -52.1614 4481.0 22.27 1.53 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 24 24.4995 -50.4417 19.0 0.2 0.04 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 23 24.4995 -50.4417 59.0 0.2 0.03 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 22 24.4995 -50.4417 110.0 0.2 0.04 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 21 24.4995 -50.4417 210.0 4.8 0.22 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 20 24.4995 -50.4417 361.0 9 0.45 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 18 24.4995 -50.4417 714.0 23.4 1.45 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 16 24.4995 -50.4417 1119.0 24.2 1.54 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 14 24.4995 -50.4417 1575.0 21.1 1.34 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 12 24.4995 -50.4417 2081.0 21.1 1.37 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 8 24.4995 -50.4417 3099.0 21.4 1.46 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 4 24.4995 -50.4417 4122.0 22.3 1.47 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-24 72 1 24.4995 -50.4417 4792.0 20.28 1.59 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 24 24.5055 -47.9626 16.0 0 0 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 23 24.5055 -47.9626 56.0 0 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 22 24.5055 -47.9626 107.0 0.1 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 21 24.5055 -47.9626 207.0 2.5 0.11 0.25 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 20 24.5055 -47.9626 358.0 9.4 0.51 0.2 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 19 24.5055 -47.9626 509.0 14.4 0.84 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 18 24.5055 -47.9626 712.0 20.9 1.3 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 16 24.5055 -47.9626 1014.0 27.2 1.79 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 12 24.5055 -47.9626 1824.0 20.6 1.35 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 8 24.5055 -47.9626 2638.0 21.2 1.41 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 4 24.5055 -47.9626 3453.0 21.9 1.45 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-25 76 1 24.5055 -47.9626 4010.0 22 1.51 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 80 24 24.5048 -45.4903 14.0 0.1 0 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 80 23 24.5048 -45.4903 54.0 0.1 0.01 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 80 22 24.5048 -45.4903 105.0 0.1 0 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 80 21 24.5048 -45.4903 205.0 1.3 0.03 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 80 20 24.5048 -45.4903 357.0 7.6 0.39 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 80 14 24.5048 -45.4903 1519.0 21.9 1.46 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 80 12 24.5048 -45.4903 1823.0 20.5 1.37 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 80 8 24.5048 -45.4903 2432.0 21.9 1.42 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 80 1 24.5048 -45.4903 3466.0 22.7 1.5 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-27 84 24 24.5097 -43.0072 18.0 0.1 0 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-27 84 23 24.5097 -43.0072 58.0 0.1 0.01 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-27 84 22 24.5097 -43.0072 108.0 0.1 0 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-27 84 21 24.5097 -43.0072 209.0 3.7 0.18 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-27 84 20 24.5097 -43.0072 359.0 9.7 0.56 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-27 84 18 24.5097 -43.0072 705.0 24 1.52 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-27 84 16 24.5097 -43.0072 1107.0 26.1 1.77 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-27 84 4 24.5097 -43.0072 3532.0 22.8 1.66 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-27 84 1 24.5097 -43.0072 4169.0 23.1 1.58 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-28 86 24 24.5087 -41.6399 19.0 0.1 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-28 86 23 24.5087 -41.6399 60.0 0 0 0.16 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-28 86 22 24.5087 -41.6399 110.0 0 0.02 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-28 86 21 24.5087 -41.6399 210.0 3.7 0.16 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-28 86 20 24.5087 -41.6399 359.0 8.3 0.43 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-28 86 19 24.5087 -41.6399 508.0 13.7 0.77 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-28 86 16 24.5087 -41.6399 1101.0 26.5 1.74 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-28 86 14 24.5087 -41.6399 1495.0 22.8 1.49 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-28 86 8 24.5087 -41.6399 3024.0 22.2 1.48 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-29 90 24 24.5 -38.5133 19.0 0.1 0 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-29 90 23 24.5 -38.5133 60.0 0.1 0 0.31 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-29 90 22 24.5 -38.5133 111.0 0.1 0 0.36 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-29 90 14 24.5 -38.5133 1523.0 21.8 1.33 0.24 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-29 90 10 24.5 -38.5133 2532.0 21.3 1.31 0.33 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-29 90 5 24.5 -38.5133 3800.0 22.3 1.41 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-30 94 24 24.5045 -35.2287 19.0 0.1 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-30 94 23 24.5045 -35.2287 59.0 0.1 0 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-30 94 20 24.5045 -35.2287 361.0 7.9 0.4 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-30 94 18 24.5045 -35.2287 712.0 21.6 1.3 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-30 94 14 24.5045 -35.2287 1620.0 21.6 1.41 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-01 96 22 24.4991 -33.5732 112.0 0.18 0 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-01 96 21 24.4991 -33.5732 213.0 7.1 0.36 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-01 96 20 24.4991 -33.5732 364.0 12.4 0.7 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-01 96 18 24.4991 -33.5732 717.0 23.7 1.49 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-01 96 16 24.4991 -33.5732 1121.0 26.4 1.75 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-01 96 12 24.4991 -33.5732 2237.0 21.9 1.49 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-01 96 1 24.4991 -33.5732 5992.0 23.5 1.59 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-02 100 24 24.5015 -29.8901 21.0 0.1 0.01 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-02 100 23 24.5015 -29.8901 61.0 0.1 0.01 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-02 100 20 24.5015 -29.8901 362.0 10.5 0.59 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-02 100 10 24.5015 -29.8901 2846.0 21.9 1.45 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-02 100 5 24.5015 -29.8901 4633.0 23.5 1.58 0.15 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-03 102 24 24.5013 -28.0686 19.0 0.1 0.01 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-03 102 23 24.5013 -28.0686 59.0 0.1 0.01 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-03 102 22 24.5013 -28.0686 110.0 2.5 0.14 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-03 102 20 24.5013 -28.0686 362.0 13.8 0.76 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-03 102 10 24.5013 -28.0686 2794.0 22.4 1.48 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-03 102 1 24.5013 -28.0686 5698.0 23.8 1.55 0.22 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-04 104 24 24.499 -26.2312 18.0 0.1 0.02 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-04 104 23 24.499 -26.2312 58.0 0.1 0.02 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-04 104 22 24.499 -26.2312 109.0 0.8 0.05 0.12 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-04 104 21 24.499 -26.2312 209.0 4.3 0.21 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-04 104 18 24.499 -26.2312 713.0 27.7 1.79 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-05 108 20 24.7382 -22.8223 310.0 17.3 1.02 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-05 108 17 24.7382 -22.8223 663.0 25 1.53 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-05 108 1 24.7382 -22.8223 4974.0 23.7 1.57 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-06 112 20 25.6499 -20.2425 107.0 5.5 0.29 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-06 112 18 25.6499 -20.2425 307.0 10.1 0.52 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-07 114 17 26.1336 -18.9098 104.0 3.9 0.26 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-07 114 16 26.1336 -18.9098 204.0 9.6 0.55 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-08 118 20 27.0432 -16.122 12.0 0.1 0.02 0.26 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-08 118 18 27.0432 -16.122 52.0 0.2 0.05 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-08 118 17 27.0432 -16.122 103.0 4 0.25 0.18 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-14 39 carboys 26.5081 -71.3433 0.0 0.04 0.03 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-17 49 carboys 24.5029 -66.1923 0.0 0 0.01 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-20 58 carboys 24.5154 -59.5918 0.0 0 0.01 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-26 78 carboys 24.4958 -46.5747 0.0 0 0.01 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-04-29 89 carboys 24.4978 -39.2451 0.0 0 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-02 98 carboys 24.4995 -31.7308 0.0 0 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-05 107 carboys 24.5134 -23.4947 0.0 0.1 0.02 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
D279 2004-05-08 117 carboys 26.8145 -16.7846 0.0 0 0.02 0.17 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-03 3 36.2308 -69.1407 1007.9 7.302 35.1149 19.46 1.28 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-04 6 36.6401 -70.2625 16.0 21.855 36.3275 0 0 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-04 6 36.6401 -70.2625 55.7 21.863 36.3289 0 0 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-04 6 36.6401 -70.2625 105.2 21.096 36.3733 1.76 0.11 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-05 7 36.7385 -70.5589 12.3 15.475 35.0237 0 0.17 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-05 7 36.7385 -70.5589 43.9 14.13 35.1429 0.55 0.24 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-05 8 36.8665 -70.8689 48.6 11.876 34.7372 3.61 0.38 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-06 11 37.3226 -71.6791 44.5 12.743 34.7013 1.79 0.25 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-06 12 37.4429 -71.9513 41.3 16.334 35.3914 0 0.06 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-06 13 37.611 -72.2016 3011.0 2.275 34.8997 15.7 1.11 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 14 36.0148 -74.8129 10.9 10.379 33.5686 0.57 0.25 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 14 36.0148 -74.8129 51.1 9.366 33.545 1.47 0.36 0.14 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 14 36.0148 -74.8129 101.2 9.064 33.5264 1.86 0.43 0.13 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 14 36.0148 -74.8129 115.4 9.092 33.5564 1.92 0.43 0.11 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 14 36.0148 -74.8129 11.5 11.863 34.0038 0 0.17 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 15 35.9944 -74.7959 51.4 11.922 34.1203 0.18 0.2 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 15 35.9944 -74.7959 150.9 10.312 34.4137 2.7 0.44 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 16 35.9771 -74.7738 11.7 10.457 33.6804 0.79 0.29 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 17 35.9521 -74.7374 51.9 10.445 33.7657 1.02 0.32 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-08 17 35.9521 -74.7374 100.2 8.09 33.5552 1.89 0.46 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-09 20 35.6493 -74.2791 1005.0 4.202 34.9621 18.54 1.2 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-09 20 35.6493 -74.2791 1506.0 3.733 34.9431 17.99 1.18 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-09 20 35.6493 -74.2791 2504.3 3.01 34.9346 18.02 1.2 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-09 20 35.6493 -74.2791 12.2 24.799 36.3796 0.14 0.01 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-09 23 35.597 -74.117 13.3 24.634 36.3728 0.31 0 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-09 23 35.597 -74.117 53.4 24.638 36.3723 0.92 0.01 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-10 24 35.3618 -73.7694 152.9 21.955 36.8356 1.48 0.04 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-10 24 35.3618 -73.7694 203.2 20.499 36.7781 1.59 0.06 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-10 24 35.3618 -73.7694 503.0 16.371 36.2397 11.3 0.58 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-10 24 35.3618 -73.7694 13.1 21.66 36.6121 0.09 0.02 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-10 24 35.3618 -73.7694 42.6 20.901 36.6558 0.17 0.03 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-10 24 35.3618 -73.7694 103.0 20.552 36.6662 0.46 0.03 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-10 25 35.1587 -73.4702 202.9 19.209 36.6796 2.05 0.09 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-10 26 35.2951 -72.9348 13.7 20.839 36.5626 0.02 0.01 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-10 27 35.4184 -72.4071 304.7 18.697 36.6603 1.81 0.07 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 28 35.5656 -71.8587 13.0 21.476 36.4436 0.11 0.01 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 28 35.5656 -71.8587 52.9 21.485 36.4457 0.13 0 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 29 35.6994 -71.3292 303.3 18.714 36.6511 2.48 0.11 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 29 35.6994 -71.3292 13.6 20.887 36.5682 0.05 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 29 35.6994 -71.3292 53.5 20.795 36.5679 0.06 0 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 29 35.6994 -71.3292 103.6 19.96 36.7103 1.49 0.05 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 30 35.8329 -70.7996 203.7 18.963 36.6593 2.43 0.09 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 30 35.8329 -70.7996 303.8 18.649 36.6415 2.62 0.1 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 30 35.8329 -70.7996 403.8 18.258 36.5839 3.72 0.17 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 31 35.9674 -70.247 53.8 19.26 36.6771 0.33 0 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-11 31 35.9674 -70.247 103.9 19.213 36.6823 0.71 0.01 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-12 32 36.1131 -69.6938 203.8 18.698 36.6397 2.56 0.11 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-12 32 36.1131 -69.6938 304.7 18.32 36.5755 3.86 0.17 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-12 32 36.1131 -69.6938 404.8 18.046 36.5497 4.3 0.2 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-12 32 36.1131 -69.6938 505.0 17.109 36.3719 7.45 0.39 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-12 32 36.1131 -69.6938 13.3 21.582 36.5238 0.02 0 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-12 32 36.1131 -69.6938 45.2 19.501 36.6574 0.07 0 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-12 32 36.1131 -69.6938 103.4 19.015 36.6605 1.19 0.03 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-12 33 36.2562 -69.1291 203.6 18.529 36.6527 2.35 0.08 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-14 38 36.2469 -66.0857 13.8 20.885 36.5227 0.04 0.01 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-14 38 36.2469 -66.0857 49.6 20.845 36.5309 0.11 0.01 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-14 39 36.2348 -65.4562 203.2 19.147 36.6451 3.6 0.16 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-14 39 36.2348 -65.4562 302.6 18.741 36.6534 2.58 0.11 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-14 39 36.2348 -65.4562 403.2 18.396 36.6192 3.06 0.14 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-14 39 36.2348 -65.4562 2006.4 3.661 34.9535 18.31 1.19 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-15 41 36.2643 -64.2296 14.2 20.916 36.4779 0.06 0.01 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-15 41 36.2643 -64.2296 47.1 20.599 36.4796 0.32 0.01 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-15 41 36.2643 -64.2296 104.1 19.597 36.679 2.32 0.09 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-15 42 36.2457 -63.6253 204.2 18.543 36.646 2.48 0.1 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 44 36.2616 -62.4064 14.1 19.938 36.6515 0.08 0.01 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 44 36.2616 -62.4064 53.8 18.876 36.6275 0.15 0.01 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 44 36.2616 -62.4064 84.3 18.595 36.6203 1.51 0.06 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 45 36.2586 -61.7725 203.9 18.268 36.6102 2.67 0.11 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 45 36.2586 -61.7725 303.9 18.16 36.5954 2.91 0.15 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 45 36.2586 -61.7725 403.2 17.99 36.5629 3.48 0.16 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 45 36.2586 -61.7725 1994.3 3.713 34.956 18.39 1.19 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 46 36.2424 -61.1642 14.1 19.807 36.6652 0.02 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 46 36.2424 -61.1642 54.0 19.583 36.6597 0.06 0 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-16 46 36.2424 -61.1642 103.1 18.634 36.6323 1.77 0.05 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-17 47 36.2468 -60.5295 204.0 18.305 36.6055 2.57 0.1 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-17 47 36.2468 -60.5295 303.2 18.14 36.5828 3.17 0.12 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-17 47 36.2468 -60.5295 402.9 17.699 36.4844 5.32 0.25 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-18 51 36.0976 -58.7126 13.6 19.306 36.6669 0.02 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-18 51 36.0976 -58.7126 28.6 19.229 36.667 0.04 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-18 51 36.0976 -58.7126 103.6 18.898 36.6547 1.75 0.06 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-18 52 36.0105 -58.0828 203.5 18.5 36.6282 2.37 0.1 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-18 52 36.0105 -58.0828 303.5 18.361 36.6227 2.56 0.12 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-18 52 36.0105 -58.0828 403.8 18.239 36.6034 2.98 0.13 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-18 53 36.1682 -57.2539 14.9 19.034 36.6551 0.03 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-18 53 36.1682 -57.2539 44.9 18.917 36.6556 0.43 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-18 53 36.1682 -57.2539 105.0 18.641 36.654 2.26 0.08 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-19 54 36.235 -56.4376 205.1 18.332 36.6111 2.62 0.1 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-19 54 36.235 -56.4376 303.6 18.217 36.5965 2.93 0.13 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-19 55 36.2441 -55.6084 13.5 18.891 36.5187 0.08 0.02 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-19 55 36.2441 -55.6084 33.6 18.735 36.5167 0.06 0.02 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-20 59 36.4882 -52.2773 28.5 18.463 36.5099 0.12 0.01 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-20 59 36.4882 -52.2773 103.6 17.709 36.4947 3.03 0.15 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-21 60 36.6472 -51.4392 153.7 17.479 36.4393 3.07 0.15 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-21 60 36.6472 -51.4392 203.4 16.94 36.3529 6.19 0.33 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-22 63 36.2437 -48.9668 39.3 18.817 36.5714 0.02 0 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-22 63 36.2437 -48.9668 104.2 18.045 36.5448 3.19 0.14 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-22 64 36.2497 -48.1291 203.8 17.604 36.4701 4.84 0.25 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-22 64 36.2497 -48.1291 303.9 16.661 36.2954 8.27 0.44 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-23 65 36.2645 -47.3102 12.7 18.733 36.5524 0.29 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-23 66 36.248 -46.4699 153.3 18.069 36.5832 2.49 0.09 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-23 66 36.248 -46.4699 203.2 17.967 36.5712 3.1 0.11 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-23 66 36.248 -46.4699 302.8 17.973 36.5912 2.93 0.11 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-23 66 36.248 -46.4699 402.9 17.632 36.5074 4.81 0.23 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-23 66 36.248 -46.4699 552.8 15.539 36.1646 6.46 0.36 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-24 67 36.2508 -45.6552 13.2 18.952 36.5358 0 0.01 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-24 67 36.2508 -45.6552 23.3 18.579 36.5806 0.02 0.02 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-24 67 36.2508 -45.6552 103.2 18.256 36.5766 1.51 0.09 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-24 68 36.2534 -44.8246 203.0 18.037 36.5754 3.05 0.16 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-25 71 36.247 -42.5433 12.8 19.71 36.461 0.03 0.01 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-25 71 36.247 -42.5433 37.7 18.687 36.4638 0.05 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-26 75 36.2521 -40.0992 153.5 17.445 36.4195 3.72 0.19 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-27 77 36.249 -38.8635 13.3 19.38 36.4944 0.03 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-27 77 36.249 -38.8635 38.3 18.594 36.4721 0.1 0 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-27 77 36.249 -38.8635 103.5 17.398 36.4 2.81 0.13 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-27 78 36.2434 -38.2691 203.2 16.821 36.3291 4.62 0.24 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-27 78 36.2434 -38.2691 303.1 15.472 36.0942 7.91 0.45 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-27 78 36.2434 -38.2691 402.9 14.399 35.9363 9.99 0.57 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-27 78 36.2434 -38.2691 552.4 12.475 35.6621 13.33 0.79 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-28 81 36.2492 -36.432 11.8 19.709 36.4704 0 0.03 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-28 81 36.2492 -36.432 102.4 17.297 36.3674 3.72 0.22 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-28 82 36.2495 -35.8153 152.3 16.904 36.32 3.59 0.21 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 86 36.2516 -33.3682 12.0 19.996 36.6332 0 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 86 36.2516 -33.3682 46.9 19.002 36.6074 0.01 0 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 86 36.2516 -33.3682 101.9 18.596 36.5682 1.08 0.04 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 87 36.2473 -32.7616 152.1 17.907 36.4626 2.88 0.13 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 87 36.2473 -32.7616 202.1 17.404 36.3929 4.17 0.21 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 87 36.2473 -32.7616 302.1 16.313 36.2448 3.63 0.19 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 87 36.2473 -32.7616 402.2 14.623 35.9657 9.23 0.53 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 87 36.2473 -32.7616 702.2 10.053 35.3717 20.1 1.23 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 87 36.2473 -32.7616 1002.4 8.608 35.5507 18.71 1.15 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 87 36.2473 -32.7616 1602.5 4.916 35.1198 18.36 1.15 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-29 87 36.2473 -32.7616 2216.5 3.497 34.9671 17.95 1.17 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-30 89 36.2473 -31.5319 12.8 19.298 36.3251 0.02 0 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-30 89 36.2473 -31.5319 52.8 17.794 36.3228 0.09 0 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-30 90 36.246 -30.9347 102.6 16.788 36.3169 3.39 0.18 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-30 90 36.246 -30.9347 151.7 16.229 36.2388 5.53 0.3 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-30 90 36.246 -30.9347 202.8 15.559 36.1278 7.24 0.4 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-30 90 36.246 -30.9347 302.8 13.981 35.8822 9.51 0.55 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-30 90 36.246 -30.9347 552.8 11.48 35.5592 15.14 0.91 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-31 94 36.2483 -28.4851 47.9 16.83 36.2111 0 0.03 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-31 94 36.2483 -28.4851 102.9 16.429 36.2539 3.09 0.19 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-31 95 36.2406 -27.8352 202.9 15.619 36.1554 5.92 0.36 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-31 95 36.2406 -27.8352 302.5 14.11 35.9033 9.62 0.58 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-05-31 95 36.2406 -27.8352 403.0 13.106 35.7573 12.25 0.73 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-01 97 36.2521 -26.651 14.3 19.224 36.2566 0.02 0.01 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-01 97 36.2521 -26.651 64.4 16.48 36.1984 0.09 0.02 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-01 97 36.2521 -26.651 104.4 15.604 36.1663 3.56 0.21 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-01 98 36.2502 -26.0339 304.1 13.305 35.7889 10.55 0.61 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-01 98 36.2502 -26.0339 404.3 12.252 35.6424 13.01 0.77 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-01 98 36.2502 -26.0339 553.9 10.944 35.5067 16.61 0.98 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-01 98 36.2502 -26.0339 2004.5 3.506 34.9667 18.91 1.18 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-03 101 36.2478 -25.4195 12.6 19.176 36.3243 0 0 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-03 101 36.2478 -25.4195 62.6 17.442 36.2866 0.02 0.01 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-03 102 36.2502 -24.8167 152.6 15.596 36.1879 4.24 0.24 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-03 102 36.2502 -24.8167 2003.7 3.389 34.9353 17.91 1.17 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-04 105 36.2491 -22.9808 15.2 18.494 36.264 0.02 0 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-04 105 36.2491 -22.9808 45.2 17.239 36.2294 0.03 0 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-04 106 36.25 -22.355 305.2 13.894 35.8857 8.77 0.51 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-05 108 36.249 -21.1515 14.1 18.73 36.3239 0 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-05 108 36.249 -21.1515 54.1 16.093 36.1424 0.08 0.01 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-05 108 36.249 -21.1515 104.0 15.249 36.1213 3.8 0.23 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-05 109 36.2495 -20.5278 204.0 14.63 36.0653 5.38 0.32 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-05 110 36.251 -19.9136 14.2 19.236 36.3994 0 0 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-05 110 36.251 -19.9136 69.1 16.092 36.1879 0.04 0.01 0.21 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-05 110 36.251 -19.9136 104.2 15.49 36.2114 3.68 0.23 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-07 114 36.255 -17.4666 15.9 18.893 36.3674 0.05 0.01 0.07 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-07 114 36.255 -17.4666 41.0 18.812 36.364 0.13 0 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-07 114 36.255 -17.4666 105.9 15.728 36.2552 4.54 0.25 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-07 115 36.2586 -16.86 206.3 14.392 36.023 6.78 0.4 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-07 115 36.2586 -16.86 306.2 14.027 36.0134 6.91 0.41 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-07 115 36.2586 -16.86 405.9 13.204 35.8596 8.46 0.5 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-08 118 36.1506 -15.3708 12.0 19.06 36.559 0.05 0 0.08 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-08 118 36.1506 -15.3708 102.1 15.903 36.2552 2.73 0.17 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-08 119 35.9932 -14.9583 152.1 15.294 36.1965 4.92 0.29 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-08 119 35.9932 -14.9583 401.7 12.627 35.7042 12.24 0.73 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-08 120 35.9005 -14.701 12.6 19.109 36.6044 0.01 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-08 120 35.9005 -14.701 52.3 17.646 36.4481 0 0 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-08 120 35.9005 -14.701 102.8 16.216 36.3412 3.83 0.21 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-09 121 35.7929 -13.9904 152.8 15.505 36.2269 4.93 0.28 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-09 121 35.7929 -13.9904 202.9 15.005 36.1413 5.67 0.32 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-09 121 35.7929 -13.9904 302.8 14.022 36.0032 6.78 0.39 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-09 121 35.7929 -13.9904 3001.9 2.795 34.9472 21.55 1.45 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-10 124 35.8002 -11.8989 104.3 16.275 36.3952 3.58 0.21 0.06 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-10 125 35.8092 -11.1937 154.0 15.537 36.268 4.96 0.29 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-10 125 35.8092 -11.1937 203.7 15.036 36.1694 5.73 0.33 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-10 126 35.7957 -10.495 14.9 20.007 36.5047 0 0 0.1 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-10 126 35.7957 -10.495 44.9 16.168 36.1934 0 0.02 0.09 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-10 126 35.7957 -10.495 104.5 14.366 36.0839 6.79 0.39 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-11 127 35.8988 -9.80384 203.7 13.562 35.9467 8.07 0.48 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-11 127 35.8988 -9.80384 303.9 12.717 35.7986 10.76 0.64 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-12 134 36.5953 -8.67737 11.9 19.578 36.4621 0 0.01 0.04 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-12 134 36.5953 -8.67737 35.0 16.209 36.3064 0 0.04 0.05 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-12 135 36.6395 -8.66133 101.8 14.921 36.1713 5.96 0.36 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-12 135 36.6395 -8.66133 151.9 14.802 36.1583 6.25 0.38 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-12 135 36.6395 -8.66133 301.8 12.702 35.7278 12.69 0.74 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-12 135 36.6395 -8.66133 701.6 12.441 36.3479 13.37 0.77 0.01 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-12 135 36.6395 -8.66133 761.0 12.799 36.5081 12.28 0.7 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-13 140 35.0493 -8.06395 32.7 18.536 36.4191 0.06 0.01 0.03 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-13 141 34.5829 -7.82029 801.7 10.483 35.7607 18.59 1.14 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
36N 2005-06-13 141 34.5829 -7.82029 1100.7 9.818 35.9228 18.42 1.13 0.02 2 North Atlantic UV oxidation Mather; R.; Reynolds; S.; Wolff; G. et al. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nature Geosci 1; 439 443 (2008). https://doi.org/10.1038/ngeo232
SATL2004 20.03 -19.27 1.0 0.26 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 20.03 -19.27 1.0 0.31 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 20.69 -24.06 1.0 0.25 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 20.69 -24.06 1.0 0.23 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 20.69 -24.06 1.0 0.23 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 21.77 -26.71 1.0 0.23 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 21.77 -26.71 1.0 0.19 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 21.76 -26.64 1.0 0.2 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 21.71 -26.65 1.0 0.21 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 23.0 -29.39 1.0 0.18 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 22.97 -29.43 1.0 0.21 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 22.99 -29.44 1.0 0.17 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 24.6 -31.24 1.0 0.14 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 24.58 -31.24 1.0 0.15 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 24.57 -31.23 1.0 0.15 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 24.49 -31.25 1.0 0.13 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
SATL2004 24.47 -31.26 1.0 0.12 2 North Atlantic Wet oxidation Reinthaler; Thomas; Sintes; Eva; Herndl; Gerhard J.; (2008); Dissolved organic matter and bacterial production and respiration in the sea surface microlayer of the open Atlantic and the western Mediterranean Sea; Limnology and Oceanography; 53; doi: 10.4319/lo.2008.53.1.0122.
KM0415 30.8 -169.5 10.0 0.1 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 31.5 -170.4 10.0 0.1 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 33.4 -172.8 10.0 0.12 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 33.9 -173.4 10.0 0.13 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 34.6 -174.3 10.0 0.12 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 36.5 -176.8 10.0 0.14 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 36.8 -177.2 10.0 0.12 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 37.5 -178.2 10.0 0.13 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 39.5 179.1 10.0 0.16 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 39.9 178.4 10.0 0.16 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 40.3 177.8 10.0 0.17 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 41.0 177.0 10.0 0.1 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 42.4 174.9 10.0 0.12 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 42.9 174.1 10.0 0.17 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 43.6 173.1 10.0 0.19 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 45.5 170.2 10.0 0.19 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 46.0 169.5 10.0 0.13 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 46.2 168.9 10.0 0.14 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
KM0415 47.9 166.4 10.0 0.21 2 North Pacific Wet oxidation Yoshimura; T.; Nishioka; J.; Saito; H.; Takeda; S.; Tsuda; A.; & Wells; M. L. (2007). Distributions of particulate and dissolved organic and inorganic phosphorus in North Pacific surface waters. Marine chemistry; 103(1-2); 112-121.; https://doi.org/10.1016/j.marchem.2006.06.011
Line P 48.65 -126.67 2.0 0.29 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 48.65 -126.67 10.0 0.24 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 10.0 0.19 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 50.0 0.17 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 100.0 0.06 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 200.0 0.08 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 400.0 0.07 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 800.0 0.07 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 3800.0 0.01 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 10.0 0.14 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 50.0 0.13 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 70.0 0.11 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 100.0 0.11 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 200.0 0.1 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 400.0 0.06 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 800.0 0.02 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 1200.0 0.05 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 2000.0 0.01 2 North Pacific UV oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 48.65 -126.67 2.0 0.33 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 48.65 -126.67 10.0 0.33 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 10.0 0.21 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 50.0 0.21 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 100.0 0.12 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 200.0 0.06 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 400.0 0.05 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 800.0 0.08 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 2000.0 0.05 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 49.57 -138.67 3800.0 0.03 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 10.0 0.18 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 50.0 0.14 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 70.0 0.08 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 100.0 0.11 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 200.0 0.08 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 400.0 0.04 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 800.0 0.04 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 1200.0 0.04 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Line P 50.0 -145.0 2000.0 0.04 2 North Pacific Wet oxidation Ridal; Jefrey J.; Moore; Robert M.; (1992); Dissolved organic phosphorus concentrations in the northeast subarctic Pacific Ocean; Limnology and Oceanography; 37; doi: 10.4319/lo.1992.37.5.1067.
Latitude II 25.168 -19.048 5.0 0.17 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 25.168 -19.048 80.0 0.19 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 25.168 -19.048 90.0 0.12 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 25.168 -19.048 125.0 0.14 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 22.252 -18.254 5.0 0.11 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 22.252 -18.254 20.0 0.17 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 22.252 -18.254 40.0 0.24 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 22.252 -18.254 80.0 0.25 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 22.252 -18.254 100.0 0.23 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 22.252 -18.254 150.0 0.24 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 19.835 -18.259 5.0 0.2 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 19.835 -18.259 25.0 0.24 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 19.835 -18.259 40.0 0.22 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 19.835 -18.259 60.0 0.29 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 19.835 -18.259 80.0 0.28 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 19.835 -18.259 100.0 0.27 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 17.419 -18.248 5.0 0.15 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 17.419 -18.248 40.0 0.35 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 17.419 -18.248 60.0 0.23 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 17.419 -18.248 100.0 0.25 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 14.764 -17.998 5.0 0.25 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 14.001 -19.002 5.0 0.25 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 5.0 0.16 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 20.0 0.19 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 40.0 0.17 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 45.0 0.22 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 50.0 0.18 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 60.0 0.27 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 70.0 0.23 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 80.0 0.22 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 100.0 0.21 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 150.0 0.26 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 11.308 -20.438 400.0 0.04 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 7.768 -21.735 5.0 0.22 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 5.0 0.16 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 10.0 0.17 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 20.0 0.2 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 30.0 0.29 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 40.0 0.21 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 50.0 0.13 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 60.0 0.26 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 70.0 0.29 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 80.0 0.11 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 90.0 0.15 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 100.0 0.13 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 125.0 0.22 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 4.198 -23.207 150.0 0.15 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 5.0 0.16 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 10.0 0.19 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 20.0 0.16 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 30.0 0.15 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 40.0 0.15 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 55.0 0.15 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 65.0 0.12 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 80.0 0.12 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 90.0 0.17 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 100.0 0.12 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II 0.945 -24.412 125.0 0.22 2 North Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 5.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 10.0 0.17 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 20.0 0.14 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 30.0 0.12 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 40.0 0.13 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 55.0 0.16 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 70.0 0.07 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 80.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 100.0 0.07 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -0.072 -24.722 150.0 0.12 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 5.0 0.11 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 10.0 0.14 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 20.0 0.11 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 30.0 0.17 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 40.0 0.11 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 50.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 60.0 0.13 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 70.0 0.17 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 80.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 90.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -2.989 -26.216 200.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 5.0 0.14 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 10.0 0.21 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 20.0 0.15 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 30.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 40.0 0.15 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 50.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 60.0 0.15 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 80.0 0.14 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 95.0 0.14 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 105.0 0.11 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 115.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 125.0 0.12 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -8.803 -28.295 150.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 5.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 10.0 0.16 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 20.0 0.14 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 30.0 0.19 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 45.0 0.05 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 60.0 0.12 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 90.0 0.17 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 110.0 0.17 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 120.0 0.23 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 130.0 0.34 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 140.0 0.25 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -11.994 -29.738 150.0 0.27 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 15.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 30.0 0.07 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 45.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 60.0 0.14 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 75.0 0.17 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 90.0 0.19 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 105.0 0.15 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 125.0 0.21 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 135.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 150.0 0.15 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -14.982 -31.035 175.0 0.17 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 5.0 0.02 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 10.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 35.0 0.01 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 60.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 110.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 125.0 0.06 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 140.0 0.13 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 160.0 0.13 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 170.0 0.04 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 180.0 0.07 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 200.0 0.06 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -17.903 -32.219 800.0 0.01 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 5.0 0.14 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 10.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 30.0 0.27 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 40.0 0.18 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 60.0 0.16 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 70.0 0.12 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 100.0 0.11 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 130.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 145.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 160.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 175.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 200.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 300.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -20.8 -33.365 400.0 0.07 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 5.0 0.12 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 10.0 0.11 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 30.0 0.18 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 60.0 0.16 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 70.0 0.15 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 85.0 0.12 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 100.0 0.15 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 110.0 0.15 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 120.0 0.16 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 150.0 0.13 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 200.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -23.451 -35.751 800.0 0.03 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 5.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 10.0 0.13 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 30.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 60.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 75.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 90.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 105.0 0.11 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 120.0 0.02 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 140.0 0.09 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 150.0 0.05 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 175.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 200.0 0.04 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 400.0 0.06 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -24.268 -36.346 600.0 0.07 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -26.002 -38.171 25.0 0.01 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -26.002 -38.171 60.0 0.03 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -26.002 -38.171 115.0 0.03 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -26.002 -38.171 125.0 0.02 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -26.002 -38.171 135.0 0.07 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -26.002 -38.171 150.0 0.01 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -26.002 -38.171 400.0 0.02 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 5.0 0.04 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 35.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 50.0 0.05 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 75.0 0.07 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 90.0 0.04 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 105.0 0.08 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 120.0 0.11 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 130.0 0.02 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 140.0 0.06 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 150.0 0.01 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 250.0 0.05 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 600.0 0.03 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -28.087 -40.143 800.0 0.01 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -30.577 -42.543 5.0 0.02 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -30.577 -42.543 10.0 0.02 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -30.577 -42.543 30.0 0.1 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -30.577 -42.543 60.0 0.06 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -30.577 -42.543 90.0 0.05 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Latitude II -30.577 -42.543 110.0 0.07 2 South Atlantic Wet oxidation Vidal; Montserrat Duarte; Carlos M. Agusti; Susana; (1999); Dissolved organic nitrogen and phosphorus pools and fluxes in the central Atlantic Ocean; Limnology and Oceanography; 1; doi: 10.4319/lo.1999.44.1.0106.
Pulse-26 cruise 34.833 -123.0 25.0 0.23 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 34.833 -123.0 85.0 0.23 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 34.833 -123.0 1282.0 0.09 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 34.833 -123.0 1600.0 0.09 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 34.833 -123.0 2515.0 0.07 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 34.833 -123.0 3466.0 0.08 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 35.45 -122.35 22.0 0.23 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 35.45 -122.35 189.0 0.13 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 35.45 -122.35 1628.0 0.1 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 35.45 -122.35 2568.0 0.09 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 35.45 -122.35 3152.0 0.08 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 35.667 -121.45 25.0 0.2 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 35.667 -121.45 100.0 0.17 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 35.667 -121.45 419.0 0.01 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
Pulse-26 cruise 35.667 -121.45 483.0 0.08 2 North Pacific ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 3.0 0.22 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 10.0 0.2 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 20.0 0.23 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 94.0 0.15 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 142.0 0.15 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 772.0 0.1 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 1289.0 0.07 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 1700.0 0.06 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 3600.0 0.07 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
STN F -54.0 -176.0 4295.0 0.08 2 Southern Ocean ash/hydrolysis Loh; A. N.; & Bauer; J. E. (2000). Distribution; partitioning and fluxes of dissolved and particulate organic C; N and P in the eastern North Pacific and Southern Oceans. Deep Sea Research Part I: Oceanographic Research Papers; 47(12); 2287-2316.; https://doi.org/10.1016/S0967-0637(00)00027-3
KT00A;B 35.0 139.333 1.0 0.37 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 35.0 139.333 9.0 0.53 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 35.0 139.333 20.0 0.3 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 35.0 139.333 30.0 0.36 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 35.0 139.333 50.0 0.25 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 35.0 139.333 75.0 0.27 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 35.0 139.333 100.0 0.2 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 35.0 139.333 151.0 0.22 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 2.0 0.3 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 10.0 0.21 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 20.0 0.43 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 30.0 0.35 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 50.0 0.43 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 75.0 0.22 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 100.0 0.25 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 150.0 0.23 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 2001.0 0.05 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KT00A;B 33.107 141.3 3000.0 0.04 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KH01Eq 0.0 159.998 10.0 0.21 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KH01Eq 0.0 159.998 51.0 0.34 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KH01Eq 0.0 159.998 101.0 0.38 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KH01Eq 0.0 159.998 996.0 0.08 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KH01Eq 0.0 159.998 1979.0 0.06 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
KH01Eq 0.0 159.998 3941.0 0.05 2 North Pacific ash/hydrolysis Suzumura; M.; & Ingall; E. D. (2004). Distribution and dynamics of various forms of phosphorus in seawater: insights from field observations in the Pacific Ocean and a laboratory experiment. Deep Sea Research Part I: Oceanographic Research Papers; 51(8); 1113-1130.; https://doi.org/10.1016/j.dsr.2004.05.001
OC279 32.18 -70.11 1.0 23.02 0 0 0.15 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 32.18 -70.11 15.0 22.56 0 0 0.12 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 32.18 -70.11 25.0 21.98 0.01 0 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 32.18 -70.11 40.0 20.55 0.01 0.01 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 32.18 -70.11 60.0 19.3 0 0 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 32.18 -70.11 75.0 19.08 0.01 0 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 32.18 -70.11 100.0 18.83 0.9 0.02 0.13 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 32.18 -70.11 120.0 18.69 1.55 0.03 0.14 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 35.0 -69.88 1.0 23.5 0.01 0.38 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 35.0 -69.88 20.0 22.3 0 0.01 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 35.0 -69.88 40.0 20.7 0.01 0.01 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 35.0 -69.88 60.0 19.15 0.01 0.01 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 35.0 -69.88 100.0 18.66 0.76 0.01 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 35.0 -69.88 140.0 18.47 2.1 0.06 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 35.0 -69.88 160.0 18.43 0.82 0.02 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 35.0 -69.88 180.0 18.35 1.05 0.02 0.05 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 1.0 24.98 0 0 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 20.0 24.43 0.02 0 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 40.0 22.83 0 0.01 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 60.0 22.02 0.01 0.01 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 80.0 21.57 0.01 0.01 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 90.0 21.47 0 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 100.0 20.42 0.02 0.01 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 120.0 19.93 0.01 0.01 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 140.0 19.58 2.55 0.07 0.06 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 36.2 -69.54 160.0 0.42 0.04 0.04 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 1.0 26.8 0 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 30.0 26.8 0 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 50.0 26.29 0 0 0.06 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 60.0 25.97 0 0 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 80.0 24.48 0.08 0.01 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 100.0 23.99 0.49 0.01 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 120.0 23.14 0.08 0 0.05 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 140.0 22.15 0.12 0.06 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 180.0 20.56 1.21 0.04 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 37.5 -69.92 220.0 18.07 7.7 0.12 0.12 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 38.62 -70.62 1.0 20.91 0 0.08 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 38.62 -70.62 20.0 19.44 0 0.11 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 38.62 -70.62 40.0 16.1 4.43 0.21 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 38.62 -70.62 60.0 13.73 7.38 0.27 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 39.5 -70.72 1.0 20.33 0.02 0.19 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 39.5 -70.72 10.0 13.26 0.01 0.18 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 39.5 -70.72 20.0 14.05 0.01 0.24 0.18 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 39.5 -70.72 36.0 11.05 2.74 0.46 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 40.0 -70.72 1.0 19.22 0.01 0.22 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC279 40.0 -70.72 20.0 15.44 0 0.14 0.16 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 35.83 -61.95 3.0 19.22 0.84 0.02 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 35.83 -61.95 25.0 19.22 0.88 0.02 0.04 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 35.83 -61.95 50.0 19.19 0.77 0.02 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 35.83 -61.95 125.0 19.17 0.74 0.02 0.05 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 35.83 -61.95 150.0 19.17 0.73 0.02 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 35.83 -61.95 175.0 19.17 0.74 0.02 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 35.83 -61.95 200.0 19.15 0.77 0.02 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 35.83 -61.95 250.0 18.74 1.95 0.07 0.04 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 36.5 -65.83 3.0 19.3 0.53 0 0.12 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 36.5 -65.83 40.0 19.22 0.65 0 0.05 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 36.5 -65.83 75.0 19.22 0.68 0 0.14 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 36.5 -65.83 100.0 19.23 0.63 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 36.5 -65.83 150.0 19.21 0.76 0.01 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 36.5 -65.83 200.0 19.1 0.96 0.08 0.05 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 36.5 -65.83 250.0 18.58 2.32 0.08 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 36.5 -65.83 300.0 18.26 2.43 0.08 0.04 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 38.08 -67.66 3.0 23.35 3.04 0.03 0.03 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 38.08 -67.66 30.0 23.45 0.3 0 0.06 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 38.08 -67.66 50.0 23.41 2.01 0.03 0.05 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 38.08 -67.66 70.0 22.64 2.62 0.07 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 38.08 -67.66 100.0 20.53 0.64 0 0.06 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 38.08 -67.66 150.0 19.79 0.95 0.11 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC297 38.08 -67.66 200.0 18.63 2.63 0.09 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 26.281 -69.812 3.0 24.9 0.01 0 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 26.685 -69.411 3.0 24.3 0 0 0.18 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 27.668 -68.428 3.0 23.5 0 0 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 27.793 -68.305 3.0 23.3 0 0 0.12 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 28.001 -68.097 3.0 22.1 0.01 0 0.06 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 28.49 -67.66 3.0 22.3 0.01 0 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 28.693 -67.469 3.0 21.5 0 0 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 28.913 -67.247 3.0 22.1 0 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 29.975 -66.104 3.0 21.2 0 0 0.12 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 30.312 -65.667 3.0 21.6 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 30.565 -65.431 3.0 21.7 0 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 30.69 -65.286 3.0 21.1 0.02 0 0.13 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 30.928 -65.016 3.0 19.7 0.15 0 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 31.079 -64.843 3.0 19.6 0.11 0 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 31.257 -64.639 3.0 19.5 0.22 0 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 31.437 -64.431 3.0 19.4 0.16 0 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 31.867 -64.637 3.0 19.4 0.58 0.01 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 32.093 -65.091 3.0 19.4 0.32 0.01 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 32.506 -65.806 3.0 19.1 0.6 0.01 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 32.588 -65.942 3.0 19.2 0.54 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 32.713 -66.155 3.0 19.2 0.66 0.13 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 33.396 -67.294 3.0 20.0 0.42 0.01 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 33.933 -68.21 3.0 19.4 0.81 0.02 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 33.999 -68.318 3.0 19.3 0.66 0.01 0.12 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 34.408 -69.0 3.0 19.3 0.71 0.01 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 34.579 -69.211 3.0 19.4 0.61 0.01 0.14 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 34.696 -69.356 3.0 19.4 0.67 0.01 0.13 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 34.894 -69.596 3.0 19.4 0.71 0.01 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 35.638 -70.16 3.0 19.5 0.47 0.01 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 36.846 -70.755 3.0 23.8 0.17 0.01 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 37.007 -70.741 3.0 23.4 0.37 0.01 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 37.263 -70.73 3.0 23.4 0.37 0.02 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 37.406 -70.728 3.0 23.1 0.59 0.02 0.12 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 37.592 -70.725 3.0 21.0 0.9 0.04 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 37.694 -70.724 3.0 19.2 1.48 0.08 0.12 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 37.759 -70.722 3.0 9.51 3.1 0.34 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 37.843 -70.722 3.0 10.9 3.17 0.27 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 37.987 -70.729 3.0 10.6 2.69 0.31 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 39.434 -70.798 3.0 4.9 4.09 0.43 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 39.519 -70.802 3.0 4.66 2.64 0.51 0.14 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 39.729 -70.812 3.0 4.9 2.63 0.48 0.16 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 39.813 -70.816 3.0 4.4 3.32 0.26 0.19 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 39.902 -70.821 3.0 4.4 4.61 0.48 0.15 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 40.103 -70.819 3.0 4.83 4.39 0.58 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 40.212 -70.825 3.0 5.1 5.01 0.36 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 26.0 -70.009 0.0 0 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 26.0 -70.009 50.0 0 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 26.0 -70.009 80.0 0 0 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 31.567 -64.147 0.0 0.2 0 0.05 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 31.567 -64.147 100.0 0.26 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 31.567 -64.147 150.0 0.26 0 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC318 31.567 -64.147 200.0 0.94 0.03 0.13 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.665556 -64.15833 20.0 0.01 0 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.665556 -64.15833 50.0 0 0 0.13 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.665556 -64.15833 80.0 0.23 0.01 0.17 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.665556 -64.15833 100.0 1.14 0.02 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.665556 -64.15833 125.0 1.58 0.04 0.07 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.665556 -64.15833 150.0 1.64 0.05 0.13 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.665556 -64.15833 200.0 3.49 0.11 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 400.0 5.22 0.18 0.06 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 3.0 0.01 0 0.06 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 15.0 0.01 0 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 20.0 0 0 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 30.0 0 0 0.14 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 50.0 0 0 0.1 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 75.0 0.75 0.02 0.09 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 100.0 1.14 0.04 0.14 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 125.0 1.69 0.03 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 150.0 1.53 0.04 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.664444 -64.165276 200.0 4.27 0.09 0.12 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.657223 -64.126114 400.0 1.59 0.04 0.06 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.657223 -64.126114 3.0 0.01 0.1 0.18 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.657223 -64.126114 15.0 0.01 0.06 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.657223 -64.126114 20.0 0.01 0.07 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.657223 -64.126114 30.0 0.01 0.09 0.01 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.657223 -64.126114 50.0 1.33 0.21 0.01 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.657223 -64.126114 80.0 6.45 0.36 0.02 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.653889 -64.12194 0.0 0.01 0.1 0.03 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.653889 -64.12194 5.0 0.01 0.1 0.11 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.653889 -64.12194 10.0 0.01 0.22 0.08 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
OC325 31.653889 -64.12194 30.0 1.12 0.31 0.14 2 North Atlantic UV oxidation Cavender-Bares; K. K.; Karl; D. M.; & Chisholm; S. W. (2001). Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers; 48(11); 2373-2395.
Station ALOHA 22.75 -158.0 5.0 0 0.06 0.2 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 49.0 0 0.06 0.2 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 74.0 0 0.04 0.2 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 107.0 0 0.06 0.17 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 180.0 1.29 0.16 0.13 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 197.0 2.33 0.25 0.12 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 250.0 4.65 0.39 0.1 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 261.0 6.02 0.48 0.1 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 325.0 13.44 0.98 0.08 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 419.0 20.19 1.45 0.08 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 450.0 27.33 1.99 0.07 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 500.0 2.36 0.06 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 505.0 32.2 2.33 0.07 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 516.0 32.76 2.38 0.07 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 577.0 36.42 2.68 0.07 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 637.0 39.4 2.89 0.06 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 737.0 41.92 3.1 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 850.0 42.3 3.12 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 994.0 42.7 3.12 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 1200.0 42.89 3.09 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 1400.0 42.42 3.07 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 1600.0 42.05 3.01 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 2000.0 40.94 2.91 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 2200.0 40.47 2.86 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 2400.0 40.11 2.81 0.06 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 2600.0 40.4 2.87 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 2800.0 39.39 2.73 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 3000.0 38.7 2.71 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 3200.0 38.31 2.67 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 3400.0 37.61 2.63 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 3600.0 37.67 2.6 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 4000.0 37.06 2.59 0.04 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 4200.0 36.85 2.56 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 4400.0 36.89 2.55 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 4500.0 36.77 2.56 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 4600.0 36.9 2.54 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station ALOHA 22.75 -158.0 4800.0 36.45 2.55 0.05 2 South Pacific UV oxidation Foreman; R.K.; Bj rkman; K.M.; Carlson; C.A.; Opalk; K. and Karl; D.M. (2019); Improved ultraviolet photo-oxidation system yields estimates for deep-sea dissolved organic nitrogen and phosphorus. Limnol Oceanogr Methods; 17: 277-291. https://doi.org/10.1002/lom3.10312
Station BATS 31.7 -64.2 5.0 0.06 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 15.0 0.06 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 25.0 0.06 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 45.0 0.06 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 65.0 0.06 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 85.0 0.06 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 105.0 0.07 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 125.0 0.07 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 145.0 0.07 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 165.0 0.07 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 205.0 0.07 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 225.0 0.07 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 255.0 0.05 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 405.0 0.04 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
Station BATS 31.7 -64.2 505.0 0.02 2 North Atlantic Wet oxidation Lomas; M. W.; Burke; A. L.; Lomas; D. A.; Bell; D. W.; Shen; C.; Dyhrman; S. T.; and Ammerman; J. W.: Sargasso Sea phosphorus biogeochemistry: an important role for dissolved organic phosphorus (DOP); Biogeosciences; 7; 695 710; https://doi.org/10.5194/bg-7-695-2010; 2010.
EN391 2004-03-13 2 31.82655 -64.1776 0.0 0.05 0.17 2 North Atlantic ash/hydrolysis Sohm; J. A.; & Capone; D. G. (2006). Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series; 317; 21-28. doi:10.3354/meps317021
EN391 2004-03-14 A 29.279667 -61.541668 0.0 0.01 0.18 2 North Atlantic ash/hydrolysis Sohm; J. A.; & Capone; D. G. (2006). Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series; 317; 21-28. doi:10.3354/meps317021
EN391 2004-03-14 B 28.057667 -60.335667 0.0 0.02 0.09 2 North Atlantic ash/hydrolysis Sohm; J. A.; & Capone; D. G. (2006). Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series; 317; 21-28. doi:10.3354/meps317021
EN391 2004-03-16 C 23.706667 -56.131668 0.0 0.01 0.06 2 North Atlantic ash/hydrolysis Sohm; J. A.; & Capone; D. G. (2006). Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series; 317; 21-28. doi:10.3354/meps317021
EN391 2004-03-16 D 22.321667 -54.881668 0.0 0.01 0.06 2 North Atlantic ash/hydrolysis Sohm; J. A.; & Capone; D. G. (2006). Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series; 317; 21-28. doi:10.3354/meps317021
EN391 2004-03-18 E 17.12 -52.193333 0.0 0.04 0.1 2 North Atlantic ash/hydrolysis Sohm; J. A.; & Capone; D. G. (2006). Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series; 317; 21-28. doi:10.3354/meps317021
EN391 2004-03-18 F 15.886666 -51.325 0.0 0.03 0.12 2 North Atlantic ash/hydrolysis Sohm; J. A.; & Capone; D. G. (2006). Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series; 317; 21-28. doi:10.3354/meps317021
SJ0609 2006-06-28 3 12.3 -56.1 0.0 31.7 0.02 0.16 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-06-28 4 12.0 -54.5 0.0 30.1 0.03 0.1 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-06-28 5 11.7 -51.5 0.0 33.8 0.02 0.25 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-06-30 6 11.7 -49.5 0.0 35.9 0.01 0.23 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-01 7 11.8 -46.2 0.0 36.4 0.02 0.24 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-03 8 11.8 -43.4 0.0 36.1 0.02 0.22 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-04 9 12.5 -40.1 0.0 36.4 0.23 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-06 10 13.9 -35.3 0.0 36.4 0.2 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-07 12 15.0 -32.0 0.0 36.3 0.01 0.12 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-12 13 12.4 -27.2 0.0 36.2 0.01 0.18 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-13 14 10.0 -28.8 0.0 35.9 0.03 0.21 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-14 15 6.6 -30.8 0.0 35.1 0.01 0.11 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-18 18 1.8 -38.5 0.0 35.6 0.02 0.19 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-19 19 3.6 -41.9 0.0 35.4 0.03 0.15 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-20 20 5.6 -45.6 0.0 33.7 0.03 0.09 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-23 22 9.5 -52.9 0.0 34.7 0.06 0.23 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
SJ0609 2006-07-24 23 11.4 -56.4 0.0 33.0 0.01 0.18 2 North Atlantic ash/hydrolysis Sohm; J. A.; and Capone; D. G. (2010); Zonal differences in phosphorus pools; turnover and deficiency across the tropical North Atlantic Ocean; Global Biogeochem. Cycles; 24; GB2008; doi:10.1029/2008GB003414.
GB 93 1 40.58 -70.67 5.0 0.11 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 1 40.58 -70.67 15.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 2 41.0 -68.92 0.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 2 41.0 -68.92 7.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 2 41.0 -68.92 60.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 2 41.0 -68.92 150.0 0.05 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 2 41.0 -68.92 250.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 2 41.0 -68.92 250.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 3 42.42 -67.5 0.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 4 41.5 -67.0 0.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 4 41.5 -67.0 5.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 4 41.5 -67.0 20.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 5 40.5 -67.67 0.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 5 40.5 -67.67 200.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 5 40.5 -67.67 400.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 5 40.5 -67.67 600.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 5 40.5 -67.67 800.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 5 40.5 -67.67 1000.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 5 40.5 -67.67 1500.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
GB 93 6 40.92 -68.5 15.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 16 39.628 -71.623 752.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 16 39.628 -71.623 112.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 16 39.628 -71.623 500.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 16 39.628 -71.623 493.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 16 39.628 -71.623 50.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 16 39.628 -71.623 70.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 16 39.628 -71.623 20.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 16 39.628 -71.623 40.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 7 40.116 -70.35 100.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 7 40.116 -70.35 40.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 7 40.116 -70.35 61.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 7 40.116 -70.35 2.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 4 40.614 -70.354 52.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 4 40.614 -70.354 40.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 4 40.614 -70.354 25.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 4 40.614 -70.354 25.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 6 40.283 -70.351 100.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 6 40.283 -70.351 36.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 6 40.283 -70.351 20.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 6 40.283 -70.351 5.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 6 40.283 -70.351 70.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 3 40.785 -70.352 25.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 3 40.785 -70.352 2.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 3 40.785 -70.352 36.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 3 40.785 -70.352 12.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 3 40.785 -70.352 3.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 12 40.323 -72.034 62.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 12 40.323 -72.034 56.0 0.25 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 12 40.323 -72.034 40.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 12 40.323 -72.034 35.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 12 40.323 -72.034 26.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 12 40.323 -72.034 31.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 12 40.323 -72.034 16.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 12 40.323 -72.034 15.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 45 37.32 -74.067 40.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 45 37.32 -74.067 35.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 45 37.32 -74.067 20.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 45 37.32 -74.067 15.0 0.28 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 45 37.32 -74.067 10.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 45 37.32 -74.067 5.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 45 37.32 -74.067 3.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 45 37.32 -74.067 2.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 43 37.444 -74.841 65.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 43 37.444 -74.841 40.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 43 37.444 -74.841 24.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 43 37.444 -74.841 20.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 43 37.444 -74.841 18.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 43 37.444 -74.841 10.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 43 37.444 -74.841 2.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 43 37.444 -74.841 2.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 19 39.111 -73.29 1.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 15 39.8 -71.727 30.0 0.25 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 15 39.8 -71.727 1.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 15 39.8 -71.727 16.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 15 39.8 -71.727 5.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 40 37.0 -75.2 16.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 40 37.0 -75.2 12.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 42 37.507 -74.983 20.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 42 37.507 -74.983 15.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 1 41.116 -70.348 15.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 1 41.116 -70.348 15.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 1 41.116 -70.348 20.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 1 41.116 -70.348 4.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 21 39.373 -73.8 15.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 21 39.373 -73.8 1.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 53 36.616 -75.61 9.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 53 36.616 -75.61 4.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 53 36.616 -75.61 2.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 39 37.723 -75.407 16.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 39 37.723 -75.407 2.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 39 37.723 -75.407 11.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 22 39.508 -74.084 15.0 0.25 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 22 39.508 -74.084 10.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 22 39.508 -74.084 2.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 47 36.617 -74.399 11.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 47 36.617 -74.399 2.0 0.29 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 49 36.617 -74.8 11.0 0.28 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 94 51 36.616 -75.207 11.0 0.35 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 1 35.448 -75.381 19.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 1 35.448 -75.381 15.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 1 35.448 -75.381 13.0 0.29 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 1 35.448 -75.381 10.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 1 35.448 -75.381 5.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 2 35.448 -75.228 32.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 2 35.448 -75.228 25.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 2 35.448 -75.228 20.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 2 35.448 -75.228 15.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 2 35.448 -75.228 4.0 0.3 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 3 35.454 -75.057 36.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 3 35.454 -75.057 31.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 3 35.454 -75.057 20.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 3 35.454 -75.057 15.0 0.25 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 3 35.454 -75.057 10.0 0.27 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 3 35.454 -75.057 5.0 0.3 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 4 35.448 -74.882 75.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 4 35.448 -74.882 46.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 4 35.448 -74.882 35.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 4 35.448 -74.882 25.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 4 35.448 -74.882 15.0 0.25 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 4 35.448 -74.882 3.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 50.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 35.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 25.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 15.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 3.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 1501.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 1001.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 750.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 501.0 0.05 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 399.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 299.0 0.05 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 202.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 101.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 81.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 70.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 16.0 0.31 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 5 35.447 -74.721 10.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 9 36.7 -75.288 28.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 9 36.7 -75.288 24.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 9 36.7 -75.288 15.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 9 36.7 -75.288 5.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 9 36.7 -75.288 16.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 9 36.7 -75.288 4.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 10 36.7 -75.101 33.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 10 36.7 -75.101 25.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 10 36.7 -75.101 20.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 10 36.7 -75.101 15.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 10 36.7 -75.101 8.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 11 36.7 -74.797 62.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 11 36.7 -74.797 45.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 11 36.7 -74.797 35.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 11 36.7 -74.797 20.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 11 36.7 -74.797 10.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 11 36.7 -74.797 3.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 60.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 41.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 30.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 20.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 10.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 5.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 1000.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 751.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 501.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 400.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 200.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 12 36.699 -74.584 101.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 60.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 1500.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 1001.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 500.0 0.05 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 399.0 0.01 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 200.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 100.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 51.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 41.0 0.11 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 30.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 20.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 13 37.581 -73.933 3.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 62.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 33.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 30.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 20.0 0.25 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 10.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 3.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 995.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 743.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 501.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 300.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 200.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 100.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 14 37.667 -74.134 89.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 15 37.75 -74.349 60.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 15 37.75 -74.349 29.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 15 37.75 -74.349 15.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 15 37.75 -74.349 9.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 15 37.75 -74.349 3.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 16 37.835 -74.564 45.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 16 37.835 -74.564 35.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 16 37.835 -74.564 25.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 16 37.835 -74.564 3.0 0.28 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 17 37.917 -74.77 31.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 17 37.917 -74.77 25.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 17 37.917 -74.77 20.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 17 37.917 -74.77 15.0 0.29 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 17 37.917 -74.77 10.0 0.29 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 17 37.917 -74.77 4.0 0.28 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 18 38.002 -74.972 22.0 0.3 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 18 38.002 -74.972 15.0 0.3 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 18 38.002 -74.972 4.0 0.35 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 19 38.486 -72.999 200.0 0.01 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 19 38.486 -72.999 100.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 19 38.486 -72.999 50.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 19 38.486 -72.999 40.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 19 38.486 -72.999 20.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 19 38.486 -72.999 3.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 20 38.667 -73.134 171.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 20 38.667 -73.134 101.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 20 38.667 -73.134 51.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 20 38.667 -73.134 30.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 20 38.667 -73.134 15.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 20 38.667 -73.134 2.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 21 38.801 -73.281 75.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 21 38.801 -73.281 50.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 21 38.801 -73.281 36.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 21 38.801 -73.281 25.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 21 38.801 -73.281 4.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 22 38.934 -73.416 65.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 22 38.934 -73.416 49.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 22 38.934 -73.416 35.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 22 38.934 -73.416 25.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 22 38.934 -73.416 15.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 23 39.079 -73.551 42.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 23 39.079 -73.551 35.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 23 39.079 -73.551 30.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 23 39.079 -73.551 25.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 23 39.079 -73.551 20.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 23 39.079 -73.551 14.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 23 39.079 -73.551 10.0 0.3 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 23 39.079 -73.551 4.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 24 39.214 -73.7 41.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 24 39.214 -73.7 31.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 24 39.214 -73.7 25.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 24 39.214 -73.7 20.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 24 39.214 -73.7 15.0 0.29 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 24 39.214 -73.7 3.0 0.25 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 25 39.35 -73.835 37.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 25 39.35 -73.835 25.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 25 39.35 -73.835 20.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 25 39.35 -73.835 15.0 0.31 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 25 39.35 -73.835 10.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 25 39.35 -73.835 23.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 25 39.35 -73.835 16.0 0.22 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 26 39.499 -73.968 22.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 26 39.499 -73.968 16.0 0.16 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 26 39.499 -73.968 10.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 26 39.499 -73.968 4.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 28 40.702 -72.252 46.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 28 40.702 -72.252 41.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 28 40.702 -72.252 35.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 28 40.702 -72.252 30.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 28 40.702 -72.252 25.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 28 40.702 -72.252 21.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 28 40.702 -72.252 14.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 28 40.702 -72.252 10.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 58.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 50.0 0.05 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 46.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 41.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 31.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 25.0 0.2 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 21.0 0.26 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 15.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 10.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 29 40.533 -72.15 4.0 0.44 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 63.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 55.0 0.17 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 45.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 40.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 35.0 0.19 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 30.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 25.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 20.0 0.23 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 15.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 10.0 0.3 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 30 40.33 -72.031 3.0 0.24 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 76.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 67.0 0.01 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 50.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 40.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 35.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 30.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 26.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 21.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 15.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 10.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 31 40.147 -71.933 4.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 96.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 75.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 65.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 56.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 45.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 35.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 25.0 0.07 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 20.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 16.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 10.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 32 39.983 -71.832 4.0 0.05 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 60.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 51.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 45.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 40.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 36.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 30.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 25.0 0.11 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 20.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 15.0 0.08 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 10.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 3.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 463.0 0.01 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 401.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 350.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 300.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 250.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 200.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 150.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 125.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 100.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 75.0 0.01 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 33 39.818 -71.733 59.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 1163.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 1011.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 748.0 0.01 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 505.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 404.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 303.0 0.01 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 202.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 101.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 81.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 71.0 0.01 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 60.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 50.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 40.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 35.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 30.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 25.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 20.0 0.11 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 15.0 0.12 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 9.0 0.11 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 34 39.633 -71.632 4.0 0.06 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 101.0 0.02 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 74.0 0.03 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 60.0 0.04 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 50.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 39.0 0 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 30.0 0.18 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 20.0 0.21 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 15.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 10.0 0.11 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 36 40.922 -70.361 2.0 0.11 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 35 40.784 -70.351 47.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 35 40.784 -70.351 41.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 35 40.784 -70.351 30.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 35 40.784 -70.351 25.0 0.13 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 35 40.784 -70.351 19.0 0.14 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 35 40.784 -70.351 15.0 0.09 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 35 40.784 -70.351 11.0 0.1 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
MAB 96 35 40.784 -70.351 4.0 0.15 2 North Atlantic UV oxidation Hopkinson; C.; Vallino; J. Efficient export of carbon to the deep ocean through dissolved organic matter. Nature 433; 142 145 (2005). https://doi.org/10.1038/nature03191
33RO20161119 GO-SHIP P18-2016 2016-11-25 5 19 22.0021 -109.9999 204.9 12.5037 34.759 24.65 2.7 0.23 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-25 5 20 22.0021 -109.9999 145.1 13.7713 34.7494 24.13 2.64 0.2 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-25 5 21 22.0021 -109.9999 95.0 16.6464 34.5417 20.55 2.14 0.31 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-25 5 22 22.0021 -109.9999 50.2 25.2345 34.1591 0.02 0.33 0.34 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-25 5 23 22.0021 -109.9999 19.9 27.6201 34.5336 0.01 0.31 0.49 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-26 9 19 20.0002 -110.0 194.0 12.2768 34.7671 23.57 2.7 0.3 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-26 9 20 20.0002 -110.0 144.9 13.3468 34.7602 23.28 2.68 0.18 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-26 9 23 20.0002 -110.0 25.1 28.0887 34.4826 0.11 0.35 0.38 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-26 9 24 20.0002 -110.0 3.0 28.0725 34.4671 0.42 0.33 0.4 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-27 13 17 18.0002 -110.0004 185.9 12.8369 34.7575 23.72 2.7 0.16 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-27 13 19 18.0002 -110.0004 120.6 15.3117 34.607 22.58 2.39 0.29 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-27 13 21 18.0002 -110.0004 80.5 18.9716 34.2417 3.59 0.93 0.38 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-27 13 22 18.0002 -110.0004 60.1 22.9931 34.3981 0.01 0.38 0.36 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-27 13 23 18.0002 -110.0004 30.2 28.3803 34.2933 0.01 0.27 0.3 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-27 13 24 18.0002 -110.0004 2.8 28.7665 34.059 0.01 0.21 0.42 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-28 17 20 16.0014 -109.9998 145.2 13.1668 34.7546 24.4 2.64 0.13 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-28 17 21 16.0014 -109.9998 95.2 16.3585 34.6279 23.42 2.38 0.5 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-28 17 22 16.0014 -109.9998 50.2 25.1648 34.3972 0.5 0.59 0.39 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-28 17 23 16.0014 -109.9998 40.0 28.246 34.1597 0.04 0.31 0.34 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-29 21 19 14.0 -110.0001 230.4 11.1308 34.7193 28.73 2.66 0.26 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-29 21 20 14.0 -110.0001 165.1 11.9709 34.7545 27.74 2.61 0.14 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-29 21 21 14.0 -110.0001 109.6 13.7309 34.7655 24.03 2.58 0.13 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-29 21 22 14.0 -110.0001 60.2 21.0916 34.5082 15.79 1.58 0.24 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-29 21 23 14.0 -110.0001 24.9 29.44 33.6187 0.02 0.19 0.35 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-29 21 24 14.0 -110.0001 2.2 29.4222 33.5638 0.02 0.17 0.3 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-30 25 20 11.9998 -110.0006 184.6 11.9047 34.7729 31.85 2.5 0.18 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-30 25 21 11.9998 -110.0006 124.2 12.8393 34.7954 30.1 2.48 0.1 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-30 25 22 11.9998 -110.0006 70.0 17.3905 34.6312 25.95 2.22 0.2 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-30 25 23 11.9998 -110.0006 29.8 28.2557 33.1268 0.03 0.16 0.4 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-11-30 25 24 11.9998 -110.0006 3.0 28.328 33.0691 0.03 0.15 0.35 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-01 29 21 10.0001 -109.9998 95.2 13.3375 34.8115 31.73 2.41 0.13 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-01 29 22 10.0001 -109.9998 49.9 18.4728 34.5954 22.64 2.02 0.18 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-01 29 23 10.0001 -109.9998 20.9 27.832 32.7357 0.02 0.15 0.39 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-01 29 24 10.0001 -109.9998 2.8 28.009 32.7092 0.01 0.15 0.31 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-02 33 19 7.9998 -110.0 249.3 10.814 34.7258 34.61 2.55 0.11 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-02 33 20 7.9998 -110.0 178.5 11.5072 34.7518 33.28 2.53 0.11 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-02 33 21 7.9998 -110.0 114.9 13.0406 34.8159 30.1 2.5 0.38 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-02 33 22 7.9998 -110.0 59.2 23.3315 34.4891 7.69 0.91 0.39 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-02 33 23 7.9998 -110.0 24.5 27.8682 32.0945 0.01 0.13 0.24 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-02 33 24 7.9998 -110.0 3.1 27.6733 31.7985 0.01 0.11 0.25 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-03 37 20 5.9999 -109.9999 204.2 11.3673 34.7443 32.86 2.36 0.04 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-03 37 21 5.9999 -109.9999 139.1 13.9179 34.7576 29.57 2.16 0.06 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-03 37 22 5.9999 -109.9999 70.2 25.0186 34.0357 2.55 0.44 0.31 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-03 37 23 5.9999 -109.9999 28.9 26.6392 33.6546 0.11 0.19 0.29 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-03 37 24 5.9999 -109.9999 2.7 26.6378 33.6538 0.11 0.19 0.21 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-04 41 19 4.0 -110.0 249.9 12.143 34.8402 31.52 2.18 0.09 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-04 41 20 4.0 -110.0 171.4 12.9975 34.903 29.88 2.08 0.1 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-04 41 21 4.0 -110.0 105.8 14.38 34.7949 24.13 1.71 0.25 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-04 41 22 4.0 -110.0 50.1 25.8654 33.5953 0.54 0.21 0.25 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-04 41 23 4.0 -110.0 20.6 25.8846 33.606 0.43 0.21 0.33 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-04 41 24 4.0 -110.0 3.7 25.8806 33.6042 0.43 0.21 0.31 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 73 20 -5.5901 -109.1799 195.6 13.0418 34.9395 32.65 2.37 0.09 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 73 21 -5.5901 -109.1799 135.5 13.6232 34.9665 28.55 2.05 0.12 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 73 23 -5.5901 -109.1799 30.1 24.2626 35.2066 7.32 0.75 0.3 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 73 24 -5.5901 -109.1799 4.6 24.4229 35.1925 7.32 0.74 0.43 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 75 19 -6.1799 -108.3499 225.3 12.3984 34.8897 29.88 2.43 0.1 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 75 20 -6.1799 -108.3499 164.9 14.0028 34.9657 24.03 2.14 0.12 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 75 21 -6.1799 -108.3499 107.1 22.0545 35.3062 10.09 1.1 0.36 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 75 22 -6.1799 -108.3499 59.7 24.4714 35.3586 7.23 0.75 0.27 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 75 23 -6.1799 -108.3499 24.8 24.5664 35.2973 8.06 0.8 0.28 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-11 75 24 -6.1799 -108.3499 3.1 24.5704 35.2884 8.16 0.79 0.42 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-14 87 20 -9.71 -103.41 205.7 12.6364 34.8401 23.3 2.68 0.11 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-14 87 22 -9.71 -103.41 60.2 24.1847 35.9342 1.17 0.39 0.35 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-14 87 23 -9.71 -103.41 23.9 24.3639 35.5405 6.18 0.64 0.24 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-14 87 24 -9.71 -103.41 3.3 24.3541 35.5389 6.18 0.64 0.26 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-16 95 20 -13.5 -103.0 183.6 16.4334 35.1368 11.82 1.25 0.22 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-16 95 21 -13.5 -103.0 104.4 22.048 36.02 0.17 0.48 0.34 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-16 95 22 -13.5 -103.0 48.5 24.2796 35.9296 1.18 0.43 0.41 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-16 95 23 -13.5 -103.0 19.2 24.3381 35.9037 1.6 0.45 0.36 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-16 95 24 -13.5 -103.0 3.0 24.3258 35.897 1.6 0.46 0.33 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-17 99 20 -15.5004 -103.0 199.1 16.5386 35.1109 11.82 1.19 0.11 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-17 99 21 -15.5004 -103.0 120.2 21.8082 36.0343 1.07 0.5 0.28 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-17 99 22 -15.5004 -103.0 60.0 22.8151 36.1597 0.01 0.36 0.26 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-17 99 23 -15.5004 -103.0 26.3 24.0126 36.0665 0.95 0.4 0.28 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-17 99 24 -15.5004 -103.0 3.1 24.0415 36.075 0.95 0.39 0.3 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-18 103 20 -17.4999 -103.0 230.7 16.4917 35.1022 9.24 0.97 0.11 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-18 103 21 -17.4999 -103.0 165.8 20.099 35.7215 5.44 0.76 0.17 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-18 103 22 -17.4999 -103.0 85.0 22.316 36.124 0.12 0.39 0.28 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-18 103 23 -17.4999 -103.0 34.4 23.5705 36.1683 0.12 0.32 0.31 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-18 103 24 -17.4999 -103.0 3.4 23.8331 36.1586 0.22 0.34 0.25 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-19 107 19 -19.5001 -103.0 249.2 17.6969 35.2925 6.27 0.78 0.16 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-19 107 20 -19.5001 -103.0 171.2 21.6656 36.0932 0.74 0.42 0.18 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-19 107 21 -19.5001 -103.0 105.9 22.97 36.3142 0 0.35 0.23 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-19 107 22 -19.5001 -103.0 48.5 23.6501 36.3825 0 0.37 0.18 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-19 107 23 -19.5001 -103.0 18.8 23.8736 36.397 0 0.38 0.2 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-19 107 24 -19.5001 -103.0 2.9 23.8834 36.3999 0 0.37 0.31 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-20 111 20 -21.5 -103.0 200.4 20.1659 35.7766 0.38 0.34 0.16 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-20 111 21 -21.5 -103.0 125.0 22.5433 36.2543 0.01 0.34 0.2 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-20 111 22 -21.5 -103.0 59.9 23.6223 36.3909 0 0.36 0.3 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-20 111 23 -21.5 -103.0 15.4 24.2378 36.4784 0.01 0.37 0.17 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-20 111 24 -21.5 -103.0 3.0 24.235 36.4768 0.01 0.37 0.39 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-21 115 20 -23.4995 -103.0006 217.1 18.0474 35.3025 0.41 0.37 0.18 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-21 115 21 -23.4995 -103.0006 144.3 20.7573 35.8511 0 0.21 0.21 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-21 115 22 -23.4995 -103.0006 69.1 22.1958 36.0911 0 0.24 0.14 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-21 115 23 -23.4995 -103.0006 40.1 23.6216 36.2841 0 0.24 0.25 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2016-12-21 115 24 -23.4995 -103.0006 3.0 24.4722 36.3261 0 0.24 0.19 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-01 119 20 -25.5 -101.4999 160.2 17.8756 35.2191 0.34 0.29 0.17 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-01 119 21 -25.5 -101.4999 94.9 20.7745 35.7195 0.01 0.18 0.19 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-01 119 22 -25.5 -101.4999 50.3 23.4058 36.173 0.01 0.22 0.22 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-01 119 23 -25.5 -101.4999 20.3 24.2378 36.2058 0 0.21 0.17 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-02 123 19 -27.5003 -101.5009 225.7 15.5508 34.8775 3.26 0.48 0.12 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-02 123 20 -27.5003 -101.5009 165.1 19.183 35.4982 0.01 0.21 0.15 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-02 123 21 -27.5003 -101.5009 110.0 20.1237 35.6359 0 0.2 0.15 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-02 123 22 -27.5003 -101.5009 60.4 21.9236 35.8244 0.01 0.2 0.09 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-02 123 23 -27.5003 -101.5009 25.2 23.257 35.8896 0 0.2 0.09 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-02 123 24 -27.5003 -101.5009 2.8 23.7281 35.8924 0 0.2 0.1 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-03 127 20 -29.5009 -102.9991 200.5 14.9085 34.7349 4.58 0.52 0.12 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-03 127 21 -29.5009 -102.9991 134.7 17.2875 34.9472 0.01 0.15 0.16 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-03 127 22 -29.5009 -102.9991 69.9 18.5469 35.039 0.01 0.14 0.23 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-03 127 23 -29.5009 -102.9991 30.1 22.1999 35.2272 0.01 0.16 0.18 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-03 127 24 -29.5009 -102.9991 2.8 22.9941 35.1385 0.01 0.14 0.26 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 131 19 -31.5 -103.0 220.8 13.9274 34.5636 7.41 0.65 0.1 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 131 20 -31.5 -103.0 154.9 16.4907 34.7835 0.37 0.21 0.18 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 131 21 -31.5 -103.0 95.3 17.3018 34.8374 0.22 0.15 0.14 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 131 22 -31.5 -103.0 50.1 18.8241 34.8495 0.2 0.15 0.19 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 131 23 -31.5 -103.0 20.4 21.7103 34.8531 0.2 0.17 0.12 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 131 24 -31.5 -103.0 2.6 22.3896 34.8556 0.2 0.17 0.17 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 135 19 -33.5014 -102.9987 249.9 9.3136 34.3045 17.36 1.3 0.08 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 135 20 -33.5014 -102.9987 180.2 11.5161 34.3655 12.14 1 0.13 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 135 21 -33.5014 -102.9987 114.8 13.691 34.3386 4.89 0.6 0.08 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 135 22 -33.5014 -102.9987 59.6 15.4584 34.3533 0.35 0.28 0.16 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 135 23 -33.5014 -102.9987 25.3 20.3951 34.3221 0.01 0.21 0.17 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-05 135 24 -33.5014 -102.9987 3.1 21.2886 34.3468 0.01 0.19 0.19 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-06 139 20 -35.501 -103.0027 184.8 11.2077 34.2812 12.78 1.02 0.04 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-06 139 21 -35.501 -103.0027 126.0 12.6147 34.0674 6.84 0.69 0.26 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-06 139 22 -35.501 -103.0027 70.5 14.2651 34.1358 2.67 0.41 0.25 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-06 139 23 -35.501 -103.0027 29.5 18.8908 34.1125 0.95 0.29 0.25 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-06 139 24 -35.501 -103.0027 3.2 21.3063 34.0336 1.26 0.32 0.3 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-07 143 19 -37.5003 -102.9994 219.5 9.3807 34.2264 17.89 1.32 3 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-07 143 20 -37.5003 -102.9994 154.4 11.3 34.1596 12.96 1.03 0.22 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-07 143 21 -37.5003 -102.9994 95.1 13.2792 34.07 4.82 0.59 0.26 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-07 143 22 -37.5003 -102.9994 50.2 14.9476 34.1694 1.81 0.37 0.32 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-07 143 24 -37.5003 -102.9994 2.9 18.8374 33.9534 2.64 0.43 0.2 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-08 145 20 -38.4995 -103.0006 225.6 7.4185 34.227 20.85 1.55 3 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-08 145 21 -38.4995 -103.0006 145.5 9.0549 34.1804 17.56 1.33 0.03 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-08 145 22 -38.4995 -103.0006 71.3 11.529 33.9873 9.34 0.87 3 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-08 145 23 -38.4995 -103.0006 30.9 15.8802 33.9127 8.2 0.79 0.09 2 North Pacific ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-09 149 20 -40.5001 -103.0003 172.1 8.5181 34.1873 18.21 1.33 0.34 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-09 149 22 -40.5001 -103.0003 52.2 12.693 34.0367 6.82 0.67 0.3 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-09 149 24 -40.5001 -103.0003 8.6 16.2253 33.9452 6.85 0.67 0.21 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-10 151 20 -41.5007 -103.0005 205.8 7.5491 34.2388 19.84 1.45 0.06 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-10 151 22 -41.5007 -103.0005 70.0 10.7446 34.0185 11.06 0.94 0.17 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-10 151 23 -41.5007 -103.0005 30.0 13.7916 33.9767 10.25 0.9 0.21 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-10 151 24 -41.5007 -103.0005 5.3 14.2351 33.9676 9.54 0.86 0.12 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-10 153 20 -42.5009 -102.9977 194.7 7.1421 34.2336 19.31 1.48 0.13 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-10 153 21 -42.5009 -102.9977 125.3 8.3639 34.0768 14.25 1.22 0.26 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-10 153 22 -42.5009 -102.9977 45.5 11.842 33.9728 10.44 0.98 0.13 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-10 153 23 -42.5009 -102.9977 24.6 13.1766 33.971 10.29 0.98 0.09 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-10 153 24 -42.5009 -102.9977 3.2 13.1895 33.9691 10.29 0.99 0.16 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 155 20 -43.5005 -102.9995 169.7 6.9912 34.2069 19.53 1.47 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 155 21 -43.5005 -102.9995 104.8 8.4569 34.0794 14.21 1.16 0.2 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 155 22 -43.5005 -102.9995 51.2 11.2917 34.0108 11.77 1.01 0.04 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 155 23 -43.5005 -102.9995 20.3 12.3059 33.9854 11.82 1.01 0.11 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 155 24 -43.5005 -102.9995 4.2 12.3045 33.9836 11.51 1 0.15 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 157 20 -44.5003 -103.0004 190.9 7.0992 34.2426 19.94 1.45 0.03 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 157 21 -44.5003 -103.0004 124.4 8.3276 34.1011 14.83 1.17 0.13 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 157 22 -44.5003 -103.0004 65.5 10.2845 34.0401 13.1 1.06 0.18 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 157 23 -44.5003 -103.0004 40.3 11.7586 34.0229 12.39 1 0.21 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-11 157 24 -44.5003 -103.0004 3.2 12.2531 34.0278 12.41 0.99 0.08 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 159 19 -45.5 -102.9993 249.2 6.8325 34.304 19.94 1.48 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 159 20 -45.5 -102.9993 179.6 7.0328 34.2481 19.43 1.47 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 159 21 -45.5 -102.9993 115.0 8.0006 34.1169 14.43 1.2 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 159 22 -45.5 -102.9993 59.7 10.6084 34.0602 12.39 1.05 0.25 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 159 23 -45.5 -102.9993 25.5 11.5795 34.0409 11.69 1 0.05 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 159 24 -45.5 -102.9993 3.3 11.614 34.0492 11.69 1.02 0.04 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 161 19 -46.5001 -103.0 234.8 6.5873 34.2707 20.87 1.53 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 161 20 -46.5001 -103.0 164.7 6.9143 34.2297 19.97 1.47 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 161 21 -46.5001 -103.0 100.3 8.1363 34.128 15.01 1.17 0.07 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 161 22 -46.5001 -103.0 53.6 10.4926 34.0996 13.52 1.11 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-12 161 23 -46.5001 -103.0 24.8 10.7767 34.1039 13.53 1.1 0.18 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-13 165 20 -48.5003 -102.999 197.8 6.7629 34.2558 19.22 1.43 0.07 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-13 165 21 -48.5003 -102.999 124.7 7.1061 34.1613 15.99 1.29 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-13 165 22 -48.5003 -102.999 59.4 8.5077 34.1339 14.06 1.17 0.09 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-13 165 23 -48.5003 -102.999 25.8 10.0193 34.1322 13.16 1.1 0.1 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-13 165 24 -48.5003 -102.999 4.5 10.1405 34.1289 13.17 1.09 0.06 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 173 20 -52.4998 -102.9998 199.2 6.452 34.2093 18.92 1.35 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 173 21 -52.4998 -102.9998 120.5 6.7412 34.2002 17.48 1.31 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 173 22 -52.4998 -102.9998 50.7 8.1152 34.1688 15.27 1.11 0.12 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 173 23 -52.4998 -102.9998 18.6 8.423 34.1684 14.96 1.08 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 173 24 -52.4998 -102.9998 9.0 8.4226 34.1696 14.85 1.06 0.1 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 175 20 -53.4998 -103.0004 231.2 6.2453 34.2141 20.05 1.43 0.11 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 175 21 -53.4998 -103.0004 154.6 6.3988 34.2082 19.26 1.37 0.13 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 175 22 -53.4998 -103.0004 68.2 7.6009 34.184 16.12 1.2 0.06 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 175 23 -53.4998 -103.0004 30.6 7.9553 34.1805 15.57 1.14 0.08 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-16 175 24 -53.4998 -103.0004 4.8 7.9917 34.1793 15.47 1.1 0.1 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-17 177 20 -54.4999 -102.9999 210.1 6.2673 34.2209 20.16 1.43 0.07 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-17 177 21 -54.4999 -102.9999 130.1 6.3853 34.1941 19.2 1.37 0.04 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-17 177 22 -54.4999 -102.9999 60.3 7.8538 34.1818 15.87 1.14 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-17 177 24 -54.4999 -102.9999 6.5 8.064 34.1692 15.67 1.11 0.1 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-17 179 20 -55.5005 -103.0007 200.0 6.2638 34.2302 20.57 1.44 0.05 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-17 179 21 -55.5005 -103.0007 117.5 6.511 34.2284 19.58 1.39 0.06 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-17 179 22 -55.5005 -103.0007 54.8 7.644 34.1807 16.27 1.17 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-17 179 23 -55.5005 -103.0007 19.9 7.7448 34.1701 16.17 1.17 0.03 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-17 179 24 -55.5005 -103.0007 3.2 7.762 34.1706 16.18 1.22 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-18 181 20 -56.5 -102.9997 247.5 5.7846 34.2477 22.34 1.57 0.11 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-18 181 21 -56.5 -102.9997 171.1 5.9309 34.2244 21.32 1.5 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-18 181 22 -56.5 -102.9997 85.8 6.2313 34.2273 20.28 1.44 0.11 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-18 181 23 -56.5 -102.9997 40.0 6.9295 34.2181 17.5 1.28 0.03 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-18 181 24 -56.5 -102.9997 8.5 7.0832 34.1792 17.59 1.24 0.09 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-19 183 20 -57.5005 -102.9978 194.9 5.166 34.1903 23.91 1.68 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-19 183 21 -57.5005 -102.9978 125.4 5.5953 34.2194 22.84 1.61 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-19 183 22 -57.5005 -102.9978 61.6 6.5608 34.1435 19.2 1.36 0.05 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-19 183 23 -57.5005 -102.9978 26.0 6.8778 34.16 18.18 1.29 0.13 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-19 183 24 -57.5005 -102.9978 3.9 6.8751 34.1579 18.39 1.29 0.13 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-19 185 20 -58.5017 -102.9976 201.6 5.0897 34.1763 23.55 1.59 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-19 185 21 -58.5017 -102.9976 120.2 5.3749 34.1781 22.1 1.52 0.09 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-22 193 21 -62.5025 -102.9984 177.7 1.0996 34.0552 30.73 2.11 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-22 193 22 -62.5025 -102.9984 51.9 1.6682 33.9737 25.18 1.84 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-22 193 23 -62.5025 -102.9984 30.0 3.1958 33.8748 24.38 1.62 0.04 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-23 197 20 -64.5006 -103.0002 210.0 1.0263 34.0649 31.46 2.18 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-23 197 21 -64.5006 -103.0002 124.6 0.6001 33.9298 29.2 2.02 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-23 197 22 -64.5006 -103.0002 54.4 2.1469 33.8656 25.67 1.81 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-23 197 23 -64.5006 -103.0002 20.1 2.939 33.8599 25.4 1.73 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-23 197 24 -64.5006 -103.0002 3.7 2.9446 33.8587 25.4 1.74 0.05 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-24 201 21 -66.5003 -103.0006 150.9 -0.3679 34.0151 31.27 2.16 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-24 201 22 -66.5003 -103.0006 70.3 -1.1761 33.7463 26.7 1.99 0.27 2 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-24 201 23 -66.5003 -103.0006 23.9 1.5814 33.6508 22.42 1.44 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-24 201 24 -66.5003 -103.0006 3.3 1.6604 33.661 22.43 1.4 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-25 205 20 -68.5001 -103.0001 234.9 1.9266 34.5877 35.67 2.4 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-25 205 21 -68.5001 -103.0001 155.2 1.1383 34.3974 35.37 2.4 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-25 205 22 -68.5001 -103.0001 70.8 -1.4684 33.9645 29.9 2.05 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-25 205 23 -68.5001 -103.0001 30.3 1.0002 33.5902 27.13 1.83 3 Southern Ocean ash/hydrolysis this study
33RO20161119 GO-SHIP P18-2016 2017-01-25 205 24 -68.5001 -103.0001 3.5 1.1458 33.4541 26.86 1.81 3 Southern Ocean ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-06 9 28 -30.0795 153.9994 316.8 13.8034 34.9416 11.9 0.86 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-06 9 29 -30.0795 153.9994 266.8 15.3522 35.1725 9.83 0.71 0.06 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-06 9 30 -30.0795 153.9994 216.6 16.7929 35.3041 7.73 0.58 0.06 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-06 9 31 -30.0795 153.9994 166.2 18.1374 35.4436 6.41 0.5 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-06 9 32 -30.0795 153.9994 116.1 19.3246 35.5506 4.05 0.34 0.1 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-06 9 34 -30.0795 153.9994 61.1 20.8322 35.6907 0.43 0.11 0.16 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-06 9 35 -30.0795 153.9994 34.6 21.3238 35.7505 0.25 0.09 0.16 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-06 9 36 -30.0795 153.9994 5.4 21.3231 35.7562 0.15 0.09 0.15 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 25 -30.0803 155.9901 504.7 11.9138 34.941 15.57 1.09 0.02 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 26 -30.0803 155.9901 402.6 14.1856 35.2168 11.21 0.8 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 27 -30.0803 155.9901 350.9 15.816 35.3248 9.46 0.68 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 28 -30.0803 155.9901 300.3 17.0459 35.4519 7.73 0.58 0.05 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 29 -30.0803 155.9901 250.3 18.4982 35.6007 5.53 0.42 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 30 -30.0803 155.9901 201.0 19.5691 35.6715 4.56 0.37 0.1 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 31 -30.0803 155.9901 149.1 20.228 35.7223 3.78 0.31 0.11 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 32 -30.0803 155.9901 100.3 21.2385 35.7586 2.59 0.24 0.1 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 33 -30.0803 155.9901 73.7 21.9316 35.7554 2.34 0.22 0.12 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 34 -30.0803 155.9901 50.9 22.4954 35.7314 0.07 0.06 0.24 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 35 -30.0803 155.9901 22.9 22.5322 35.7329 0.01 0.04 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-07 14 36 -30.0803 155.9901 2.8 22.528 35.7325 0.01 0.05 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 20 -30.0803 158.0001 352.5 15.9024 35.3914 8.49 0.62 0.61 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 21 -30.0803 158.0001 303.0 16.9191 35.4987 6.89 0.51 0.22 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 22 -30.0803 158.0001 251.7 18.2756 35.6287 4.91 0.39 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 23 -30.0803 158.0001 226.2 18.7818 35.6739 4.09 0.34 0.08 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 24 -30.0803 158.0001 202.2 19.0454 35.6838 3.87 0.32 0.16 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 25 -30.0803 158.0001 176.0 19.5428 35.7165 3.36 0.28 0.22 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 26 -30.0803 158.0001 151.1 20.2155 35.7876 1.3 0.15 0.24 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 27 -30.0803 158.0001 125.6 20.2508 35.8003 0.79 0.1 0.19 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 28 -30.0803 158.0001 100.8 20.2494 35.7981 0.83 0.12 0.19 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 29 -30.0803 158.0001 74.7 20.2481 35.7997 0.85 0.12 0.27 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 30 -30.0803 158.0001 49.9 20.2508 35.7993 0.83 0.13 0.16 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 31 -30.0803 158.0001 25.0 20.2486 35.8007 0.8 0.13 0.22 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-09 23 32 -30.0803 158.0001 4.2 20.2516 35.8011 0.8 0.14 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 16 -30.0805 160.0008 352.9 14.7625 35.3234 9.45 0.65 0.05 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 17 -30.0805 160.0008 302.3 16.0735 35.4628 7.67 0.56 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 18 -30.0805 160.0008 251.5 17.1442 35.5316 5.82 0.42 0.06 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 19 -30.0805 160.0008 201.3 18.1409 35.6214 4.32 0.34 0.1 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 20 -30.0805 160.0008 176.5 18.8277 35.6802 3.53 0.27 0.21 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 21 -30.0805 160.0008 150.7 19.2898 35.71 3.08 0.25 0.18 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 22 -30.0805 160.0008 124.9 20.1194 35.8143 1.2 0.13 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 23 -30.0805 160.0008 100.7 20.6399 35.8657 0.26 0.05 0.18 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 24 -30.0805 160.0008 75.2 20.6336 35.8669 0.24 0.05 0.18 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 25 -30.0805 160.0008 49.7 20.6297 35.8661 0.24 0.07 0.19 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 26 -30.0805 160.0008 24.6 20.6262 35.8692 0.25 0.06 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-10 29 27 -30.0805 160.0008 5.1 20.6383 35.8667 0.24 0.06 0.23 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 12 -30.0801 162.0001 318.6 15.992 35.4261 7.89 0.58 0.08 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 13 -30.0801 162.0001 267.5 17.3822 35.5294 6.5 0.49 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 14 -30.0801 162.0001 238.0 18.0886 35.6038 5.2 0.41 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 15 -30.0801 162.0001 212.4 18.6886 35.6822 3.6 0.31 0.16 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 16 -30.0801 162.0001 187.5 19.2156 35.7679 1.61 0.17 0.12 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 17 -30.0801 162.0001 165.5 19.418 35.7912 1.26 0.16 0.21 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 18 -30.0801 162.0001 137.4 19.6875 35.8111 0.89 0.12 0.15 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 19 -30.0801 162.0001 111.9 19.8393 35.8086 0.75 0.12 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 21 -30.0801 162.0001 62.0 19.9759 35.8354 0.53 0.1 0.1 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 22 -30.0801 162.0001 36.2 20.3479 35.8503 0.27 0.08 0.12 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-11 33 23 -30.0801 162.0001 5.8 20.3384 35.851 0.27 0.09 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 23 -30.0797 166.0686 352.0 15.7648 35.4387 7.02 0.53 0.02 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 24 -30.0797 166.0686 300.6 17.0387 35.5377 5.69 0.44 0.14 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 25 -30.0797 166.0686 250.0 18.0688 35.6212 4.91 0.39 0.1 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 26 -30.0797 166.0686 226.3 18.5783 35.6409 4.61 0.36 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 27 -30.0797 166.0686 198.9 19.6935 35.696 3.4 0.3 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 28 -30.0797 166.0686 174.5 19.8684 35.8264 0.64 0.1 0.11 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 29 -30.0797 166.0686 151.6 19.8641 35.8345 0.47 0.09 0.12 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 30 -30.0797 166.0686 125.1 19.8609 35.835 0.47 0.09 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 31 -30.0797 166.0686 100.3 19.8507 35.8366 0.49 0.1 0.11 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 32 -30.0797 166.0686 75.9 19.8493 35.8348 0.47 0.1 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 33 -30.0797 166.0686 48.9 19.841 35.8354 0.48 0.09 0.11 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 34 -30.0797 166.0686 24.0 19.8422 35.8354 0.47 0.11 0.12 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-13 44 35 -30.0797 166.0686 4.3 19.8329 35.8358 0.48 0.11 0.08 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-15 56 24 -30.08 170.0 352.7 15.1439 35.3366 8.51 0.63 0.16 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-15 56 26 -30.08 170.0 251.8 17.1178 35.5182 5.86 0.44 0.11 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-15 56 28 -30.08 170.0 202.2 18.8714 35.7053 3.18 0.27 0.04 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-15 56 30 -30.08 170.0 152.4 19.5766 35.8916 0.71 0.12 0.18 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-15 56 32 -30.08 170.0 102.3 19.6019 35.8672 0.69 0.1 0.2 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-15 56 33 -30.08 170.0 76.6 19.6047 35.8674 0.69 0.12 0.15 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-15 56 34 -30.08 170.0 50.6 19.5985 35.8663 0.7 0.11 0.21 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-15 56 35 -30.08 170.0 23.7 19.5936 35.8665 0.71 0.12 0.11 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-15 56 36 -30.08 170.0 4.0 19.5878 35.8671 0.71 0.12 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-17 64 27 -30.0798 171.9994 216.2 16.9063 35.5016 6.43 0.47 0.19 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-17 64 29 -30.0798 171.9994 166.1 17.6752 35.5882 5.14 0.38 0.19 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-17 64 31 -30.0798 171.9994 116.6 18.7642 35.7752 1.24 0.15 0.19 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-17 64 33 -30.0798 171.9994 65.0 19.0128 35.8038 1.1 0.13 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-17 64 34 -30.0798 171.9994 41.3 19.0755 35.8139 1.07 0.13 0.18 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-17 64 36 -30.0798 171.9994 5.5 19.0913 35.8147 1.05 0.14 0.01 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-19 75 26 -30.0803 175.9992 387.9 11.6961 35.0189 13.91 0.97 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-19 75 27 -30.0803 175.9992 337.5 13.0373 35.1599 11.14 0.79 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-19 75 28 -30.0803 175.9992 285.9 13.8559 35.2385 10.11 0.73 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-19 75 30 -30.0803 175.9992 185.4 16.0298 35.4484 6.56 0.49 0.21 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-19 75 31 -30.0803 175.9992 135.2 17.0901 35.5316 5.28 0.41 0.14 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-19 75 32 -30.0803 175.9992 89.7 18.6523 35.7736 0.57 0.1 0.11 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-19 75 33 -30.0803 175.9992 64.7 18.6756 35.7756 0.64 0.1 0.23 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-19 75 34 -30.0803 175.9992 41.1 18.7184 35.7742 0.56 0.11 0.2 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-19 75 35 -30.0803 175.9992 19.2 18.7154 35.7734 0.53 0.1 0.1 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 23 -32.4998 179.922 367.3 12.1028 35.0031 12.44 0.89 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 24 -32.4998 179.922 317.7 12.8608 35.1252 10.82 0.78 0.05 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 26 -32.4998 179.922 236.3 14.6072 35.326 8.06 0.61 0.06 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 27 -32.4998 179.922 212.8 15.0631 35.3516 7.71 0.58 0.08 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 28 -32.4998 179.922 186.4 15.7319 35.4251 6.61 0.5 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 29 -32.4998 179.922 161.5 16.0937 35.4746 5.8 0.44 0.1 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 30 -32.4998 179.922 135.0 17.4942 35.625 2.49 0.24 0.21 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 31 -32.4998 179.922 110.1 17.7306 35.6784 1.21 0.15 0.23 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 32 -32.4998 179.922 85.5 17.7353 35.681 1.18 0.15 0.3 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 33 -32.4998 179.922 59.1 17.7367 35.6812 1.2 0.15 0.14 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 34 -32.4998 179.922 34.7 17.7305 35.6822 1.18 0.16 0.15 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-25 85 35 -32.4998 179.922 4.1 17.7274 35.6678 1.19 0.17 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-28 97 30 -32.5 -175.75 215.5 15.2335 35.3514 6.86 0.51 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-28 97 32 -32.5 -175.75 116.0 17.3517 35.6317 0.95 0.13 0.21 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-28 97 33 -32.5 -175.75 84.3 17.4113 35.6445 0.8 0.13 0.2 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-28 97 34 -32.5 -175.75 61.0 17.6982 35.6688 0.79 0.12 0.19 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-28 97 35 -32.5 -175.75 34.1 17.7923 35.6932 0.45 0.1 0.18 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-28 97 36 -32.5 -175.75 2.9 17.8034 35.6956 0.43 0.11 0.15 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-31 106 28 -32.4994 -171.9197 266.4 14.2105 35.1725 7.81 0.63 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-31 106 30 -32.4994 -171.9197 166.5 16.7183 35.4973 3.41 0.33 0.16 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-31 106 32 -32.4994 -171.9197 110.4 17.5513 35.6915 0.36 0.1 0.18 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-07-31 106 34 -32.4994 -171.9197 59.9 17.5459 35.6909 0.36 0.11 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-02 115 28 -32.5003 -167.7931 316.9 12.6258 34.9355 11.12 0.82 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-05 121 27 -32.5001 -163.8247 366.9 9.7066 34.55 18.14 1.21 0.02 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-05 121 29 -32.5001 -163.8247 264.7 12.422 35.0618 9.47 0.65 0.05 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-05 121 30 -32.5001 -163.8247 216.7 14.0519 35.2343 6.39 0.44 0.11 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-05 121 31 -32.5001 -163.8247 167.2 15.2612 35.3642 4.72 0.34 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-05 121 32 -32.5001 -163.8247 113.8 17.0931 35.5294 1.44 0.12 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-05 121 33 -32.5001 -163.8247 84.4 17.4137 35.609 0.11 0.03 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-05 121 34 -32.5001 -163.8247 59.4 17.4166 35.6096 0.11 0.04 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-05 121 35 -32.5001 -163.8247 33.6 17.4149 35.6098 0.1 0.05 0.08 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-05 121 36 -32.5001 -163.8247 7.7 17.4098 35.61 0.11 0.06 0.03 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-06 124 27 -32.4994 -161.8331 367.3 10.7323 34.8131 12.98 0.93 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-06 124 29 -32.4994 -161.8331 267.6 13.9016 35.2101 6.99 0.54 0.06 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-06 124 30 -32.4994 -161.8331 215.5 15.0483 35.2865 4.07 0.35 0.15 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-06 124 32 -32.4994 -161.8331 116.3 17.8796 35.6328 0.13 0.06 0.21 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-06 124 34 -32.4994 -161.8331 60.7 17.9079 35.6354 0.13 0.06 0.21 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-06 124 36 -32.4994 -161.8331 6.9 17.9007 35.6323 0.13 0.08 0.19 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-09 129 28 -32.4998 -158.2078 301.2 13.481 35.0169 8.81 0.69 0.03 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-09 129 30 -32.4998 -158.2078 200.3 15.7967 35.3535 3.44 0.32 0.07 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-09 129 32 -32.4998 -158.2078 101.7 17.6408 35.5841 0.12 0.07 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-09 129 34 -32.4998 -158.2078 49.7 17.6605 35.5908 0.13 0.09 0.15 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-09 129 36 -32.4998 -158.2078 9.1 17.6455 35.5841 0.13 0.1 0.15 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-11 135 26 -32.4997 -154.2684 400.8 8.7487 34.5019 17.68 1.25 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-11 135 28 -32.4997 -154.2684 299.9 11.4673 34.76 12.71 0.93 0.08 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-11 135 30 -32.4997 -154.2684 202.1 14.2051 35.1465 5.87 0.48 0.09 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-11 135 32 -32.4997 -154.2684 102.0 16.8576 35.4997 0.17 0.09 0.15 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-11 135 34 -32.4997 -154.2684 51.3 16.8494 35.4949 0.18 0.1 0.2 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-11 135 36 -32.4997 -154.2684 3.9 16.8528 35.4985 0.2 0.11 0.13 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-12 141 28 -32.5 -150.2485 302.2 11.3065 34.7646 12.12 0.88 0.1 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-12 141 30 -32.5 -150.2485 200.5 14.9962 35.216 4.07 0.35 0.17 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-12 141 32 -32.5 -150.2485 98.7 16.7472 35.4862 0.2 0.09 0.19 2 South Pacific ash/hydrolysis this study
320620170703 GO-SHIP P06-2017 2017-08-12 141 36 -32.5 -150.2485 2.4 16.7347 35.4872 0.19 0.11 0.21 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-26 148 24 -32.5008 -145.7093 436.8 8.0855 34.4304 19.13 1.36 0.07 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-26 148 26 -32.5008 -145.7093 264.3 12.3975 34.8627 9.6 0.75 0.1 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-26 148 28 -32.5008 -145.7093 165.9 14.7688 35.179 3.57 0.35 0.14 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-26 148 32 -32.5008 -145.7093 85.6 16.6495 35.3417 0.05 0.1 0.16 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-26 148 33 -32.5008 -145.7093 59.5 16.6048 35.335 0.05 0.11 0.16 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-26 148 36 -32.5008 -145.7093 3.7 16.5556 35.3311 0.05 0.12 0.16 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-28 152 24 -32.5051 -142.2516 368.1 8.6266 34.4679 17.41 1.23 0.07 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-28 152 26 -32.5051 -142.2516 236.3 12.2811 34.8228 7.66 0.62 0.1 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-28 152 31 -32.5051 -142.2516 87.3 16.413 35.1727 -0.01 0.09 0.18 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-28 152 34 -32.5051 -142.2516 38.8 16.3881 35.1339 -0.01 0.09 0.18 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-28 152 36 -32.5051 -142.2516 5.1 16.3978 35.1169 -0.01 0.1 0.19 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-31 159 28 -32.5002 -135.9181 252.5 12.6449 34.7567 9.61 0.72 0.21 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-31 159 30 -32.5002 -135.9181 151.1 15.402 35.1634 0.53 0.12 0.29 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-31 159 32 -32.5002 -135.9181 102.4 16.5593 35.1786 0 0.07 0.34 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-31 159 34 -32.5002 -135.9181 51.5 17.0327 35.2808 0 0.07 0.29 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-31 159 35 -32.5002 -135.9181 25.5 17.1688 35.2873 0 0.07 0.27 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-31 159 36 -32.5002 -135.9181 10.5 17.1711 35.2836 0 0.09 0.22 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-03 163 28 -32.5 -132.3581 266.3 12.6589 34.7938 7.35 0.6 0.23 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-03 163 30 -32.5 -132.3581 165.3 16.2545 35.0817 0.11 0.09 0.31 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-03 163 32 -32.5 -132.3581 111.8 16.4385 35.059 0.04 0.09 0.34 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-03 163 34 -32.5 -132.3581 35.6 16.619 35.0943 0 0.09 0.3 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-03 163 36 -32.5 -132.3581 4.4 16.6384 35.0961 0 0.1 0.31 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-04 168 25 -32.5003 -127.9686 252.5 12.415 34.672 7.09 0.6 0.27 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-04 168 27 -32.5003 -127.9686 150.3 15.8428 35.0614 0.6 0.14 0.33 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-04 168 31 -32.5003 -127.9686 99.7 17.3886 35.2723 -0.03 0.07 0.35 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-04 168 32 -32.5003 -127.9686 74.5 17.2016 35.127 -0.03 0.06 0.39 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-04 168 35 -32.5003 -127.9686 23.4 17.2308 35.1713 -0.02 0.07 0.36 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-04 168 36 -32.5003 -127.9686 4.5 17.3462 35.2613 -0.02 0.09 0.33 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-09 184 24 -32.4995 -115.5757 265.5 12.3597 34.6476 8.45 0.66 0.18 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-09 184 25 -32.4995 -115.5757 214.8 13.9731 34.7744 4.92 0.43 0.26 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-09 184 27 -32.4995 -115.5757 160.0 15.5839 34.8456 0.93 0.21 0.3 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-09 184 31 -32.4995 -115.5757 108.9 16.7463 34.8381 0 0.09 0.34 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-09 184 34 -32.4995 -115.5757 58.4 17.6783 35.0216 0 0.08 0.32 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-09 184 35 -32.4995 -115.5757 33.9 18.4146 35.1892 0 0.08 0.32 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-09 184 36 -32.4995 -115.5757 8.9 18.457 35.1955 0 0.08 0.38 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-11 189 25 -32.5006 -111.7047 199.5 14.3803 34.7512 3.51 0.33 0.25 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-11 189 27 -32.5006 -111.7047 149.7 15.8991 34.8928 0.15 0.1 0.27 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-11 189 29 -32.5006 -111.7047 99.0 17.3983 34.9549 0 0.06 0.3 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-11 189 31 -32.5006 -111.7047 49.2 18.3792 35.1219 0 0.06 0.32 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-11 189 32 -32.5006 -111.7047 6.6 18.3789 35.1252 0 0.06 0.34 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-12 195 28 -32.4998 -107.5659 200.6 13.2474 34.5007 7.12 0.57 0.24 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-12 195 30 -32.4998 -107.5659 151.3 14.6001 34.6095 2.49 0.3 0.24 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-12 195 32 -32.4998 -107.5659 101.7 16.8956 34.7066 0.05 0.09 0.26 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-12 195 34 -32.4998 -107.5659 50.5 16.9234 34.7005 0.01 0.1 0.25 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-14 201 24 -32.5001 -103.426 302.0 9.9194 34.244 17.83 1.27 0.38 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-14 201 26 -32.5001 -103.426 200.6 14.1066 34.525 4.33 0.43 0.3 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-14 201 27 -32.5001 -103.426 149.9 16.5698 34.6417 0.61 0.19 0.28 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-14 201 33 -32.5001 -103.426 48.7 16.6363 34.7856 0.05 0.13 0.25 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-14 201 36 -32.5001 -103.426 6.0 16.645 34.7879 0.04 0.15 0.29 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-16 207 24 -32.5003 -98.8856 301.1 9.982 34.2683 16.61 1.2 0.12 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-16 207 25 -32.5003 -98.8856 250.5 12.4022 34.4803 10.42 0.8 0.14 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-16 207 26 -32.5003 -98.8856 200.3 14.2124 34.595 4.28 0.43 0.14 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-16 207 27 -32.5003 -98.8856 149.8 16.6478 34.8617 0.27 0.16 0.22 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-16 207 36 -32.5003 -98.8856 11.4 16.7518 34.888 0.08 0.16 0.28 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-18 213 25 -32.4998 -93.544 251.1 10.5609 34.2228 13.55 1.18 0.1 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-18 213 26 -32.4998 -93.544 200.1 12.7745 34.2491 8.89 0.9 0.12 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-18 213 33 -32.4998 -93.544 49.2 14.9794 34.4412 0.17 0.31 0.21 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-20 219 24 -32.4999 -88.2049 301.2 8.5015 34.2454 23.04 1.71 0.08 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-20 219 25 -32.4999 -88.2049 251.1 9.8961 34.2238 18.15 1.32 0.12 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-20 219 27 -32.4999 -88.2049 149.3 13.9809 34.2589 5.27 0.52 0.21 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-20 219 29 -32.4999 -88.2049 100.2 14.8044 34.4129 2.16 0.32 0.24 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-20 219 36 -32.4999 -88.2049 3.2 14.9943 34.4408 2.02 0.32 0.2 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-22 225 24 -32.4996 -82.8657 327.2 8.7743 34.4473 32.15 2.61 0.02 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-22 225 25 -32.4996 -82.8657 250.9 9.9329 34.4275 26.62 2.44 0.06 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-22 225 26 -32.4996 -82.8657 202.0 10.2292 34.2222 22.72 1.9 0.08 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-22 225 27 -32.4996 -82.8657 151.4 11.5133 34.0952 18.2 1.44 0.11 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-22 225 29 -32.4996 -82.8657 100.4 14.0075 34.2881 3.74 0.49 0.15 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-22 225 36 -32.4996 -82.8657 2.9 14.3958 34.3395 2.58 0.45 0.22 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-24 231 27 -32.5002 -77.5253 152.8 12.1038 34.0709 14.87 1.17 0.09 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-24 231 28 -32.5002 -77.5253 126.7 14.646 34.3743 2.27 0.43 0.14 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-24 231 29 -32.5002 -77.5253 100.6 14.6608 34.3755 2.22 0.43 0.19 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-24 231 32 -32.5002 -77.5253 74.2 14.6647 34.3778 2.21 0.42 0.13 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-24 231 30 -32.5002 -77.5253 74.2 14.6647 0.13 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-24 231 33 -32.5002 -77.5253 49.7 14.6818 34.3802 2.19 0.44 0.1 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-24 231 35 -32.5002 -77.5253 25.6 14.6928 34.379 2.19 0.44 0.1 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-24 231 36 -32.5002 -77.5253 5.7 14.7317 34.3798 2.18 0.46 0.09 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-25 233 28 -32.4997 -75.7455 113.6 14.1116 34.264 3.21 0.51 0.11 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-25 233 29 -32.4997 -75.7455 89.7 14.2507 34.3223 2.73 0.5 0.12 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-25 233 30 -32.4997 -75.7455 74.9 14.282 34.325 2.71 0.49 0.12 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-25 233 33 -32.4997 -75.7455 39.9 14.3635 34.3305 2.68 0.49 0.17 2 South Pacific ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-09-25 233 34 -32.4997 -75.7455 25.0 14.3626 34.3364 2.65 0.5 0.12 2 South Pacific ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-18 1 4 -10.9998 -29.998 200.0 12.38 0.94 0.05 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-18 1 8 -10.9998 -29.998 135.0 1.35 0.37 0.12 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-18 1 15 -10.9998 -29.998 70.0 0.18 0.11 0.16 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-20 1 22 -10.9998 -29.998 10.0 0.14 0.14 0.16 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-20 3 6 -11.4972 -25.0078 150.0 9.73 0.78 0.07 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-20 3 13 -11.4972 -25.0078 70.0 0.29 0.16 0.2 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-23 3 21 -11.4972 -25.0078 10.0 0.26 0.14 0.07 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-23 6 6 -12.25 -17.5 150.0 10.16 0.79 0.08 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-23 6 14 -12.25 -17.5 70.0 0.16 0.17 0.13 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-24 6 22 -12.25 -17.5 10.0 0.12 0.16 0.08 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-24 11 6 -12.494833 -4.998667 150.0 27.35 1.62 0.24 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-24 11 14 -12.494833 -4.998667 70.0 4.23 0.45 0.11 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-24 11 16 -12.494833 -4.998667 40.0 0.15 0.18 0.13 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-11-30 11 22 -12.494833 -4.998667 10.0 0.04 0.22 0.03 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 2007-12-05 13 22 -13.474167 -0.045333333 10.0 0.16 0.24 0.09 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 19 5 -14.7505 12.2 70.0 25.77 1.65 0.21 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 19 9 -14.7505 12.2 40.0 24.38 1.62 0.1 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 22 10 -24.001833 13.506333 50.0 13.34 0.98 0.12 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 22 15 -24.001833 13.506333 30.0 12.88 0.92 0.08 2 South Atlantic ash/hydrolysis this study
316N20071116 CoFeMUG 22 21 -24.001833 13.506333 10.0 6.02 0.56 0.39 2 South Atlantic ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3A 17.3794 -162.4426 50.0 0 0.12 0.3 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3B 17.3794 -162.4426 50.0 0 0.12 0.3 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3A 17.3794 -162.4426 75.0 0 0.11 0.27 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3B 17.3794 -162.4426 75.0 0 0.11 0.27 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3A 17.3794 -162.4426 100.0 0 0.12 0.3 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3B 17.3794 -162.4426 100.0 0 0.12 0.3 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3A 17.3794 -162.4426 130.0 0 0.07 0.23 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3B 17.3794 -162.4426 130.0 0 0.07 0.23 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3A 17.3794 -162.4426 150.0 1.19 0.11 0.24 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3B 17.3794 -162.4426 150.0 1.19 0.11 0.24 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3A 17.3794 -162.4426 200.0 2.88 0.27 0.21 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3B 17.3794 -162.4426 200.0 2.88 0.27 0.21 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-05 stn3A 17.3794 -162.4426 271.0 12.7 1.03 0.19 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10A 0.3653 -179.644 25.0 1.07 0.26 0.32 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10B 0.3653 -179.644 25.0 1.07 0.26 0.32 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10A 0.3653 -179.644 50.0 1.23 0.22 0.36 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10B 0.3653 -179.644 50.0 1.23 0.22 0.36 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10A 0.3653 -179.644 75.0 1.79 0.28 0.37 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10B 0.3653 -179.644 75.0 1.79 0.28 0.37 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10A 0.3653 -179.644 100.0 9.83 0.74 0.35 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10B 0.3653 -179.644 100.0 9.83 0.74 0.35 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10A 0.3653 -179.644 150.0 3.52 0.4 0.37 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10B 0.3653 -179.644 150.0 3.52 0.4 0.37 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10A 0.3653 -179.644 300.0 26.95 1.92 0.51 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-12 stn10B 0.3653 -179.644 500.0 27.2 2.03 0.44 2 North Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24A -36.1654 161.7915 15.0 0 0.07 0.28 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24B -36.1654 161.7915 15.0 0 0.07 0.28 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24A -36.1654 161.7915 25.0 0 0.06 0.22 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24B -36.1654 161.7915 25.0 0 0.06 0.22 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24A -36.1654 161.7915 50.0 0.13 0.08 0.25 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24B -36.1654 161.7915 50.0 0.13 0.08 0.25 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24A -36.1654 161.7915 75.0 0.92 0.2 0.21 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24B -36.1654 161.7915 75.0 0.92 0.2 0.21 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24A -36.1654 161.7915 100.0 3.61 0.36 0.2 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24B -36.1654 161.7915 100.0 3.61 0.36 0.2 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24A -36.1654 161.7915 150.0 5.14 0.46 0.26 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24B -36.1654 161.7915 150.0 5.14 0.46 0.26 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24A -36.1654 161.7915 250.0 6.4 0.53 0.18 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24B -36.1654 161.7915 250.0 6.4 0.53 0.18 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24A -36.1654 161.7915 300.0 6.74 0.6 0.19 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24B -36.1654 161.7915 400.0 7.65 0.71 0.14 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-01-31 stn24A -36.1654 161.7915 500.0 12.82 0.99 0.18 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-02-08 stn30 -28.763 155.3701 5.0 0 0.05 0.22 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-02-08 stn30 -28.763 155.3701 30.0 0 0.05 0.23 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-02-08 stn30 -28.763 155.3701 50.0 0 0.05 0.21 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-02-08 stn30 -28.763 155.3701 75.0 0 0.1 0.23 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-02-08 stn30 -28.763 155.3701 100.0 3.71 0.28 0.37 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-02-08 stn30 -28.763 155.3701 150.0 2.66 0.22 0.3 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-02-08 stn30 -28.763 155.3701 300.0 5.64 0.42 0.3 2 South Pacific ash/hydrolysis this study
33KB20070103 WebbPacific2007 2007-02-08 stn30 -28.763 155.3701 500.0 12.74 0.92 0.29 2 South Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-06 3 24 49.28 -134.67 4.2 16.269 32.4162 3.89 0.73 0.19 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-06 3 16 49.28 -134.67 50.4 8.0686 32.5406 10.59 1.16 0.2 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-06 3 12 49.28 -134.67 98.6 6.4753 32.5864 16.89 1.36 0.11 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-06 3 11 49.28 -134.67 200.6 5.7796 33.794 28.97 2.06 0.05 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-08 5 20 49.8003 -141.7996 3.6 15.1596 32.3704 6.85 0.93 0.15 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-08 5 17 49.8003 -141.7996 48.4 6.9623 32.5863 13 1.29 0.09 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-08 5 13 49.8003 -141.7996 204.5 4.4935 33.7001 31.78 2.36 0.05 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-09 8 14 52.95 -141.5458 48.8 5.9746 32.6537 15.65 1.4 0.11 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-10 10 24 54.5999 -141.4055 4.2 14.1766 32.5185 8.97 1.06 0.21 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-10 10 20 54.5999 -141.4055 49.6 5.8259 32.6456 18.43 1.53 0.07 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-10 10 17 54.5999 -141.4055 100.7 4.9585 32.769 21.33 1.64 0.06 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-12 15 22 58.9995 -140.9996 3.7 15.3697 31.4783 0.08 0.25 0.23 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-12 15 20 58.9995 -140.9996 49.5 6.4759 32.301 20.54 1.48 0.19 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-12 15 6 58.9995 -140.9996 99.4 5.9241 32.6149 20.53 1.53 0.16 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-12 15 4 58.9995 -140.9996 149.5 5.9863 33.176 27.83 2 0.19 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-14 17 21 57.1536 -148.7132 99.6 4.928 33.078 25.16 1.84 0.13 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-14 17 24 57.1536 -148.7132 4.8 13.186 32.5014 5.1 0.84 0.31 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-14 17 2 57.1536 -148.7132 51.0 5.4797 32.67 19.4 1.41 0.12 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-15 20 23 55.0 -152.66 3.9 12.6607 32.3454 2.83 0.72 0.15 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-15 20 14 55.0 -152.66 48.0 4.7768 32.8615 22.85 1.7 0.55 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-16 24 20 53.0 -152.002 5.3 12.1693 32.4839 0.13 1.05 0.26 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-16 24 13 53.0 -152.002 60.6 4.2427 32.9218 0.05 1.77 0.16 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-17 26 23 52.0001 -152.0 55.3 5.4477 32.6602 19.29 1.58 0.03 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-17 26 22 52.0001 -152.0 104.0 4.0288 32.9101 24.73 1.84 0.13 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-18 28 24 50.4491 -148.7467 3.3 13.9488 32.4451 7.14 1.03 0.18 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-18 28 23 50.4491 -148.7467 49.9 7.4058 32.5936 11.93 1.3 0.15 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-18 28 22 50.4491 -148.7467 97.5 4.379 32.7769 22.5 1.58 0.15 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-18 27 21 51.0 -152.0 3.9 12.7433 32.4616 10.24 1.14 0.21 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-18 27 15 51.0 -152.0 98.6 4.2625 32.7536 22.62 1.59 0.23 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-19 29 19 50.0 -145.0 49.8 6.8627 32.5691 13.82 1.37 0.17 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-20 30 23 49.8997 -143.3999 4.5 14.824 32.3997 5.56 0.86 0.5 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-20 30 22 49.8997 -143.3999 52.5 6.4102 32.6043 14.77 1.22 0.23 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-20 30 21 49.8997 -143.3999 103.2 5.4477 32.6422 19.5 1.54 0.05 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-21 32 24 49.4271 -136.6661 4.6 16.2453 32.3704 2.16 0.64 0.18 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-21 32 23 49.4271 -136.6661 50.1 8.911 32.4206 7.16 1.1 0.23 2 North Pacific ash/hydrolysis this study
318M20130804 Gulf of Alaska 2013 2013-08-21 32 22 49.4271 -136.6661 99.8 6.7999 32.6572 15.87 1.3 0.17 2 North Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-01 1 24 -20.0 -80.0 0.0 20.5672 35.2043 0.04 0.5 0.13 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-01 1 23 -20.0 -80.0 20.0 20.5477 35.1992 0.05 0.4 0.23 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-01 1 22 -20.0 -80.0 40.0 18.5166 34.934 0.05 0.39 0.22 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-01 1 21 -20.0 -80.0 60.0 16.8223 34.7462 2.29 0.48 0.23 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-01 1 20 -20.0 -80.0 80.0 16.5496 34.8167 4.03 0.71 0.1 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-01 1 19 -20.0 -80.0 100.0 15.1241 34.5921 6.71 0.77 0.16 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-03 1 18 -20.0 -80.0 120.0 12.3109 34.2292 11.95 1.1 0.08 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-03 1 16 -20.0 -80.0 200.0 11.4277 34.6782 23.23 2.86 0.02 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-03 2 24 -20.0 -85.0 0.0 20.9169 35.4441 0.04 0.31 0.26 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-03 2 21 -20.0 -85.0 40.0 20.5183 35.3487 0.03 0.31 0.21 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-03 2 18 -20.0 -85.0 80.0 18.1944 35.0301 0.04 0.31 0.17 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-07 4 23 -20.0 -95.0 0.0 22.7423 35.7542 0.04 0.23 0.26 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-07 4 21 -20.0 -95.0 20.0 22.4117 35.7593 0.05 0.39 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-07 4 12 -20.0 -95.0 200.0 16.676 34.9991 4.17 0.53 0.16 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-12 6 24 -15.0 -100.0 0.0 23.2698 35.8274 1.8 0.47 0.29 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-12 6 23 -15.0 -100.0 0.0 23.2698 35.8274 1.72 0.24 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-12 6 22 -15.0 -100.0 20.0 22.9715 35.834 1.28 0.45 0.35 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-12 6 19 -15.0 -100.0 60.0 21.8532 35.841 0.24 0.37 0.31 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-12 6 15 -15.0 -100.0 100.0 20.7501 35.786 0.33 0.43 0.21 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-12 6 13 -15.0 -100.0 150.0 20.1344 35.6745 2.44 0.51 0.25 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-12 6 12 -15.0 -100.0 200.0 16.6946 35.0659 9.66 1.08 0.02 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-17 8 23 -10.0 -95.0 0.0 24.9881 35.4426 5 0.55 0.24 2 South Pacific ash/hydrolysis this study
33AT20100129 ETSP2010 2010-02-17 8 17 -10.0 -95.0 80.0 16.8425 35.1078 12.93 1.29 0.1 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-26 1 14 -20.0 -80.0 110.0 16.2323 34.7672 4.37 0.64 0.19 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-26 1 13 -20.0 -80.0 120.0 16.1911 34.7761 5.07 0.69 0.14 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-26 1 12 -20.0 -80.0 140.0 15.6868 34.6959 8.57 0.95 0.12 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-26 1 11 -20.0 -80.0 160.0 14.7366 34.5264 10.37 1.04 0.17 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-26 1 10 -20.0 -80.0 180.0 12.7697 34.4738 16.61 1.57 0.07 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-26 1 9 -20.0 -80.0 200.0 12.0218 34.5025 20.66 2.09 0.04 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-26 1 8 -20.0 -80.0 225.0 11.4915 34.5817 23.39 2.53 0.06 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-26 1 7 -20.0 -80.0 250.0 11.1452 34.6196 24.77 2.69 0.06 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 24 -10.0 -82.0 2.0 25.1877 35.2695 3.95 0.56 0.38 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 23 -10.0 -82.0 20.0 25.1487 35.261 3.82 0.58 0.38 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 22 -10.0 -82.0 35.0 25.0967 35.2475 9.58 1.21 0.37 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 21 -10.0 -82.0 40.0 20.4833 35.2125 14 1.49 0.26 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 20 -10.0 -82.0 50.0 18.8185 35.1988 14.65 1.53 0.3 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 19 -10.0 -82.0 60.0 17.2586 35.262 23.65 1.98 0.21 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 18 -10.0 -82.0 65.0 16.6518 35.2081 29.05 2.31 0.2 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 17 -10.0 -82.0 70.0 15.6197 35.1232 28.94 2.37 0.16 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 16 -10.0 -82.0 80.0 14.4166 35.0415 29.02 2.47 0.14 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 15 -10.0 -82.0 90.0 14.0715 35.0032 29.48 2.41 0.17 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 14 -10.0 -82.0 95.0 13.9047 34.9938 28.43 2.41 0.19 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 13 -10.0 -82.0 100.0 13.7938 34.9881 28.85 2.4 0.14 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 12 -10.0 -82.0 110.0 13.5687 34.9796 28.9 2.42 0.11 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 11 -10.0 -82.0 120.0 13.369 34.9694 29.53 2.43 0.04 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 10 -10.0 -82.0 150.0 12.973 34.9453 30.1 2.43 0.09 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 12 -10.0 -82.0 175.0 12.5579 34.9321 2.45 0.08 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 9 -10.0 -82.0 200.0 12.3783 34.9135 30.71 2.44 0.14 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 8 -10.0 -82.0 225.0 12.0827 34.8942 2.47 0.16 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-03-30 11 7 -10.0 -82.0 250.0 11.7995 34.864 31.93 2.51 0.11 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 24 -15.0 -82.0 5.0 22.9093 35.2732 0.37 0.55 0.4 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 23 -15.0 -82.0 20.0 22.9134 35.2744 0.56 0.59 0.35 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 22 -15.0 -82.0 35.0 22.8118 35.1072 7.78 1 0.22 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 21 -15.0 -82.0 40.0 18.9305 35.1074 8.39 1.01 0.18 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 20 -15.0 -82.0 50.0 16.9287 35.1436 12.06 1.31 0.2 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 19 -15.0 -82.0 60.0 16.5997 35.0215 14.18 1.47 0.17 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 18 -15.0 -82.0 70.0 15.7881 34.9083 16.33 1.64 0.18 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 17 -15.0 -82.0 80.0 14.9736 34.8742 18.49 1.85 0.15 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 16 -15.0 -82.0 90.0 14.2414 34.8564 20.99 2.12 0.15 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 15 -15.0 -82.0 100.0 13.7531 34.8688 24.52 2.69 0.14 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 14 -15.0 -82.0 110.0 13.3738 34.8859 19.37 2.84 0.17 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 13 -15.0 -82.0 120.0 13.1767 34.8869 17.51 2.77 0.11 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 12 -15.0 -82.0 140.0 12.723 34.9025 19.36 2.68 0.15 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 11 -15.0 -82.0 160.0 12.5018 34.9021 19.95 2.71 0.12 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 10 -15.0 -82.0 180.0 12.2888 34.8956 23.43 2.65 0.03 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 9 -15.0 -82.0 200.0 12.1262 34.886 25.04 2.65 0.09 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 8 -15.0 -82.0 225.0 12.0048 34.8696 27.47 2.64 0.07 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-18 13 7 -15.0 -82.0 250.0 11.7482 34.8509 28.28 2.66 0.19 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-10 5 24 -20.0 -100.0 5.0 23.3503 35.9168 0.03 0.3 0.36 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-10 5 22 -20.0 -100.0 20.0 23.2921 35.917 0.13 0.32 0.38 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 24 -10.0 -100.0 2.0 26.1734 35.3684 7.6 0.66 0.22 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 23 -10.0 -100.0 20.0 26.0995 35.369 7.8 0.67 0.2 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 22 -10.0 -100.0 40.0 24.7695 35.371 6.99 0.67 0.24 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 21 -10.0 -100.0 45.0 23.1566 35.6387 3.73 0.52 0.39 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 20 -10.0 -100.0 50.0 22.2031 35.7927 4.64 0.61 0.27 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 19 -10.0 -100.0 60.0 21.1762 35.6908 6.05 0.76 0.21 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 18 -10.0 -100.0 70.0 19.9939 35.691 7.99 0.9 0.21 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 17 -10.0 -100.0 80.0 19.2734 35.6343 9.93 1.01 0.15 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 16 -10.0 -100.0 90.0 18.1423 35.5907 11.72 1.14 0.13 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 15 -10.0 -100.0 100.0 17.0274 35.5304 14.83 1.37 0.15 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 14 -10.0 -100.0 110.0 15.9511 35.4456 17.86 1.6 0.26 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 13 -10.0 -100.0 120.0 14.7166 35.2318 19.82 1.83 0.21 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 12 -10.0 -100.0 160.0 13.2365 34.8415 2.57 0.16 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 11 -10.0 -100.0 180.0 12.5005 34.8173 2.53 0.07 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 10 -10.0 -100.0 200.0 11.8638 34.8109 2.47 0.05 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 9 -10.0 -100.0 225.0 11.4267 34.8233 2.43 0.09 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 8 -10.0 -100.0 250.0 11.0775 34.8145 2.45 0.01 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-05 7 7 -10.0 -100.0 275.0 10.7977 34.7973 2.48 0.03 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 24 -10.0 -90.0 2.0 26.8433 35.0795 6.39 0.6 0.23 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 22 -10.0 -90.0 30.0 25.2233 35.0797 8.75 0.8 0.19 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 21 -10.0 -90.0 35.0 20.8282 35.0876 13.75 1.18 0.24 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 20 -10.0 -90.0 40.0 20.1773 35.2869 14.56 1.22 0.2 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 19 -10.0 -90.0 50.0 18.8 35.3222 20.01 1.77 0.12 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 18 -10.0 -90.0 60.0 16.0969 35.1482 26.46 2.24 0.22 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 17 -10.0 -90.0 65.0 15.6519 35.0413 26.47 2.35 0.06 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 16 -10.0 -90.0 70.0 15.4207 35.0087 25.78 2.41 0.15 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 15 -10.0 -90.0 80.0 14.2957 34.9862 25.79 2.45 0.08 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 14 -10.0 -90.0 90.0 14.0212 34.9732 25.63 2.45 0.13 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 13 -10.0 -90.0 100.0 13.6865 34.9597 27.97 2.45 0.21 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 13 -10.0 -90.0 110.0 13.4278 34.9521 27.3 2.45 0.08 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 12 -10.0 -90.0 125.0 13.0378 34.9352 29.16 2.45 0.1 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 11 -10.0 -90.0 150.0 12.5795 34.9138 30.19 2.38 0.16 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 10 -10.0 -90.0 175.0 12.1555 34.9002 30.45 2.37 0.04 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 9 -10.0 -90.0 200.0 11.8909 34.881 32.24 2.38 0.04 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 8 -10.0 -90.0 225.0 11.6979 34.8618 32.74 2.38 0.06 2 South Pacific ash/hydrolysis this study
318M20110323 ETSP2011 2011-04-02 9 7 -10.0 -90.0 250.0 11.4617 34.8441 32.03 2.47 0.09 2 South Pacific ash/hydrolysis this study
SCALE 2019-10-12 1 -34.641 17.425 5.0 19.35 35.22 0.61 0.1 0.29 2 South Atlantic ash/hydrolysis this study
SCALE 2019-10-13 6 -35.607 15.285 5.0 19.8 35.25 0.99 0.01 0.38 2 South Atlantic ash/hydrolysis this study
SCALE 2019-10-13 12 -36.481 13.184 5.0 15.68 35.08 1.09 0.36 0.09 2 South Atlantic ash/hydrolysis this study
SCALE 2019-10-14 15 -37.596 12.46 5.0 15.15 35.14 2.07 0.38 0.02 2 South Atlantic ash/hydrolysis this study
SCALE 2019-10-14 19 -39.004 11.512 5.0 12.33 34.66 5.54 0.47 0.13 2 South Atlantic ash/hydrolysis this study
SCALE 2019-10-15 28 -41.591 9.63 5.0 11.46 34.32 7.52 0.85 0.21 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-15 36 -42.575 8.831 5.0 8.06 34.07 15.02 0.97 0.1 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-16 44 -44.777 6.817 5.0 5.67 33.77 19.93 1.18 0.03 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-17 49 -46.902 5.304 5.0 5.04 33.61 18.93 1.37 0.07 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-17 54.5 -48.489 4.184 5.0 3.83 33.61 21.23 1.42 0.24 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-18 57 -49.474 3.468 5.0 2.33 33.58 24.65 1.62 0.22 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-18 60 -50.655 2.6 5.0 2.03 33.6 25.36 1.78 0.18 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-18 63 -51.646 1.847 5.0 1.14 33.65 26.39 1.7 0.15 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-18 65 -52.277 1.362 5.0 0.58 33.66 26.7 1.86 0.29 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-19 68 -53.307 0.572 5.0 -0.05 33.65 26.81 1.85 0.12 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-19 71 -54.383 0.0 5.0 -0.8 33.68 26.6 2.16 0.16 2 Southern Ocean ash/hydrolysis this study
SCALE 2019-10-22 111 -55.995 0.022 5.0 -1.61 33.83 28.29 2.23 0.33 2 Southern Ocean ash/hydrolysis this study
GOM2019 2019-04-09 19towfish1 27.79234 -82.9179 1.0 23.50745 34.0873 0 0.1 0.4 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-09 19towfish2 28.17038 -82.9226 1.0 23.6135 32.855 0 0.05 0.22 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-10 19towfish3 27.3833 -82.715 1.0 23.71135 34.9625 0.18 0 0.36 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-10 19towfish4 27.3667 -82.9 1.0 23.2801 35.5562 0 0 0.25 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-10 19towfish5 27.3575 -83.18722 1.0 23.2349 35.9227 0 0 0.25 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-10 19towfish6 27.28762 -83.58218 1.0 23.70525 36.3937 0 0 0.19 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-11 19towfish7 27.15006 -85.14278 1.0 25.1766 36.4772 0 0 0.13 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-11 19towfish8 27.4 -84.9044 1.0 23.0783 36.2678 0 0 0.15 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-11 19towfish9 27.59006 -84.75576 1.0 23.77495 36.4099 0 0 0.21 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-11 19towfish10 27.70722 -84.553055 1.0 23.95225 36.3924 0 0 0.2 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-12 19towfish11 27.826944 -83.93833 1.0 23.3254 36.3023 0 0 0.22 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-12 19towfish12 27.85 -83.65 1.0 23.13125 36.2309 0 0 0.2 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-12 19towfish13 27.8166 -83.0166 1.0 24.46755 34.9407 0 0 0.24 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-12 19towfish14 27.7 -82.9 1.0 25.11995 34.8902 0 0.06 0.25 2 North Atlantic ash/hydrolysis this study
GOM2019 2019-04-12 19towfish15 27.58944 -82.86306 1.0 24.81385 35.1601 0 0 0.23 2 North Atlantic ash/hydrolysis this study
SWINGS 2021-01-13 U1 -22.183416 53.96145 5.0 26.783 35.474 0.09 0.16 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-14 U2 -22.96435 53.1442 5.0 26.861 35.282 0.11 0.13 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-14 U4 -23.944267 52.117832 5.0 0.11 0.43 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-14 U5 -24.5514 51.474518 5.0 27.106 35.355 0.08 0.32 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-16 U8 -26.0474 47.86685 5.0 27.821 35.044 0.11 0.26 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-16 U9 -26.5853 46.239468 5.0 27.119 35.182 0.14 0.07 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-16 U10 -27.0376 44.87305 5.0 26.862 35.271 0.14 0.35 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-16 U11 -27.2843 44.129818 5.0 26.93 35.417 0.14 0.25 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-17 U12 -27.811867 42.5138 5.0 29.067 35.271 0.08 0.29 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-17 U13 -28.341368 40.895584 5.0 27.639 35.585 0.05 0.19 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-18 U14 -28.7795 39.393066 5.0 26.568 35.48 0.08 0.12 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-18 U15 -29.178217 37.662083 5.0 26.698 35.48 0.05 0.19 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-18 U16 -29.5405 36.1028 5.0 26.778 35.4 0.04 0.34 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-18 U17 -29.897232 34.555435 5.0 26.951 35.529 0.07 0.28 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-20 U18 -30.219282 32.488617 5.0 27.703 27.612 0.05 0.26 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-23 U19 -37.11255 36.013317 5.0 21.933 35.593 0.05 0.14 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-03-03 U20 -41.783566 66.00103 5.0 16.922 35.215 0.23 0.29 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-03-03 U21 -39.36857 64.71212 5.0 17.224 34.992 0.24 0.31 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-03-03 U22 -37.475433 63.6418 5.0 19.185 35.327 0.16 0.3 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-03-04 U23 -35.0028 62.0 5.0 21.849 35.455 0.45 0.26 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-03-04 U24 -33.162 61.02445 5.0 23.815 35.769 0.14 0.19 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-03-05 U25 -30.562834 59.701935 5.0 24.521 34.419 0.09 0.21 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-03-05 U26 -28.9728 58.8814 5.0 25.71 35.839 0.16 0.18 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-03-05 U27 -27.698633 58.2488 5.0 26.89 35.404 0.07 0.3 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-14 1 21 -24.999817 51.000034 5.0 0.03 0.32 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-17 2 24 -28.6375 39.987335 15.0 0.02 0.3 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-17 2 21 -28.6375 39.987335 50.0 0.04 0.33 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-17 2 20 -28.6375 39.987335 75.0 0.06 0.28 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-19 3 24 -30.299967 32.80005 5.0 0.03 0.29 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-19 3 21 -30.299967 32.80005 30.0 0.02 0.22 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-19 3 20 -30.299967 32.80005 80.0 0.03 0.24 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-20 4 UW -29.809917 31.696033 5.0 0.04 0.28 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-20 4 20 -29.809917 31.696033 11.0 0.03 0.33 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-21 5 UW -30.1178 31.784983 5.0 0.04 0.39 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-21 5 20 -30.1178 31.784983 15.0 0.03 0.28 2 Indian Ocean ash/hydrolysis this study
SWINGS 2021-01-21 5 11 -30.1178 31.784983 50.0 0.03 0.25 2 Indian Ocean ash/hydrolysis this study
320620170820 GO-SHIP P06-2017 2017-08-26 148 27 -32.5008 -145.7093 214.5 13.7045 35.0091 48.7136 0.5125 0.044797297 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-08-26 148 28 -32.5008 -145.7093 165.9 14.7688 35.179 49.9478 0.3485 0.054743243 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-08-26 148 29 -32.5008 -145.7093 100.5 16.6553 35.366 52.0213 0.11275 0.089141892 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-08-26 148 33 -32.5008 -145.7093 59.5 16.6048 35.335 51.9398 0.11275 0.112588317 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-08-26 148 35 -32.5008 -145.7093 34.9 16.5717 35.335 51.9067 0.123 0.106843933 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-08-30 157 34 -32.5004 -137.6988 29.1 17.0131 35.2775 52.2906 0.082 0.144352901 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-08-30 157 31 -32.5004 -137.6988 69.9 17.0422 35.3072 52.3494 0.07175 0.174081169 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-08-30 157 30 -32.5004 -137.6988 85.2 17.0496 35.3094 52.359 0.07175 0.165909492 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-08-30 157 28 -32.5004 -137.6988 166.2 15.796 35.2162 51.0122 0.3075 0.061283784 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-01 -32.4997 -134.1373 0.0 17.529 35.252 0.07175 0.16579187 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-04 166 34 -32.4998 -129.6881 59.3 17.0383 35.115 52.1533 0.082 0.161666667 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-04 166 33 -32.4998 -129.6881 87.1 16.7103 35.1205 51.8308 0.09225 0.181719697 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-04 166 32 -32.4998 -129.6881 109.8 16.3722 35.0463 51.4185 0.2255 0.148469697 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-04 166 30 -32.4998 -129.6881 165.2 14.9767 35.0077 49.9844 0.39975 0.108418831 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-04 166 29 -32.4998 -129.6881 215.7 13.4026 34.7421 48.1447 0.656 0.126627706 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-07 178 35 -32.5013 -120.5546 33.4 16.8943 34.8869 51.7812 0.09225 0.192542208 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-07 178 34 -32.5013 -120.5546 49.5 16.54 34.8814 51.4214 0.082 0.15920021 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-07 178 32 -32.5013 -120.5546 86.4 16.3096 34.8338 51.1434 0.09225 0.20466342 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-07 178 31 -32.5013 -120.5546 108.6 15.908 34.7819 50.6899 0.15375 0.188185065 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-07 178 27 -32.5013 -120.5546 165.3 13.9007 34.7252 48.6259 0.41 0.094594595 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-07 178 26 -32.5013 -120.5546 214.8 12.248 34.6512 46.8992 0.62525 0.140061688 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-10 187 32 -32.5001 -113.0855 33.2 17.1856 34.822 52.0076 0.09225 0.202066017 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-10 187 28 -32.5001 -113.0855 107.8 16.6098 34.5798 51.1896 0.1435 0.180004274 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-10 187 25 -32.5001 -113.0855 125.0 15.9558 34.7117 50.6675 0.1435 0.172311966 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-10 187 24 -32.5001 -113.0855 160.1 14.2446 34.7038 48.9484 0.2665 0.157431624 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-10 187 22 -32.5001 -113.0855 210.9 13.057 34.6751 47.7321 0.60475 0.111061966 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-12 -32.5004 -109.5899 0.0 17.428 34.712 0.11275 0.165882479 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-13 197 35 -32.5001 -106.1851 18.5 17.4075 34.8851 52.2926 0.11275 0.181694444 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-13 197 33 -32.5001 -106.1851 64.7 17.4796 34.892 52.3716 0.123 0.118990336 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-13 197 30 -32.5001 -106.1851 139.8 15.9479 34.74 50.6879 0.23575 0.141141892 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-13 197 29 -32.5001 -106.1851 185.4 13.2408 34.4591 47.6999 0.574 0.131982906 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-16 207 35 -32.5003 -98.8856 24.3 16.7435 34.9085 51.652 0.15375 0.14625 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-16 207 32 -32.5003 -98.8856 75.0 16.7472 34.9154 51.6626 0.13325 0.168886752 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-16 207 29 -32.5003 -98.8856 98.9 16.7929 34.9124 51.7053 0.1435 0.158209402 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-16 207 26 -32.5003 -98.8856 200.3 14.2124 34.595 48.8074 0.4305 0.124628205 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-19 216 34 -32.4997 -90.8756 24.8 15.25 34.5419 49.7919 0.29725 0.136040598 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-19 216 31 -32.4997 -90.8756 48.5 15.2604 34.5427 49.8031 0.27675 0.145412162 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-19 216 30 -32.4997 -90.8756 74.9 15.2666 34.5413 49.8079 0.287 0.141589744 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-19 216 28 -32.4997 -90.8756 122.9 15.2706 34.5427 49.8133 0.27675 0.150557692 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-19 216 27 -32.4997 -90.8756 149.7 15.254 34.5429 49.7969 0.287 0.131108108 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-19 216 26 -32.4997 -90.8756 200.4 12.7756 34.1934 46.969 0.87125 0.078707265 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-21 -32.4998 -87.3154 0.0 15.094 34.482 0.33825 0.142104008 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-21 222 35 -32.4995 -85.5358 29.3 14.653 34.4418 49.0948 0.3895 0.113448718 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-21 222 33 -32.4995 -85.5358 49.2 14.663 34.4432 49.1062 0.37925 0.141220085 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-21 222 32 -32.4995 -85.5358 74.2 14.6512 34.4483 49.0995 0.37925 0.146348291 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-21 222 29 -32.4995 -85.5358 100.5 14.5929 34.443 49.0359 0.3895 0.129688034 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-21 222 27 -32.4995 -85.5358 149.8 14.2251 34.3578 48.5829 0.42025 0.137399573 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-21 222 26 -32.4995 -85.5358 200.2 11.3054 34.1566 45.462 1.13775 0.046395299 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-23 228 35 -32.5003 -80.1931 24.0 15.0071 34.4194 49.4265 0.41 0.172863248 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-23 228 28 -32.5003 -80.1931 126.2 14.1802 34.2827 48.4629 0.5125 0.136602564 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-23 228 26 -32.5003 -80.1931 201.3 10.8744 34.1615 45.0359 1.62975 0.03559188 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-25 233 34 -32.4997 -75.7455 25.0 14.3626 34.3364 48.699 0.50225 0.14257906 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-25 233 33 -32.4997 -75.7455 39.9 14.3635 34.3305 48.694 0.492 0.295027027 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-25 233 26 -32.4997 -75.7455 184.9 10.824 34.1719 44.9959 1.7835 0.091364865 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-28 245 32 -32.5 -72.1955 13.9 13.3275 34.1283 47.4558 0.7175 0.260551798 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-28 245 31 -32.5 -72.1955 29.2 13.2715 34.1413 47.4128 0.697 0.264351351 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-28 245 28 -32.5 -72.1955 64.2 13.1711 34.1736 47.3447 0.85075 0.234902482 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-28 245 27 -32.5 -72.1955 89.4 11.0724 34.1971 45.2695 1.91675 0.095952703 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-28 245 25 -32.5 -72.1955 139.6 10.9618 34.5392 45.501 2.665 0.107837838 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898
320620170820 GO-SHIP P06-2017 2017-09-28 245 23 -32.5 -72.1955 190.1 10.6022 34.6111 45.2133 2.8085 0.078527027 2 South Pacific Wet oxidation Lanpher KB and Popendorf KJ (2021) Variability of microbial particulate ATP concentrations in subeuphotic microbes due to underlying metabolic strategies in the South Pacific Ocean. Front. Mar. Sci. 8:655898. https://doi.org/10.3389/fmars.2021.655898

 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact