BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Dataset Title: | [Abalone Recruitment Modules] - Abalone recruitment data from Baja California and Baja California Sur, Mexico in 2019 (Collaborative Research: Evaluating how abalone populations in the California Current are structured by the interplay of large-scale oceanographic forcing and nearshore variability) |
Institution: | BCO-DMO (Dataset ID: bcodmo_dataset_907383_v1) |
Information: | Summary | License | Metadata | Background | Files | Make a graph |
Attributes { s { date { String long_name "Date"; String units "unitless"; } Site { String long_name "Site"; String units "unitless"; } Bouy { String long_name "Bouy"; String units "unitless"; } divers { String long_name "Divers"; String units "unitless"; } BART_transect { String long_name "Bart_transect"; String units "unitless"; } number { Int32 actual_range 1, 7; String long_name "Number"; String units "unitless"; } depth_f { Int32 actual_range 5, 41; String long_name "Depth"; String units "feet (ft)"; } camera { String long_name "Camera"; String units "unitless"; } lat { Float32 actual_range 26.77558, 29.79086; String long_name "Lat"; String units "degrees_north"; } longitude { String _CoordinateAxisType "Lon"; Float32 actual_range -115.799, -113.7003; String axis "X"; String ioos_category "Location"; String long_name "Long"; String standard_name "longitude"; String units "degrees_east"; } Organism_Identification { String long_name "Organism_identification"; String units "unitless"; } Taxonomic_name { String long_name "Taxonomic_name"; String units "unitless"; } Species_note { String long_name "Species_note"; String units "unitless"; } individual_num { Int32 actual_range 1, 35; String long_name "Individual_num"; String units "unitless"; } size_mm { String long_name "Size_mm"; String units "millimeters (mm)"; } size_mm_note { String long_name "Size_mm_note"; String units "unitless"; } } NC_GLOBAL { String cdm_data_type "Other"; String Conventions "COARDS, CF-1.6, ACDD-1.3"; String creator_email "info@bco-dmo.org"; String creator_name "BCO-DMO"; String creator_url "https://www.bco-dmo.org/"; String doi "10.26008/1912/bco-dmo.907383.1"; Float64 Easternmost_Easting -113.7003; Float64 geospatial_lon_max -113.7003; Float64 geospatial_lon_min -115.799; String geospatial_lon_units "degrees_east"; String history "2025-01-22T07:04:23Z (local files) 2025-01-22T07:04:23Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_907383_v1.html"; String infoUrl "https://www.bco-dmo.org/dataset/907383"; String institution "BCO-DMO"; String license "The data may be used and redistributed for free but is not intended for legal use, since it may contain inaccuracies. Neither the data Contributor, ERD, NOAA, nor the United States Government, nor any of their employees or contractors, makes any warranty, express or implied, including warranties of merchantability and fitness for a particular purpose, or assumes any legal liability for the accuracy, completeness, or usefulness, of this information."; String sourceUrl "(local files)"; String summary "Abalone support commercial and recreational fishery, however their population have decline dramatically since 1950's. To understand the recruitment of abalone populations, standarized abalone recruitment modules made of half cinder blocks inside cages were deployed in Baja California and Baja California Sur, Mexico. 12 cages were deployed at three sites (i.e., El Rosario, Isla Natividad and La Bocana) in Mexico. The abundances of abalone and invertebrates found in the cages were checked after 12months. This dataset presents all the information collected from the cages deployed at three sites (El Rosario, Isla Natividad and La Bocana) in Baja California and Baja California Sur, Mexico."; String title "[Abalone Recruitment Modules] - Abalone recruitment data from Baja California and Baja California Sur, Mexico in 2019 (Collaborative Research: Evaluating how abalone populations in the California Current are structured by the interplay of large-scale oceanographic forcing and nearshore variability)"; Float64 Westernmost_Easting -115.799; } }
The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.
Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names,
followed by a collection of
constraints (e.g., variable<value),
each preceded by '&' (which is interpreted as "AND").
For details, see the tabledap Documentation.