BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [Siphonophore CSIA-AA] - Compound-specific isotope analysis of amino
acids (CSIA-AA) from a subset of siphophore samples collected during four
research cruises on the R/V Wester Flyer in the California Current Ecosystem
between 2019 and 2021 (Collaborative research: The effects of predator traits
on the structure of oceanic food webs)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_917239_v1)
Information:  Summary ? | License ? | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    [The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Collection_Date {
    String long_name "Collection_date";
    String units "unitless";
  }
  Year {
    String long_name "Year";
    String units "unitless";
  }
  Month {
    String long_name "Month";
    String units "unitless";
  }
  Genus {
    String long_name "Genus";
    String units "unitless";
  }
  Best_Taxonomic_ID {
    String long_name "Best_taxonomic_id";
    String units "unitless";
  }
  Alanine {
    Float32 actual_range 19.61, 33.46;
    String long_name "Alanine";
    String units "parts per thousand";
  }
  Glycine {
    Float32 actual_range 3.66, 19.15;
    String long_name "Glycine";
    String units "parts per thousand";
  }
  Threonine {
    Float32 actual_range -19.24, 0.82;
    String long_name "Threonine";
    String units "parts per thousand";
  }
  Serine {
    Float32 actual_range 7.22, 22.37;
    String long_name "Serine";
    String units "parts per thousand";
  }
  Valine {
    Float32 actual_range 9.89, 27.4;
    String long_name "Valine";
    String units "parts per thousand";
  }
  Leucine {
    Float32 actual_range 17.25, 27.55;
    String long_name "Leucine";
    String units "parts per thousand";
  }
  Isoleucine {
    Float32 actual_range 18.52, 32.64;
    String long_name "Isoleucine";
    String units "parts per thousand";
  }
  Proline {
    Float32 actual_range 16.35, 25.31;
    String long_name "Proline";
    String units "parts per thousand";
  }
  Aspartic_acid {
    Float32 actual_range 15.81, 26.63;
    String long_name "Aspartic_acid";
    String units "parts per thousand";
  }
  Methionine {
    Float32 actual_range 8.26, 12.77;
    String long_name "Methionine";
    String units "parts per thousand";
  }
  Glutamic_acid {
    Float32 actual_range 19.9, 37.56;
    String long_name "Glutamic_acid";
    String units "parts per thousand";
  }
  Phenylalanine {
    Float32 actual_range 4.3, 11.82;
    String long_name "Phenylalanine";
    String units "parts per thousand";
  }
  Tyrosine {
    Float32 actual_range 8.05, 14.33;
    String long_name "Tyrosine";
    String units "parts per thousand";
  }
  Lysine {
    Float32 actual_range 6.58, 12.11;
    String long_name "Lysine";
    String units "parts per thousand";
  }
  TP {
    Float32 actual_range 2.24, 4.06;
    String long_name "Tp";
    String units "unitless";
  }
  Alanine_SD {
    Float32 actual_range 0.06, 0.91;
    String long_name "Alanine_sd";
    String units "parts per thousand";
  }
  Glycine_SD {
    Float32 actual_range 0.07, 0.68;
    String long_name "Glycine_sd";
    String units "parts per thousand";
  }
  Threonine_SD {
    Float32 actual_range 0.2, 0.96;
    String long_name "Threonine_sd";
    String units "parts per thousand";
  }
  Serine_SD {
    Float32 actual_range 0.03, 0.82;
    String long_name "Serine_sd";
    String units "parts per thousand";
  }
  Valine_SD {
    Float32 actual_range 0.04, 1.22;
    String long_name "Valine_sd";
    String units "parts per thousand";
  }
  Leucine_SD {
    Float32 actual_range 0.03, 0.92;
    String long_name "Leucine_sd";
    String units "parts per thousand";
  }
  Isoleucine_SD {
    Float32 actual_range 0.02, 1.11;
    String long_name "Isoleucine_sd";
    String units "parts per thousand";
  }
  Proline_SD {
    Float32 actual_range 0.03, 0.56;
    String long_name "Proline_sd";
    String units "parts per thousand";
  }
  Asparticacid_SD {
    Float32 actual_range 0.07, 0.75;
    String long_name "Asparticacid_sd";
    String units "parts per thousand";
  }
  Methionine_SD {
    Float32 actual_range 0.15, 0.99;
    String long_name "Methionine_sd";
    String units "parts per thousand";
  }
  Glutamic_acid_SD {
    Float32 actual_range 0.02, 0.98;
    String long_name "Glutamic_acid_sd";
    String units "parts per thousand";
  }
  Phenylalanine_SD {
    Float32 actual_range 0.06, 2.51;
    String long_name "Phenylalanine_sd";
    String units "parts per thousand";
  }
  Tyrosine_SD {
    Float32 actual_range 0.66, 1.38;
    String long_name "Tyrosine_sd";
    String units "parts per thousand";
  }
  Lysine_SD {
    Float32 actual_range 0.08, 0.73;
    String long_name "Lysine_sd";
    String units "parts per thousand";
  }
 }
  NC_GLOBAL {
    String cdm_data_type "Other";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_url "https://www.bco-dmo.org/";
    String doi "10.26008/1912/bco-dmo.917239.1";
    String history 
"2024-11-19T20:31:25Z (local files)
2024-11-19T20:31:25Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_917239_v1.das";
    String infoUrl "https://www.bco-dmo.org/dataset/917239";
    String institution "BCO-DMO";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    String sourceUrl "(local files)";
    String summary "Samples of siphonophores (Cnidaria, Hydrozoa) were collected using blue‑water diving, midwater trawls, and remotely operated vehicles in the California Current Ecosystem, from 0 to 3,000 meters depth. Siphonophore samples were collected on four research cruises on the R/V Wester Flyer between 2019-2021. To remove potential biases associated with tissue‑specific variability in stable isotope values, the gelatinous swimming bells (nectophores) of siphonophores were sampled. This approach was possible for most specimens, except for physonect species that are extremely fragile or have nectosomes that are a small fraction of the colony length and are often not collected. For these species (e.g., Apolemia spp.), the gelatinous bracts and pieces of the siphosome, excluding gastrozooids, were used. For small individuals (Diphyes dispar, Nanomia bijuga, and Sphaeronectes koellikeri), nectophores from several colonies that were captured at the same time and sampling location were pooled to obtain an adequate mass for isotope analyses. A subset of samples was selected for compound-specific isotope analysis of amino acids. These specific taxa were selected as representatives of different depth habitats, suborders, and hypothesized diets. Bulk and compound-specific isotope analyses were performed at the University of Hawaii's Biogeochemistry Stable Isotope Facility. This dataset includes the compound-specific isotope analysis data.";
    String title "[Siphonophore CSIA-AA] - Compound-specific isotope analysis of amino acids (CSIA-AA) from a subset of siphophore samples collected during four research cruises on the R/V Wester Flyer in the California Current Ecosystem between 2019 and 2021 (Collaborative research: The effects of predator traits on the structure of oceanic food webs)";
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact