BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  [Metagenome and metatranscriptome sequences from deep-sea hydrothermal vent
microbial communities] - Metagenome and metatranscriptome sequences from deep-
sea hydrothermal vent microbial communities collected on cruises AT42-22,
TN405, and NA108 from May 2019 to Jun 2022 (Collaborative Research: Microbes
need frenemies: unveiling microbial relationships with protists and viruses
that support deep-sea hydrothermal vent food webs)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_936069_v1)
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
 
   Maximum ?
 
 SAMPLE_ID (unitless) ?          "AXIAL_103_Axial202..."    "MCR_METAG_128_Shri..."
 SHORT_SAMPLE_ID (unitless) ?          "1235"    "Vent105"
 SAMPLE_NAME (unitless) ?          "ASHES plume"    "in transit sample,..."
 LAB_NUM (unitless) ?          "103"    "80"
 CRUISE_ID (unitless) ?          "AT42-22"    "TN405"
 FIELD_REGION (unitless) ?          "AXIAL"    "MCR"
 YEAR (unitless) ?          "2013"    "2022"
 FIELD_YEAR (unitless) ?          "Axial2013"    "VonDamm2020"
 VENT (unitless) ?          "ASHESplume"    "X18"
 latitude (degrees_north) ?          18.3742    46.27389
  < slider >
 longitude (degrees_east) ?          -130.0137    -81.3779
  < slider >
 ORIGIN_TYPE (unitless) ?          "Tf"    "insitu"
 ORIGIN_DESCRIPTION (unitless) ?          "Niskin 1"    "lab experiment"
 FRENEMIES_PROJ (unitless) ?          "Frenemies_MCR_meta..."    "Frenemies_VARIOUS_..."
 LIBRARY (unitless) ?          "METAGENOME"    "METATRANSCRIPTOME"
 RUN (unitless) ?          "SRR26701687"    "SRR26701742"
 BIOSAMPLE (unitless) ?          "SAMN15341577"    "SAMN38035011"
 BASES (Giga base pairs (Gb)) ?          1.61    64.38
 BYTES (Gigabytes) ?          0.53    20.5
 EXPERIMENT (unitless) ?          "SRX22401323"    "SRX22401378"
 LIBRARY_NAME (unitless) ?          "AXIAL_103_Axial202..."    "MCR_METAG_128_Shri..."
 LIBRARY_SELECTION (unitless) ?          "RANDOM PCR"    "RT-PCR"
 geo_loc_name_country (unitless) ?          "Cayman Islands"    "uncalculated"
 geo_loc_name_country_continent (unitless) ?          "North America"    "uncalculated"
 geo_loc_name (unitless) ?          "Cayman Islands: 12..."    "USA: Pacific Ocean"
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more information)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  SAMPLE_ID {
    String long_name "Sample_id";
    String units "unitless";
  }
  SHORT_SAMPLE_ID {
    String long_name "Short_sample_id";
    String units "unitless";
  }
  SAMPLE_NAME {
    String long_name "Sample_name";
    String units "unitless";
  }
  LAB_NUM {
    String long_name "Lab_num";
    String units "unitless";
  }
  CRUISE_ID {
    String long_name "Cruise_id";
    String units "unitless";
  }
  FIELD_REGION {
    String long_name "Field_region";
    String units "unitless";
  }
  YEAR {
    String long_name "Year";
    String units "unitless";
  }
  FIELD_YEAR {
    String long_name "Field_year";
    String units "unitless";
  }
  VENT {
    String long_name "Vent";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float32 actual_range 18.3742, 46.27389;
    String axis "Y";
    String ioos_category "Location";
    String long_name "Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float32 actual_range -130.0137, -81.3779;
    String axis "X";
    String ioos_category "Location";
    String long_name "Longitude";
    String standard_name "longitude";
    String units "degrees_east";
  }
  ORIGIN_TYPE {
    String long_name "Origin_type";
    String units "unitless";
  }
  ORIGIN_DESCRIPTION {
    String long_name "Origin_description";
    String units "unitless";
  }
  FRENEMIES_PROJ {
    String long_name "Frenemies_proj";
    String units "unitless";
  }
  LIBRARY {
    String long_name "Library";
    String units "unitless";
  }
  RUN {
    String long_name "Run";
    String units "unitless";
  }
  BIOSAMPLE {
    String long_name "Biosample";
    String units "unitless";
  }
  BASES {
    Float32 actual_range 1.61, 64.38;
    String long_name "Bases";
    String units "Giga base pairs (Gb)";
  }
  BYTES {
    Float32 actual_range 0.53, 20.5;
    String long_name "Bytes";
    String units "Gigabytes";
  }
  EXPERIMENT {
    String long_name "Experiment";
    String units "unitless";
  }
  LIBRARY_NAME {
    String long_name "Library_name";
    String units "unitless";
  }
  LIBRARY_SELECTION {
    String long_name "Library_selection";
    String units "unitless";
  }
  geo_loc_name_country {
    String long_name "Geo_loc_name_country";
    String units "unitless";
  }
  geo_loc_name_country_continent {
    String long_name "Geo_loc_name_country_continent";
    String units "unitless";
  }
  geo_loc_name {
    String long_name "Geo_loc_name";
    String units "unitless";
  }
 }
  NC_GLOBAL {
    String cdm_data_type "Other";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_url "https://www.bco-dmo.org/";
    String doi "10.26008/1912/bco-dmo.936069.1";
    Float64 Easternmost_Easting -81.3779;
    Float64 geospatial_lat_max 46.27389;
    Float64 geospatial_lat_min 18.3742;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -81.3779;
    Float64 geospatial_lon_min -130.0137;
    String geospatial_lon_units "degrees_east";
    String history 
"2024-12-18T18:13:21Z (local files)
2024-12-18T18:13:21Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_936069_v1.html";
    String infoUrl "https://www.bco-dmo.org/dataset/936069";
    String institution "BCO-DMO";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    Float64 Northernmost_Northing 46.27389;
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 18.3742;
    String summary 
"This dataset is a collection of sample metadata, identified for all samples, and NCBI accession information for samples and sequence runs produced as part of the \"Microbes need frenemies\" project. This project examines trophic interactions among microbial eukaryotes, viruses, bacteria, and archaea at deep-sea hydrothermal vents using metagenomics and metatranscriptomics and characterizes these ecologically-significant interactions, such as mutualism, predator-prey, or virus-host. 

We sequenced samples collected during the 2020 expedition AT42-22 to the Mid-Cayman Rise hydrothermal vent fields, as well as from the 2019 expedition NA108 to the Gorda Ridge and the 2022 expedition TN405 to the Axial seamount. Sequencing targeted archaea, bacteria, and viruses with metagenomics and microbial eukaryotes with metatranscriptomics. We plan to use these data to identify ecologically-significant interactions among protists, viruses, bacteria, and archaea, with a specific emphasis on microbial mortality via viral lysis and eukaryotic grazing. Archived samples were also included in the analysis.";
    String title "[Metagenome and metatranscriptome sequences from deep-sea hydrothermal vent microbial communities] - Metagenome and metatranscriptome sequences from deep-sea hydrothermal vent microbial communities collected on cruises AT42-22, TN405, and NA108 from May 2019 to Jun 2022 (Collaborative Research: Microbes need frenemies: unveiling microbial relationships with protists and viruses that support deep-sea hydrothermal vent food webs)";
    Float64 Westernmost_Easting -130.0137;
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact