BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  [BLOOFINZ-IO net primary productivity (14C)] - Net primary productivity (14C)
measurements made during quasi‐Lagrangian experiments on R/V Roger Revelle
cruise RR2201 in the Argo basin in the Eastern Indian Ocean/Indonesian
throughflow during February and March 2022 (Collaborative Research: Mesoscale
variability in nitrogen sources and food-web dynamics supporting larval
southern bluefin tuna in the eastern Indian Ocean)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_945860_v1)
Range: longitude = 114.1351 to 118.1424°E, latitude = -16.99946 to -15.34938°N, depth = 5.0 to 90.0m, time = 2022-02-03T19:22:00Z to 2022-02-22T18:01:00Z
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Data Access Form | Files
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  Date {
    String long_name "Date";
    String units "unitless";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.64391612e+9, 1.64555286e+9;
    String axis "T";
    String ioos_category "Time";
    String long_name "Ctd_iso_datetime_utc";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  Event {
    String long_name "Event";
    String units "unitless";
  }
  CTD_cast {
    Int32 actual_range 11, 128;
    String long_name "Ctd_cast";
    String units "unitless";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float32 actual_range 114.1351, 118.1424;
    String axis "X";
    String ioos_category "Location";
    String long_name "Longitude";
    String standard_name "longitude";
    String units "degrees_east";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float32 actual_range -16.99946, -15.34938;
    String axis "Y";
    String ioos_category "Location";
    String long_name "Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  Cycle_Day {
    String long_name "Cycle_day";
    String units "unitless";
  }
  Cycle {
    String long_name "Cycle";
    String units "unitless";
  }
  Array_net {
    Int32 actual_range 1, 6;
    String long_name "Array_net";
    String units "unitless";
  }
  Cycle_Bottle {
    String long_name "Cycle_bottle";
    String units "unitless";
  }
  Volume_ml {
    Int32 actual_range 280, 280;
    String long_name "Volume_ml";
    String units "milliliters (ml)";
  }
  Niskin_bottle {
    Int32 actual_range 1, 21;
    String long_name "Niskin_bottle";
    String units "unitless";
  }
  depth {
    String _CoordinateAxisType "Height";
    String _CoordinateZisPositive "down";
    Int32 actual_range 5, 90;
    String axis "Z";
    String ioos_category "Location";
    String long_name "Depth";
    String positive "down";
    String standard_name "depth";
    String units "m";
  }
  CPMA_SAMPLE {
    Int32 actual_range 49, 13003;
    String long_name "Cpma_sample";
    String units "counts per minute";
  }
  DPM_SAMPLE {
    Int32 actual_range 52, 13789;
    String long_name "Dpm_sample";
    String units "disintegrations per minute (dpm)";
  }
  CPMA_TOTAL {
    Int32 actual_range 34, 45236;
    String long_name "Cpma_total";
    String units "counts per minute";
  }
  DPM_TOTAL {
    Int32 actual_range 36, 48078;
    String long_name "Dpm_total";
    String units "disintegrations per minute (dpm)";
  }
  sample_blank {
    Int32 actual_range -98, 13525;
    String long_name "Sample_blank";
    String units "disintegrations per minute (dpm)";
  }
  DIC {
    Int32 actual_range 25200, 25200;
    String long_name "Dic";
    String units "milligrams carbon per cubic meter (mg C m-3)";
  }
  C_fix {
    Float32 actual_range -0.1171397, 13.97433;
    String long_name "C_fix";
    String units "milligrams carbon per cubin meter per day (mgC/m3/d)";
  }
  C_fix_AV {
    Float32 actual_range -0.05644248, 12.30129;
    String long_name "C_fix_av";
    String units "milligrams carbon per cubic meter per day (mgC/m3/d)";
  }
  C_fix_SD {
    Float32 actual_range 0.01073026, 3.762743;
    String long_name "C_fix_sd";
    String units "milligrams carbon per cubic meter per day (mgC/m3/d)";
  }
 }
  NC_GLOBAL {
    String cdm_data_type "Other";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_url "https://www.bco-dmo.org/";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.26008/1912/bco-dmo.945860.1";
    Float64 Easternmost_Easting 118.1424;
    Float64 geospatial_lat_max -15.34938;
    Float64 geospatial_lat_min -16.99946;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max 118.1424;
    Float64 geospatial_lon_min 114.1351;
    String geospatial_lon_units "degrees_east";
    Float64 geospatial_vertical_max 90.0;
    Float64 geospatial_vertical_min 5.0;
    String geospatial_vertical_positive "down";
    String geospatial_vertical_units "m";
    String history 
"2025-01-15T19:55:36Z (local files)
2025-01-15T19:55:36Z https://erddap.bco-dmo.org/tabledap/bcodmo_dataset_945860_v1.das";
    String infoUrl "https://www.bco-dmo.org/dataset/945860";
    String institution "BCO-DMO";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    Float64 Northernmost_Northing -15.34938;
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing -16.99946;
    String summary "This dataset includes production measurements made during quasi‐Lagrangian experiments conducted during RR2201 aboard R/V Roger Revelle in February and March 2022. Water column samples were collected by Niskin bottle on a CTD rosette during 4 pseudo-Lagrangian cycles. Each cycle was  initiated during the evening hours by deploying a sediment trap array followed by an array used for in-situ incubations such as 14C primary productivity.";
    String time_coverage_end "2022-02-22T18:01:00Z";
    String time_coverage_start "2022-02-03T19:22:00Z";
    String title "[BLOOFINZ-IO net primary productivity (14C)] - Net primary productivity (14C) measurements made during quasi‐Lagrangian experiments on R/V Roger Revelle cruise RR2201 in the Argo basin in the Eastern Indian Ocean/Indonesian throughflow during February and March 2022 (Collaborative Research: Mesoscale variability in nitrogen sources and food-web dynamics supporting larval southern bluefin tuna in the eastern Indian Ocean)";
    Float64 Westernmost_Easting 114.1351;
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact