BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > tabledap > Data Access Form ?

Dataset Title:  [CTD and prey size data in Northern California Current 2022] - CTD summary and
prey size data for five mucous mesh grazer species collected during R/V
Sikuliaq Cruise SKQ202204S and R/V Marcus G. Langseth Cruise MGL2207 in the
Northern California Current in Mar and Jul 2022 (Collaborative Proposal: Are
all cell surfaces the same? The effects of particle surface property on
predator-prey interactions in the microbial loop)
Subscribe RSS
Institution:  BCO-DMO   (Dataset ID: bcodmo_dataset_962096_v1)
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Files | Make a graph
 
Variable ?   Optional
Constraint #1 ?
Optional
Constraint #2 ?
   Minimum ?
 
   Maximum ?
 
 station_season_id (unitless) ?          "CM-4_S22"    "RR-3.5_S22"
 DateTime_Local_PT (unitless) ?          "2022-03-04T09:24"    "2022-07-28T10:00"
 stationID (unitless) ?          "CM-4"    "RR-3.5"
 season (unitless) ?          "S22"    "W22"
 latitude (degrees_north) ?          42.50084    46.16988
  < slider >
 longitude (Long, degrees_east) ?          -125.8082    -124.6971
  < slider >
 image (unitless) ?          "221114/D_greg-20_001"    "HH-4_water_015"
 scale (µm) ?          100    500
 grazers_species (unitless) ?          "Dolioletta gegenba..."    "water"
 preyID (unitless) ?          "C. pelagicus"    "tintinnid"
 prey_number (unitless) ?          1    118
 grid (unitless) ?          1    24
 W (µm) ?          0.172652    238.605
 L (µm) ?          0.172652    217.1961
 area (µm2) ?          3.0E-5    3.014779
 max_measure (µm) ?          0.172652    238.605
 temp_5m (degrees Celsius) ?          8.6772    17.59646
 fluor_5m (mg per m^3) ?          0.03245837    2.026
 fluor_max (mg per m^3) ?          0.6742    13.8645
 dist_from_coast (km) ?          55.66956    138.2134
 time (Iso_datetime_utc, UTC) ?          2022-03-04T17:24:00Z    2022-07-28T17:00:00Z
  < slider >
 grazers_AphiaID (unitless) ?          "137241"    "140223"
 grazers_LSID (unitless) ?          "urn:lsid:marinespe..."    "urn:lsid:marinespe..."
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")

File type: (more information)

(Documentation / Bypass this form ? )
 
(Please be patient. It may take a while to get the data.)


 

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  station_season_id {
    String long_name "Station_season_id";
    String units "unitless";
  }
  DateTime_Local_PT {
    String long_name "Datetime_local_pt";
    String units "unitless";
  }
  stationID {
    String long_name "Stationid";
    String units "unitless";
  }
  season {
    String long_name "Season";
    String units "unitless";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float32 actual_range 42.50084, 46.16988;
    String axis "Y";
    String ioos_category "Location";
    String long_name "Latitude";
    String standard_name "latitude";
    String units "degrees_north";
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float32 actual_range -125.8082, -124.6971;
    String axis "X";
    String ioos_category "Location";
    String long_name "Long";
    String standard_name "longitude";
    String units "degrees_east";
  }
  image {
    String long_name "Image";
    String units "unitless";
  }
  scale {
    Int32 actual_range 100, 500;
    String long_name "Scale";
    String units "µm";
  }
  grazers_species {
    String long_name "Grazers_species";
    String units "unitless";
  }
  preyID {
    String long_name "Preyid";
    String units "unitless";
  }
  prey_number {
    Int32 actual_range 1, 118;
    String long_name "Prey_number";
    String units "unitless";
  }
  grid {
    Int32 actual_range 1, 24;
    String long_name "Grid";
    String units "unitless";
  }
  W {
    Float32 actual_range 0.172652, 238.605;
    String long_name "W";
    String units "µm";
  }
  L {
    Float32 actual_range 0.172652, 217.1961;
    String long_name "L";
    String units "µm";
  }
  area {
    Float32 actual_range 3.0e-5, 3.014779;
    String long_name "Area";
    String units "µm2";
  }
  max_measure {
    Float32 actual_range 0.172652, 238.605;
    String long_name "Max_measure";
    String units "µm";
  }
  temp_5m {
    Float32 actual_range 8.6772, 17.59646;
    String long_name "Temp_5m";
    String units "degrees Celsius";
  }
  fluor_5m {
    Float32 actual_range 0.03245837, 2.026;
    String long_name "Fluor_5m";
    String units "mg per m^3";
  }
  fluor_max {
    Float32 actual_range 0.6742, 13.8645;
    String long_name "Fluor_max";
    String units "mg per m^3";
  }
  dist_from_coast {
    Float32 actual_range 55.66956, 138.2134;
    String long_name "Dist_from_coast";
    String units "km";
  }
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.64641464e+9, 1.6590276e+9;
    String axis "T";
    String ioos_category "Time";
    String long_name "Iso_datetime_utc";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  grazers_AphiaID {
    String long_name "Grazers_aphiaid";
    String units "unitless";
  }
  grazers_LSID {
    String long_name "Grazers_lsid";
    String units "unitless";
  }
 }
  NC_GLOBAL {
    String cdm_data_type "Other";
    String Conventions "COARDS, CF-1.6, ACDD-1.3";
    String creator_email "info@bco-dmo.org";
    String creator_name "BCO-DMO";
    String creator_url "https://www.bco-dmo.org/";
    String defaultDataQuery "&amp;time&lt;now";
    String doi "10.26008/1912/bco-dmo.962096.1";
    Float64 Easternmost_Easting -124.6971;
    Float64 geospatial_lat_max 46.16988;
    Float64 geospatial_lat_min 42.50084;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -124.6971;
    Float64 geospatial_lon_min -125.8082;
    String geospatial_lon_units "degrees_east";
    String history 
"2025-08-02T17:37:51Z (local files)
2025-08-02T17:37:51Z https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_962096_v1.html";
    String infoUrl "https://osprey.bco-dmo.org/dataset/962096";
    String institution "BCO-DMO";
    String license 
"The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.";
    Float64 Northernmost_Northing 46.16988;
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 42.50084;
    String summary 
"Mucous mesh grazers including pelagic tunicates and thecosome pteropods play a key role in oceanic food webs. Using their fine mucous meshes, these pelagic grazers ingest a wide range of planktonic prey and link pelagic and benthic marine ecosystems. Characterizing the diet of this group is central to fully understanding marine food webs and developing accurate food web models. 

Microscopy has largely been supplanted by other methods, but it remains valuable for its precision in determining cell size and morphology, which are key to characterize the diet and feeding mechanics of grazers. In this study, we use environmental scanning electron microscopy (ESEM) to examine the gut contents of several mucous mesh grazers from the Northern California Current (NCC) including Dolioletta gegenbauri, Thetys vagina, Pegea socia, Pyrosoma atlanticum, and Limacina helicina. Our findings provide size and taxonomic resolution of the prey of these mucous mesh grazers and expands the known prey size range for some species. In the results paper, we also discuss the advantages of using microscopy, including insights into prey morphology and integrity, which enhances our understanding of feeding selectivity, prey defenses, and the fate of grazed plankton in marine ecosystems. Our results reinforce the significant predatory role of mucous mesh grazers in planktonic ecosystems and food webs. 

This dataset includes size measurements of prey items found in the guts of each gelatinous grazer species which were collected and processed in the NCC over two sampling seasons and oceanographic research cruises, as well as background oceanographic data for these stations. The dataset includes collection metadata, CTD summary data, image analysis metadata, grazer species information, prey ids, and prey counts.";
    String time_coverage_end "2022-07-28T17:00:00Z";
    String time_coverage_start "2022-03-04T17:24:00Z";
    String title "[CTD and prey size data in Northern California Current 2022] - CTD summary and prey size data for five mucous mesh grazer species collected during R/V Sikuliaq Cruise SKQ202204S and R/V Marcus G. Langseth Cruise MGL2207 in the Northern California Current in Mar and Jul 2022 (Collaborative Proposal: Are all cell surfaces the same? The effects of particle surface property on predator-prey interactions in the microbial loop)";
    Float64 Westernmost_Easting -125.8082;
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact