BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Grid DAP Data | Sub- set | Table DAP Data | Make A Graph | W M S | Source Data Files | Acces- sible | Title | Sum- mary | FGDC, ISO, Metadata | Back- ground Info | RSS | E | Institution | Dataset ID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
set | data | graph | files | public | [Thalassiosira wessiflogii growth rate and TEP] - Results from growth rate experiment with the diatom Thalassiosira wessiflogii in semi-continuous culture; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms) | I M | background | BCO-DMO | bcodmo_dataset_506135 |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | access_formats | String | .htmlTable,.csv,.json,.mat,.nc,.tsv |
attribute | NC_GLOBAL | acquisition_description | String | Growth of the diatom Thalassiosira wessiflogii (CCMP 1051) was obtained from the National Center for Culture of Marine Algae and Microbiota (NCMA). The diatom was grown in artificial seawater (Berges et al. 2001) in nitrogen-limited 1000 ml semi- continuous cultures at a sequence of dilution rates. The macronutrient concentrations in the artificial seawater recipe were modified from Berges et al. (2001) to affect nitrogen limitation; concentrations of nitrogen, phosphorus and silicon were 60 \u00b5M (as NaNO3), 100 \u00b5M (NaH2PO4), and 100 \u00b5M (Na2SiO3), respectively. Culture temperature was maintained at 20 \u00b1 0.1 \u00b0C throughout the experiment. Photon flux density on the surface of the culture bottles was 150 \u00b5mol m-2 s-1. The cultures were stirred with 2.5 cm long stir bars using magnetic stirrers at 120 revolutions per minute. The cultures were grown at a sequence of dilution rates (0.3, 0.5, 0.7, 0.9 and 0.3 day-1) affected by daily dilution at 10:00 am every day. To induce a dilution rate of 0.3 day-1, 0.3 of the culture volume (300 ml) was removed and replaced with 300 ml of fresh medium to maintain a constant total culture volume (1000 ml). Measures of phytoplankton abundance and biomass Counts of 400 cells from each replicate culture were made by light microscopy using a hemocytometer (Fuchs-Rosenthal ruling, Hauser Scientific) (Guillard and Sieracki 2005) from samples preserved in Lugol\u2019s iodine (Parsons et al. 1984). Cell volume was determined using live cells (Menden- Deuer and Lessard 2000). The volume of 100 diatoms from each replicate culture was determined by measuring cell length (pervalver length) and width (valver length) at 400x magnification using a light microscope (Axioplan 2, Carl Zeiss MicroImaging). Cell volume was calculated based on the assumption that T. wessiflogii is a cylinder. Chlorophyll a concentrations in the cultures was determined by fluorescence (Arar and Collins 1997). Chlorophyll a concentration 90% acetone extractions from biomass retained on GF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was calibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997). The extract was diluted with 90% acetone if the chl. a concentration were too high. The carbon and nitrogen content of particulate organic matter in the cultures was determined by elemental analysis using a Carlo Erba NA1500 Elemental Analyzer. Standards were acetanilide, methionine, graphite (USGS 24, USGS 40, and USGS 41) (Verardo et al. 1990).\u00a0 Bacteria abundance Bacteria (400 cells) were counted using an epifluorescence microscope (Axioplan 2, Carl Zeiss MicroImaging) after staining with 4'6-diamidino-2-phenylindole dihydrochloride (DAPI) (Porter and Feig 1980) at a final concentration of 0.25 \u00b5g ml-1. Cell permeability Uptake and staining with the membrane-impermeable SYTOX Green (Invitrogen) was used to determine what proportion of the diatom population had permeable cell membranes (Veldhuis et al. 2001, Franklin et al. 2012). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated. Total carbohydrate Total carbohydrate concentrations were determined in unfiltered liquid samples from the cultures using the phenol-sulfuric acid (PSA) method (Dubois et al. 1956) calibrated with d-glucose. The concentration of total carbohydrate was expressed as glucose equivalents. TEP staining and analysis Transparent exopolymer particles (TEP) were sampled according to Alldredge et al. (1993) and TEP abundance was enumerated by image analysis (Logan et al. 1994, Engel 2009). Ten photomicrographs were taken of each slide and the area of 100 TEP particles from each replicate culture was determined after manually drawing around each particle using Axio Vision 4.8 (Carl Zeiss MicroImaging ) image analysis software.\u00a0 Particle size distribution and aggregation The particle size distribution (PSD) and volume concentration of particles in the T. weissiflogii cultures was measured using laser scattering following the method of Rzadkowolski and Thornton (2012) using a Laser In Situ Scattering and Transmissometry instrument (LISST-100X, Type C; Sequoia Scientific). Sample (150 ml) from each replicate culture was placed into a chamber attached to the LISST and the PSD was measured 100 times at a rate of 1 Hz. The PSD of the culture was blank corrected by subtracting the PSD of 0.2 \u00b5m filtered artificial seawater. References cited Alldredge, A. L., Passow, U. & Logan B. E. 1993. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep-Sea Res. Oceanogr., I. 40: 1131-1140. doi:[10.1016/0967-0637(93)90129-Q](\\"https://dx.doi.org/10.1016/0967-0637\(93\)90129-Q\\") Arar, E. J. & Collins, G. B. 1997. Method 445.0. In Vitro Determination of Chlorophyll a and Pheophytin a in Marine and Freshwater Algae by Fluorescence U.S. Environmental Protection Agency, Cincinnati, Ohio. Berges, J. A., Franklin D. J. & Harrison, P. J. 2001. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37:1138-1145. doi:[10.1046/j.1529-8817.2001.01052.x](\\"https://dx.doi.org/10.1046/j.1529-8817.2001.01052.x\\") Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350\u2013356. doi:[10.1021/ac60111a017](\\"https://dx.doi.org/10.1021/ac60111a017\\") Franklin, D. J., Airs, R. L., Fernandes, M., Bell, T. G., Bongaerts, R. J., Berges, J. A. & Malin, G. 2012. Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol. Oceanogr. 57: 305\u2013317. doi:10.4319/lo.2012.57.1.0305 Guillard, R. R. L. & Sieracki, M. S. 2005. Counting cells in cultures with the light microscope. In Andersen R. A. [Ed.] Algal Culturing Techniques. Elsevier Academic Press, Burlington, MA, pp. 239-252. Logan, B. E., Grossart, H. P. & Simon, M. 1994. Direct observation of phytoplankton, TEP and aggregates on polycarbonate filters using brightfield microscopy. J. Plankton Res.16: 1811-1815.doi:[10.1093/plankt/16.12.1811](\\"https://dx.doi.org/10.1093/plankt/16.12.1811\\") Menden-Deuer S. & Lessard, E. J. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protists plankton. Limnol. Oceanogr. 45: 569- 579. doi:[10.4319/lo.2000.45.3.0569](\\"https://dx.doi.org/10.4319/lo.2000.45.3.0569\\") Parsons, T. R., Maita, Y. & Lalli, C. M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford, UK. Passow, U. & Alldredge, A. L. 1995. A dye-binding assay for the spectrophotometric measurement of transparent exopolymer particles (TEP). Limnol. Oceanogr. 40: 1326-1335. doi:[10.4319/lo.1995.40.7.1326](\\"https://dx.doi.org/10.4319/lo.1995.40.7.1326\\") Porter, K. G. & Feig, Y. S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25:943\u2013948. doi:[10.4319/lo.1980.25.5.0943](\\"https://dx.doi.org/10.4319/lo.1980.25.5.0943\\") Rzadkowlski, C. E. & Thornton, D. C. O. 2012. Using laser scattering to identify diatoms and conduct aggregation experiments. Eur. J. Phycol.47:30-41. doi:[10.1080/09670262.2011.646314](\\"https://dx.doi.org/10.1080/09670262.2011.646314\\") Veldhuis, M. J. W., Kraay, G. W. & Timmermans, K. R. 2001. Cell death in phytoplankton: correlation between changes in membrane permeability, photosynthetic activity, pigmentation and growth. Eur. J. Phycol. 36: 167\u2013177. doi:[10.1080/09670260110001735318](\\"https://dx.doi.org/10.1080/09670260110001735318\\") Verardo, D. J., Froelich, P. N. & McIntyre, A. 1990. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer. Deep-Sea Res.A 37:157-165. doi:[10.1016/0198-0149(90)90034-S](\\"https://dx.doi.org/10.1016/0198-0149\(90\)90034-S\\") |
attribute | NC_GLOBAL | awards_0_award_nid | String | 55158 |
attribute | NC_GLOBAL | awards_0_award_number | String | OCE-0726369 |
attribute | NC_GLOBAL | awards_0_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0726369 |
attribute | NC_GLOBAL | awards_0_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_0_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_0_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_0_program_manager | String | David L. Garrison |
attribute | NC_GLOBAL | awards_0_program_manager_nid | String | 50534 |
attribute | NC_GLOBAL | cdm_data_type | String | Other |
attribute | NC_GLOBAL | comment | String | Thalassiosira wessiflogii growth rate and TEP PI: Daniel C.O. Thornton (Texas A&M) Version: 07 April 2014 |
attribute | NC_GLOBAL | Conventions | String | COARDS, CF-1.6, ACDD-1.3 |
attribute | NC_GLOBAL | creator_email | String | info at bco-dmo.org |
attribute | NC_GLOBAL | creator_name | String | BCO-DMO |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | creator_url | String | https://www.bco-dmo.org/ |
attribute | NC_GLOBAL | data_source | String | extract_data_as_tsv version 2.3 19 Dec 2019 |
attribute | NC_GLOBAL | date_created | String | 2014-04-07T16:01:42Z |
attribute | NC_GLOBAL | date_modified | String | 2019-11-21T17:48:58Z |
attribute | NC_GLOBAL | defaultDataQuery | String | &time<now |
attribute | NC_GLOBAL | doi | String | 10.1575/1912/bco-dmo.506135.1 |
attribute | NC_GLOBAL | infoUrl | String | https://www.bco-dmo.org/dataset/506135 |
attribute | NC_GLOBAL | institution | String | BCO-DMO |
attribute | NC_GLOBAL | instruments_0_acronym | String | TD-700 |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_description | String | Chlorophyll a concentration 90% acetone extractions from biomass retained on GF/C (Whatman) were measured using a Turner Designs 700 fluorometer, which was calibrated using chlorophyll a standards (Sigma) (Arar and Collins 1997). |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_nid | String | 506238 |
attribute | NC_GLOBAL | instruments_0_description | String | The TD-700 Laboratory Fluorometer is a benchtop fluorometer designed to detect fluorescence over the UV to red range. The instrument can measure concentrations of a variety of compounds, including chlorophyll-a and fluorescent dyes, and is thus suitable for a range of applications, including chlorophyll, water quality monitoring and fluorescent tracer studies. Data can be output as concentrations or raw fluorescence measurements. |
attribute | NC_GLOBAL | instruments_0_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L22/current/TOOL0510/ |
attribute | NC_GLOBAL | instruments_0_instrument_name | String | Turner Designs 700 Laboratory Fluorometer |
attribute | NC_GLOBAL | instruments_0_instrument_nid | String | 694 |
attribute | NC_GLOBAL | instruments_0_supplied_name | String | Turner Designs 700 Fluorometer |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_description | String | Bacterial abunance and cell permeability were determined using an epifluorescence microscope (Axioplan 2, Carl Zeiss MicroImaging). |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_nid | String | 506241 |
attribute | NC_GLOBAL | instruments_1_description | String | Instruments that generate enlarged images of samples using the phenomena of fluorescence and phosphorescence instead of, or in addition to, reflection and absorption of visible light. Includes conventional and inverted instruments. |
attribute | NC_GLOBAL | instruments_1_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB06/ |
attribute | NC_GLOBAL | instruments_1_instrument_name | String | Microscope-Fluorescence |
attribute | NC_GLOBAL | instruments_1_instrument_nid | String | 695 |
attribute | NC_GLOBAL | instruments_1_supplied_name | String | Epifluorescence Microscope |
attribute | NC_GLOBAL | instruments_2_acronym | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_description | String | Counts of 400 cells from each replicate culture were made by light microscopy using a hemocytometer (Fuchs-Rosenthal ruling, Hauser Scientific). |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_nid | String | 506236 |
attribute | NC_GLOBAL | instruments_2_description | String | A hemocytometer is a small glass chamber, resembling a thick microscope slide, used for determining the number of cells per unit volume of a suspension. Originally used for performing blood cell counts, a hemocytometer can be used to count a variety of cell types in the laboratory. Also spelled as "haemocytometer". Description from: http://hlsweb.dmu.ac.uk/ahs/elearning/RITA/Haem1/Haem1.html. |
attribute | NC_GLOBAL | instruments_2_instrument_name | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_2_instrument_nid | String | 704 |
attribute | NC_GLOBAL | instruments_2_supplied_name | String | Hemocytometer |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_description | String | The volume of 100 diatoms from each replicate culture was determined by measuring cell length (pervalver length) and width (valver length) at 400x magnification using a light microscope (Axioplan 2, Carl Zeiss MicroImaging). |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_nid | String | 506237 |
attribute | NC_GLOBAL | instruments_3_description | String | Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a "light microscope". |
attribute | NC_GLOBAL | instruments_3_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ |
attribute | NC_GLOBAL | instruments_3_instrument_name | String | Microscope-Optical |
attribute | NC_GLOBAL | instruments_3_instrument_nid | String | 708 |
attribute | NC_GLOBAL | instruments_3_supplied_name | String | Light microscope |
attribute | NC_GLOBAL | instruments_4_acronym | String | Carlo-Erba NA-1500 |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_description | String | The carbon and nitrogen content of particulate organic matter in the cultures was determined by elemental analysis using a Carlo Erba NA1500 Elemental Analyzer. |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_nid | String | 506240 |
attribute | NC_GLOBAL | instruments_4_description | String | A laboratory instrument that simultaneously determines total nitrogen and total carbon from a wide range of organic and inorganic sediment samples. The sample is completely and instantaneously oxidised by flash combustion, which converts all organic and inorganic substances into combustion products. The resulting combustion gases pass through a reduction furnace and are swept into the chromatographic column by the carrier gas which is helium. The gases are separated in the column and detected by the thermal conductivity detector which gives an output signal proportional to the concentration of the individual components of the mixture. The instrument was originally manufactured by Carlo-Erba, which has since been replaced by Thermo Scientific (part of Thermo Fisher Scientific). This model is no longer in production. |
attribute | NC_GLOBAL | instruments_4_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L22/current/TOOL0470/ |
attribute | NC_GLOBAL | instruments_4_instrument_name | String | Carlo-Erba NA-1500 Elemental Analyzer |
attribute | NC_GLOBAL | instruments_4_instrument_nid | String | 506239 |
attribute | NC_GLOBAL | instruments_4_supplied_name | String | Carlo Erba NA1500 Elemental Analyzer |
attribute | NC_GLOBAL | instruments_5_acronym | String | Sequoia LISST |
attribute | NC_GLOBAL | instruments_5_dataset_instrument_description | String | The particle size distribution (PSD) and volume concentration of particles in the T. weissiflogii cultures was measured using laser scattering following the method of Rzadkowolski and Thornton (2012) using a Laser In Situ Scattering and Transmissometry instrument (LISST-100X, Type C; Sequoia Scientific). |
attribute | NC_GLOBAL | instruments_5_dataset_instrument_nid | String | 506244 |
attribute | NC_GLOBAL | instruments_5_description | String | A self-contained unit which measures the scattering of LASER light at a number of angles. This primary measurement is mathematically inverted to give a grain size distribution, and also scaled to obtain the volume scattering function. The size distribution is presented as concentration in each of the grain-size class bins. Optical transmission, water depth and temperature are recorded as supporting measurements. The Sequoia LISST 100-X series instruments are available in two range sizes: 1.25-250 microns (Type B) and 2.5-500 microns (Type C). |
attribute | NC_GLOBAL | instruments_5_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L22/current/TOOL0044/ |
attribute | NC_GLOBAL | instruments_5_instrument_name | String | Sequoia Scientific Laser In-Situ Sediment Size Transmissometer |
attribute | NC_GLOBAL | instruments_5_instrument_nid | String | 506243 |
attribute | NC_GLOBAL | instruments_5_supplied_name | String | LISST-100X Type C Sequoia Scientific |
attribute | NC_GLOBAL | keywords | String | abundance, agg, agg_vol_conc, agg_vol_conc_n, agg_vol_conc_sd, area, bact, bact_per_diatom, bacteria, bco, bco-dmo, biological, C_to_N, carb, cell, cell_abundance, cell_vol_mean, cell_vol_n, cell_vol_sd, cells, chemical, chemistry, chla, chla_per_cell, chla_per_cell_vol, chlorophyll, chlorophyll-a, conc, concentration, concentration_of_chlorophyll_in_sea_water, culture, data, dataset, day, diatom, dilution, dilution_rate, dmo, earth, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, erddap, management, mean, ocean, oceanography, oceans, office, pcnt, per, preliminary, prod, rate, science, sea, seawater, size, stained, stained_cells, stained_cells_pcnt, tep, TEP_mean_size, TEP_n, TEP_prod_rate, TEP_sd, tot, tot_carb, tot_carb_per_cell, tot_carb_per_cell_vol, tot_TEP_area, vol, vol_conc, vol_conc_n, vol_conc_sd, water |
attribute | NC_GLOBAL | keywords_vocabulary | String | GCMD Science Keywords |
attribute | NC_GLOBAL | license | String | https://www.bco-dmo.org/dataset/506135/license |
attribute | NC_GLOBAL | metadata_source | String | https://www.bco-dmo.org/api/dataset/506135 |
attribute | NC_GLOBAL | param_mapping | String | {'506135': {}} |
attribute | NC_GLOBAL | parameter_source | String | https://www.bco-dmo.org/mapserver/dataset/506135/parameters |
attribute | NC_GLOBAL | people_0_affiliation | String | Texas A&M University |
attribute | NC_GLOBAL | people_0_affiliation_acronym | String | TAMU |
attribute | NC_GLOBAL | people_0_person_name | String | Daniel C.O. Thornton |
attribute | NC_GLOBAL | people_0_person_nid | String | 51644 |
attribute | NC_GLOBAL | people_0_role | String | Principal Investigator |
attribute | NC_GLOBAL | people_0_role_type | String | originator |
attribute | NC_GLOBAL | people_1_affiliation | String | Woods Hole Oceanographic Institution |
attribute | NC_GLOBAL | people_1_affiliation_acronym | String | WHOI BCO-DMO |
attribute | NC_GLOBAL | people_1_person_name | String | Shannon Rauch |
attribute | NC_GLOBAL | people_1_person_nid | String | 51498 |
attribute | NC_GLOBAL | people_1_role | String | BCO-DMO Data Manager |
attribute | NC_GLOBAL | people_1_role_type | String | related |
attribute | NC_GLOBAL | project | String | Diatom EPS Production |
attribute | NC_GLOBAL | projects_0_acronym | String | Diatom EPS Production |
attribute | NC_GLOBAL | projects_0_description | String | Description from NSF Propsoal: It is necessary to determine the fate of organic matter in the ocean to understand marine food webs, biogeochemical cycles, and climate change. Diatoms fix approximately a quarter of the net global primary production each year, and a significant proportion of this production is excreted as extracellular polymeric substances (EPS). EPS have a profound impact on pelagic ecosystems by affecting the formation of aggregates. Diatoms and other particulate organic carbon (POC) sink rapidly as aggregates, affecting the biological carbon pump, which plays a pivotal role in the sequestration of carbon in the ocean. The proposed research will test the central hypothesis: Temperature increase affects diatom release of EPS, which act as a glue, increasing aggregation. Previous work by the investigator showed that increased temperatures affected the aggregation of Skeletonema costatum. Four specific hypotheses will be tested: H1: Diatoms produce more EPS with increasing temperature. H2: Diatoms produce more transparent exopolymer particles (TEP) with increasing temperature. H3: The quantity or composition of cell-surface carbohydrates in diatoms changes with temperature. H4: Aggregation of diatom cultures and natural plankton increases with temperature. Laboratory experiments (years 1 - 2) will be conducted with three model diatom species grown at controlled growth rates and defined limitation (nitrogen or light) in continuous culture. Culture temperature will be stepped up or down in small increments to determine the effect of the temperature change on EPS production, aggregation, and partitioning of carbon in intra- and extracellular pools. Similar experiments in year 3 will be carried out using natural plankton populations from a coastal site where diatoms contribute a significant proportion to the biomass. The proposed research will increase our understanding of the ecology and physiology of one of the dominant groups of primary producers on Earth. EPS are a central aspect of diatom biology, though the physiology, function and broader ecosystem impacts of EPS production remain unknown. This research will determine how temperature, light limitation, and nutrient limitation affect the partitioning of production between dissolved, gel, and particulate phases in the ocean. Measurements of plankton stickiness (alpha) under different conditions will be important to model aggregation processes in the ocean as alpha is an important (and variable) term in coagulation models. Determining how carbon is cycled between the ocean, atmosphere and lithosphere is key to understanding climate change on both geological and human time scales. This is a major societal issue as atmospheric CO2 concentrations are steadily increasing, correlating with a 0.6 C rise in global average temperature during the last century. This research will address potential feedbacks between warming of the surface ocean, diatom ecophysiology and the biological carbon pump. Related Publications: Rzadkowolski, Charles E. and Thornton, Daniel C. O. (2012) Using laser scattering to identify diatoms and conduct aggregation experiments. Eur. J. Phycol., 47(1): 30-41. DOI: 10.1080/09670262.2011.646314 Thornton, Daniel C. O. (2009) Effect of Low pH on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri). Research Letters in Ecology, vol. 2009, Article ID 105901, 4 pages. DOI: 10.1155/2009/105901 Thornton, D.C.O. (2014) Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. European Journal of Phycology 49: 20-46. DOI: 10.1080/09670262.2013.875596 Thornton, D.C.O., Visser, L.A. (2009) Measurement of acid polysaccharides (APS) associated with microphytobenthos in salt marsh sediments. Aquat Microb Ecol 54:185-198. DOI: 10.3354/ame01265 |
attribute | NC_GLOBAL | projects_0_end_date | String | 2012-08 |
attribute | NC_GLOBAL | projects_0_geolocation | String | O&M Building, Texas A&M University, College Station, TX 77840 |
attribute | NC_GLOBAL | projects_0_name | String | Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms |
attribute | NC_GLOBAL | projects_0_project_nid | String | 2255 |
attribute | NC_GLOBAL | projects_0_start_date | String | 2007-09 |
attribute | NC_GLOBAL | publisher_name | String | Biological and Chemical Oceanographic Data Management Office (BCO-DMO) |
attribute | NC_GLOBAL | publisher_type | String | institution |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v55 |
attribute | NC_GLOBAL | subsetVariables | String | cell_vol_n,TEP_n,vol_conc_n,agg_vol_conc_n |
attribute | NC_GLOBAL | summary | String | Data from laboratory experiment on growth rate and transparent exopolymer particles (TEP) in the diatom Thalassiosira wessiflogii (CCMP 1051) in a semi-continuous culture (four replicate cultures). |
attribute | NC_GLOBAL | title | String | [Thalassiosira wessiflogii growth rate and TEP] - Results from growth rate experiment with the diatom Thalassiosira wessiflogii in semi-continuous culture; conducted at the Thornton lab, TAMU from 2007-2012 (Diatom EPS Production project) (Effect of Temperature on Extracellular Polymeric Substance Production (EPS) by Diatoms) |
attribute | NC_GLOBAL | version | String | 1 |
attribute | NC_GLOBAL | xml_source | String | osprey2erddap.update_xml() v1.3 |
variable | day | byte | ||
attribute | day | _FillValue | byte | 127 |
attribute | day | actual_range | byte | 15, 123 |
attribute | day | bcodmo_name | String | unknown |
attribute | day | description | String | Day of the experiment. |
attribute | day | long_name | String | Day |
attribute | day | units | String | dimensionless |
variable | dilution_rate | String | ||
attribute | dilution_rate | bcodmo_name | String | unknown |
attribute | dilution_rate | description | String | Dilution rate. |
attribute | dilution_rate | long_name | String | Dilution Rate |
attribute | dilution_rate | units | String | per day (day-1) |
variable | culture | String | ||
attribute | culture | bcodmo_name | String | replicate |
attribute | culture | description | String | Identifier of the culture replicate. |
attribute | culture | long_name | String | Culture |
attribute | culture | units | String | dimensionless |
variable | cell_abundance | int | ||
attribute | cell_abundance | _FillValue | int | 2147483647 |
attribute | cell_abundance | actual_range | int | 20100, 146000 |
attribute | cell_abundance | bcodmo_name | String | diatom |
attribute | cell_abundance | description | String | Cell count. Counts of 400 cells were made by transmitted light microscopy using a hemacytometer (Fuchs-Rosenthal ruling Hauser Scientific) (Guillard & Sieracki 2005). |
attribute | cell_abundance | long_name | String | Cell Abundance |
attribute | cell_abundance | units | String | cells per milliliter |
variable | cell_vol_mean | short | ||
attribute | cell_vol_mean | _FillValue | short | 32767 |
attribute | cell_vol_mean | actual_range | short | 388, 1348 |
attribute | cell_vol_mean | bcodmo_name | String | unknown |
attribute | cell_vol_mean | description | String | Mean cell volume estimated assuming T. weissflogii (CCMP 1051) was a cyclinder using the method of Menden-Deuer & Lessard (2000). |
attribute | cell_vol_mean | long_name | String | Cell Vol Mean |
attribute | cell_vol_mean | units | String | cubic micrometers (um^3) |
variable | cell_vol_sd | short | ||
attribute | cell_vol_sd | _FillValue | short | 32767 |
attribute | cell_vol_sd | actual_range | short | 81, 1176 |
attribute | cell_vol_sd | bcodmo_name | String | standard deviation |
attribute | cell_vol_sd | colorBarMaximum | double | 50.0 |
attribute | cell_vol_sd | colorBarMinimum | double | 0.0 |
attribute | cell_vol_sd | description | String | Standard deviation of cell_vol_mean. |
attribute | cell_vol_sd | long_name | String | Cell Vol Sd |
attribute | cell_vol_sd | units | String | cubic micrometers (um^3) |
variable | cell_vol_n | byte | ||
attribute | cell_vol_n | _FillValue | byte | 127 |
attribute | cell_vol_n | actual_range | byte | 25, 25 |
attribute | cell_vol_n | bcodmo_name | String | number |
attribute | cell_vol_n | description | String | n (number of cells) used in determination of cell_vol_mean. |
attribute | cell_vol_n | long_name | String | Cell Vol N |
attribute | cell_vol_n | units | String | dimensionless |
variable | chla | float | ||
attribute | chla | _FillValue | float | NaN |
attribute | chla | actual_range | float | 12.0, 126.6 |
attribute | chla | bcodmo_name | String | chlorophyll a |
attribute | chla | colorBarMaximum | double | 30.0 |
attribute | chla | colorBarMinimum | double | 0.03 |
attribute | chla | colorBarScale | String | Log |
attribute | chla | description | String | Concentration of chlorophyll a measured by fluorescence (Arar & Collins 1997; Method 445.0. EPA). |
attribute | chla | long_name | String | Concentration Of Chlorophyll In Sea Water |
attribute | chla | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/CPHLHPP1/ |
attribute | chla | units | String | micrograms per liter (ug L-1) |
variable | chla_per_cell | float | ||
attribute | chla_per_cell | _FillValue | float | NaN |
attribute | chla_per_cell | actual_range | float | 0.51, 1.89 |
attribute | chla_per_cell | bcodmo_name | String | unknown |
attribute | chla_per_cell | colorBarMaximum | double | 30.0 |
attribute | chla_per_cell | colorBarMinimum | double | 0.03 |
attribute | chla_per_cell | colorBarScale | String | Log |
attribute | chla_per_cell | description | String | Concentration of chlorophyll a per cell. |
attribute | chla_per_cell | long_name | String | Concentration Of Chlorophyll In Sea Water |
attribute | chla_per_cell | units | String | picograms per cell (pg cell-1) |
variable | chla_per_cell_vol | float | ||
attribute | chla_per_cell_vol | _FillValue | float | NaN |
attribute | chla_per_cell_vol | actual_range | float | 0.5, 2.65 |
attribute | chla_per_cell_vol | bcodmo_name | String | unknown |
attribute | chla_per_cell_vol | colorBarMaximum | double | 30.0 |
attribute | chla_per_cell_vol | colorBarMinimum | double | 0.03 |
attribute | chla_per_cell_vol | colorBarScale | String | Log |
attribute | chla_per_cell_vol | description | String | Concentration of chlorophyll a per cell volume. |
attribute | chla_per_cell_vol | long_name | String | Concentration Of Chlorophyll In Sea Water |
attribute | chla_per_cell_vol | units | String | femtograms per cubic micrometer (fg um-3) |
variable | tot_carb | float | ||
attribute | tot_carb | _FillValue | float | NaN |
attribute | tot_carb | actual_range | float | 2.47, 13.83 |
attribute | tot_carb | bcodmo_name | String | unknown |
attribute | tot_carb | description | String | Total carbohydrate concentration measured using the PSA method (Dubois et al. 1956). |
attribute | tot_carb | long_name | String | Tot Carb |
attribute | tot_carb | units | String | micrograms per milliliter (ug mL-1) |
variable | tot_carb_per_cell | short | ||
attribute | tot_carb_per_cell | _FillValue | short | 32767 |
attribute | tot_carb_per_cell | actual_range | short | 49, 197 |
attribute | tot_carb_per_cell | bcodmo_name | String | unknown |
attribute | tot_carb_per_cell | description | String | Total carbohydrate concentration per cell. |
attribute | tot_carb_per_cell | long_name | String | Tot Carb Per Cell |
attribute | tot_carb_per_cell | units | String | picograms per cell (pg cell-1) |
variable | tot_carb_per_cell_vol | short | ||
attribute | tot_carb_per_cell_vol | _FillValue | short | 32767 |
attribute | tot_carb_per_cell_vol | actual_range | short | 57, 237 |
attribute | tot_carb_per_cell_vol | bcodmo_name | String | unknown |
attribute | tot_carb_per_cell_vol | description | String | Total carbohydrate concentration per cell volume. |
attribute | tot_carb_per_cell_vol | long_name | String | Tot Carb Per Cell Vol |
attribute | tot_carb_per_cell_vol | units | String | femtograms per cubic micrometer (fg um-3) |
variable | TEP | int | ||
attribute | TEP | _FillValue | int | 2147483647 |
attribute | TEP | actual_range | int | 152800, 504800 |
attribute | TEP | bcodmo_name | String | unknown |
attribute | TEP | description | String | Transparent exopolymer particles (TEP) retained on 0.4 polycarbonate filters and stained with Alcian blue (Alldredge et al. 1993). |
attribute | TEP | long_name | String | TEP |
attribute | TEP | units | String | TEP per milliliter (TEP mL-1) |
variable | TEP_mean_size | short | ||
attribute | TEP_mean_size | _FillValue | short | 32767 |
attribute | TEP_mean_size | actual_range | short | 701, 2465 |
attribute | TEP_mean_size | bcodmo_name | String | unknown |
attribute | TEP_mean_size | description | String | Mean size of Transparent exopolymer particles (TEP). |
attribute | TEP_mean_size | long_name | String | TEP Mean Size |
attribute | TEP_mean_size | units | String | square micrometers (um^2) |
variable | TEP_sd | short | ||
attribute | TEP_sd | _FillValue | short | 32767 |
attribute | TEP_sd | actual_range | short | 286, 1443 |
attribute | TEP_sd | bcodmo_name | String | standard deviation |
attribute | TEP_sd | colorBarMaximum | double | 50.0 |
attribute | TEP_sd | colorBarMinimum | double | 0.0 |
attribute | TEP_sd | description | String | Standard deviation of TEP_mean_size. |
attribute | TEP_sd | long_name | String | TEP Sd |
attribute | TEP_sd | units | String | square micrometers (um^2) |
variable | TEP_n | byte | ||
attribute | TEP_n | _FillValue | byte | 127 |
attribute | TEP_n | actual_range | byte | 25, 25 |
attribute | TEP_n | bcodmo_name | String | number |
attribute | TEP_n | description | String | n used in determination of TEP_mean_size. |
attribute | TEP_n | long_name | String | TEP N |
attribute | TEP_n | units | String | dimensionless |
variable | tot_TEP_area | short | ||
attribute | tot_TEP_area | _FillValue | short | 32767 |
attribute | tot_TEP_area | actual_range | short | 231, 604 |
attribute | tot_TEP_area | bcodmo_name | String | unknown |
attribute | tot_TEP_area | description | String | Total TEP area. |
attribute | tot_TEP_area | long_name | String | Tot TEP Area |
attribute | tot_TEP_area | units | String | square millimeters per milliliter (mm^2 mL-1) |
variable | TEP_prod_rate | short | ||
attribute | TEP_prod_rate | _FillValue | short | 32767 |
attribute | TEP_prod_rate | actual_range | short | 64, 330 |
attribute | TEP_prod_rate | bcodmo_name | String | unknown |
attribute | TEP_prod_rate | description | String | TEP production rate. |
attribute | TEP_prod_rate | long_name | String | TEP Prod Rate |
attribute | TEP_prod_rate | units | String | square millimeters per milliliter per day (mm^2 mL-1 day-1) |
variable | vol_conc | short | ||
attribute | vol_conc | _FillValue | short | 32767 |
attribute | vol_conc | actual_range | short | 49, 393 |
attribute | vol_conc | bcodmo_name | String | unknown |
attribute | vol_conc | description | String | Particulate volume concentration. Volume concentration and aggegation were measured using Laser in situ sacattering and transmissometry (LISST) (Rzadkowolski & Thornton 2012). |
attribute | vol_conc | long_name | String | Vol Conc |
attribute | vol_conc | units | String | microliters per liter (uL L-1) |
variable | vol_conc_sd | short | ||
attribute | vol_conc_sd | _FillValue | short | 32767 |
attribute | vol_conc_sd | actual_range | short | 3, 193 |
attribute | vol_conc_sd | bcodmo_name | String | standard deviation |
attribute | vol_conc_sd | colorBarMaximum | double | 50.0 |
attribute | vol_conc_sd | colorBarMinimum | double | 0.0 |
attribute | vol_conc_sd | description | String | Standard deviation of vol_conc. |
attribute | vol_conc_sd | long_name | String | Vol Conc Sd |
attribute | vol_conc_sd | units | String | microliters per liter (uL L-1) |
variable | vol_conc_n | byte | ||
attribute | vol_conc_n | _FillValue | byte | 127 |
attribute | vol_conc_n | actual_range | byte | 100, 100 |
attribute | vol_conc_n | bcodmo_name | String | number |
attribute | vol_conc_n | description | String | n used in determination of vol_conc. |
attribute | vol_conc_n | long_name | String | Vol Conc N |
attribute | vol_conc_n | units | String | dimensionless |
variable | agg_vol_conc | short | ||
attribute | agg_vol_conc | _FillValue | short | 32767 |
attribute | agg_vol_conc | actual_range | short | 15, 225 |
attribute | agg_vol_conc | bcodmo_name | String | unknown |
attribute | agg_vol_conc | description | String | Aggregated volume concentration (particles > 63 um ESD). Particulate volume concentration and aggegation were measured using Laser in situ sacattering and transmissometry (LISST) (Rzadkowolski & Thornton 2012). |
attribute | agg_vol_conc | long_name | String | Agg Vol Conc |
attribute | agg_vol_conc | units | String | microliters per liter (uL L-1) |
variable | agg_vol_conc_sd | byte | ||
attribute | agg_vol_conc_sd | _FillValue | byte | 127 |
attribute | agg_vol_conc_sd | actual_range | byte | 3, 48 |
attribute | agg_vol_conc_sd | bcodmo_name | String | standard deviation |
attribute | agg_vol_conc_sd | colorBarMaximum | double | 50.0 |
attribute | agg_vol_conc_sd | colorBarMinimum | double | 0.0 |
attribute | agg_vol_conc_sd | description | String | Standard deviation of agg_vol_conc. |
attribute | agg_vol_conc_sd | long_name | String | Agg Vol Conc Sd |
attribute | agg_vol_conc_sd | units | String | microliters per liter (uL L-1) |
variable | agg_vol_conc_n | byte | ||
attribute | agg_vol_conc_n | _FillValue | byte | 127 |
attribute | agg_vol_conc_n | actual_range | byte | 100, 100 |
attribute | agg_vol_conc_n | bcodmo_name | String | number |
attribute | agg_vol_conc_n | description | String | n used in determination of agg_vol_conc. |
attribute | agg_vol_conc_n | long_name | String | Agg Vol Conc N |
attribute | agg_vol_conc_n | units | String | dimensionless |
variable | stained_cells | short | ||
attribute | stained_cells | _FillValue | short | 32767 |
attribute | stained_cells | actual_range | short | 64, 4660 |
attribute | stained_cells | bcodmo_name | String | unknown |
attribute | stained_cells | description | String | Number of SYTOX Green stained cells. Cell permeability was determined by SYTOX Green staining (Veldhuis et al. 1997). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated. |
attribute | stained_cells | long_name | String | Stained Cells |
attribute | stained_cells | units | String | cells per milliliter (cells mL-1) |
variable | stained_cells_pcnt | float | ||
attribute | stained_cells_pcnt | _FillValue | float | NaN |
attribute | stained_cells_pcnt | actual_range | float | 0.2, 3.6 |
attribute | stained_cells_pcnt | bcodmo_name | String | unknown |
attribute | stained_cells_pcnt | description | String | % of SYTOX Green stained cells. Cell permeability was determined by SYTOX Green staining (Veldhuis et al. 1997). Four hundred cells were examined using an epifluorescence microscope and the number of cells that stained with SYTOX Green was enumerated. |
attribute | stained_cells_pcnt | long_name | String | Stained Cells Pcnt |
attribute | stained_cells_pcnt | units | String | percent (%) |
variable | bacteria | int | ||
attribute | bacteria | _FillValue | int | 2147483647 |
attribute | bacteria | actual_range | int | 9284, 2668932 |
attribute | bacteria | bcodmo_name | String | bact_abundance |
attribute | bacteria | description | String | Bacteria abundance determined by DAPI staining and counts using an epifluorescence microscope (Porter & Feig 1980). |
attribute | bacteria | long_name | String | Bacteria |
attribute | bacteria | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P02/current/BNTX |
attribute | bacteria | units | String | cells per milliliter (cells mL-1) |
variable | bact_per_diatom | float | ||
attribute | bact_per_diatom | _FillValue | float | NaN |
attribute | bact_per_diatom | actual_range | float | 0.3, 21.1 |
attribute | bact_per_diatom | bcodmo_name | String | unknown |
attribute | bact_per_diatom | description | String | Bacteria abundance per diatom. |
attribute | bact_per_diatom | long_name | String | Bact Per Diatom |
attribute | bact_per_diatom | units | String | dimensionless |
variable | C_to_N | float | ||
attribute | C_to_N | _FillValue | float | NaN |
attribute | C_to_N | actual_range | float | 8.1, 18.8 |
attribute | C_to_N | bcodmo_name | String | C_to_N |
attribute | C_to_N | description | String | Ratio of carbon to nitrogen. C:N ratio was measured using a Carlo Erba NA1500 Elemental Analyzer. Standards were acetanilide, methionine, graphite (USGS 24, USGS 40, and USGS 41) (Verardo, Froelich, & McIntyre 1990). |
attribute | C_to_N | long_name | String | C To N |
attribute | C_to_N | units | String | dimensionless |
The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV1, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.