BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > info > bcodmo_dataset_528150

Grid
DAP
Data
Sub-
set
Table
DAP
Data
Make
A
Graph
W
M
S
Source
Data
Files
Acces-
sible
?
Title Sum-
mary
ISO,
Metadata
Back-
ground
Info
RSS Institution Dataset ID
   set  data   graph     files  public Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature, and bacteria -
Aggregation Phase - Carbonate System + TEP from UCSB MSI Passow Lab from 2009 to 2010 (OA -
Ocean Acidification and Aggregation project)
   ?     I   M   background (external link) RSS BCO-DMO bcodmo_dataset_528150

The Dataset's Variables and Attributes

Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL access_formats String .htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson
attribute NC_GLOBAL acquisition_description String See: [Series 4: Aggregation of Thalassiosira weissflogii -
Methods](\\"http://bcodata.whoi.edu/Ocean_Acidification_and_Aggregation
/Series4_Seebah-Methods.pdf\\")
attribute NC_GLOBAL awards_0_award_nid String 54764
attribute NC_GLOBAL awards_0_award_number String OCE-0926711
attribute NC_GLOBAL awards_0_data_url String http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0926711 (external link)
attribute NC_GLOBAL awards_0_funder_name String NSF Division of Ocean Sciences
attribute NC_GLOBAL awards_0_funding_acronym String NSF OCE
attribute NC_GLOBAL awards_0_funding_source_nid String 355
attribute NC_GLOBAL awards_0_program_manager String Dr Donald L. Rice
attribute NC_GLOBAL awards_0_program_manager_nid String 51467
attribute NC_GLOBAL cdm_data_type String Other
attribute NC_GLOBAL comment String Ocean Acidification and Aggregation
Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature and bacteria
Aggregation Phase - Carbonate System + TEP
Version: 05 September 2013
PIs: Passow, Seebah
attribute NC_GLOBAL Conventions String COARDS, CF-1.6, ACDD-1.3
attribute NC_GLOBAL creator_email String info at bco-dmo.org
attribute NC_GLOBAL creator_name String BCO-DMO
attribute NC_GLOBAL creator_type String institution
attribute NC_GLOBAL creator_url String https://www.bco-dmo.org/ (external link)
attribute NC_GLOBAL data_source String extract_data_as_tsv.pl v1.0
attribute NC_GLOBAL date_created String 2014-09-15T17:11:07Z
attribute NC_GLOBAL date_modified String 2016-08-20T03:10:46Z
attribute NC_GLOBAL defaultDataQuery String &time
attribute NC_GLOBAL doi String 10.1575/1912/6845
attribute NC_GLOBAL Easternmost_Easting double -119.842
attribute NC_GLOBAL geospatial_lat_max double 34.4126
attribute NC_GLOBAL geospatial_lat_min double 34.4126
attribute NC_GLOBAL geospatial_lat_units String degrees_north
attribute NC_GLOBAL geospatial_lon_max double -119.842
attribute NC_GLOBAL geospatial_lon_min double -119.842
attribute NC_GLOBAL geospatial_lon_units String degrees_east
attribute NC_GLOBAL infoUrl String https://www.bco-dmo.org/dataset/528150 (external link)
attribute NC_GLOBAL institution String BCO-DMO
attribute NC_GLOBAL instruments_0_acronym String Inverted Microscope
attribute NC_GLOBAL instruments_0_dataset_instrument_description String Diatom cell abundance was monitored daily by counting cells in a Sedgwick-Rafter Cell S50 (SPI Supplies, West Chester, PA, USA) using an inverted Axiovert 200 microscope (Zeiss, Jena, Germany).
attribute NC_GLOBAL instruments_0_dataset_instrument_nid String 528198
attribute NC_GLOBAL instruments_0_description String An inverted microscope is a microscope with its light source and condenser on the top, above the stage pointing down, while the objectives and turret are below the stage pointing up. It was invented in 1850 by J. Lawrence Smith, a faculty member of Tulane University (then named the Medical College of Louisiana).

Inverted microscopes are useful for observing living cells or organisms at the bottom of a large container (e.g. a tissue culture flask) under more natural conditions than on a glass slide, as is the case with a conventional microscope. Inverted microscopes are also used in micromanipulation applications where space above the specimen is required for manipulator mechanisms and the microtools they hold, and in metallurgical applications where polished samples can be placed on top of the stage and viewed from underneath using reflecting objectives.

The stage on an inverted microscope is usually fixed, and focus is adjusted by moving the objective lens along a vertical axis to bring it closer to or further from the specimen. The focus mechanism typically has a dual concentric knob for coarse and fine adjustment. Depending on the size of the microscope, four to six objective lenses of different magnifications may be fitted to a rotating turret known as a nosepiece. These microscopes may also be fitted with accessories for fitting still and video cameras, fluorescence illumination, confocal scanning and many other applications.
attribute NC_GLOBAL instruments_0_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ (external link)
attribute NC_GLOBAL instruments_0_instrument_name String Inverted Microscope
attribute NC_GLOBAL instruments_0_instrument_nid String 675
attribute NC_GLOBAL instruments_0_supplied_name String Inverted Axiovert 200 Microscope
attribute NC_GLOBAL instruments_1_acronym String Hemocytometer
attribute NC_GLOBAL instruments_1_dataset_instrument_description String Diatom cell abundance was monitored daily by counting cells in a Sedgwick-Rafter Cell S50 (SPI Supplies, West Chester, PA, USA) using an inverted Axiovert 200 microscope (Zeiss, Jena, Germany).
attribute NC_GLOBAL instruments_1_dataset_instrument_nid String 528197
attribute NC_GLOBAL instruments_1_description String A hemocytometer is a small glass chamber, resembling a thick microscope slide, used for determining the number of cells per unit volume of a suspension. Originally used for performing blood cell counts, a hemocytometer can be used to count a variety of cell types in the laboratory. Also spelled as "haemocytometer". Description from:
http://hlsweb.dmu.ac.uk/ahs/elearning/RITA/Haem1/Haem1.html.
attribute NC_GLOBAL instruments_1_instrument_name String Hemocytometer
attribute NC_GLOBAL instruments_1_instrument_nid String 704
attribute NC_GLOBAL instruments_1_supplied_name String Sedgwick-Rafter Cell S50
attribute NC_GLOBAL instruments_2_acronym String Spectrophotometer
attribute NC_GLOBAL instruments_2_dataset_instrument_description String The pH (total scale) was measured with a spectrophotometer using the indicator dye m-cresol purple
(Sigma-Aldrich) within 1-2 hours of sampling at 25 oC (Clayton and Byrne 1993).
attribute NC_GLOBAL instruments_2_dataset_instrument_nid String 528196
attribute NC_GLOBAL instruments_2_description String An instrument used to measure the relative absorption of electromagnetic radiation of different wavelengths in the near infra-red, visible and ultraviolet wavebands by samples.
attribute NC_GLOBAL instruments_2_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB20/ (external link)
attribute NC_GLOBAL instruments_2_instrument_name String Spectrophotometer
attribute NC_GLOBAL instruments_2_instrument_nid String 707
attribute NC_GLOBAL instruments_2_supplied_name String spectrophotometer
attribute NC_GLOBAL instruments_3_dataset_instrument_description String The dimensions of the aggregate axes (x, y, and z direction) were measured under a dissecting microscope, and the aggregated volume calculated assuming an ellipsoid shape.
attribute NC_GLOBAL instruments_3_dataset_instrument_nid String 528199
attribute NC_GLOBAL instruments_3_description String Instruments that generate enlarged images of samples using the phenomena of reflection and absorption of visible light. Includes conventional and inverted instruments. Also called a "light microscope".
attribute NC_GLOBAL instruments_3_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB05/ (external link)
attribute NC_GLOBAL instruments_3_instrument_name String Microscope-Optical
attribute NC_GLOBAL instruments_3_instrument_nid String 708
attribute NC_GLOBAL instruments_3_supplied_name String dissecting microscope
attribute NC_GLOBAL instruments_4_acronym String Roller Tank
attribute NC_GLOBAL instruments_4_dataset_instrument_description String During this acclimatization phase diatoms were kept in the exponential growth by regular dilutions. The diatom was grown in artificial seawater (Kester et al. 1967), the bacteria in marine broth prepared with ASW. After the acclimatization, aggregation experiments were conducted in duplicates in roller tanks in darkness. Replicate roller tanks were set-up with diatom cells at a final concentration of 3 x 103 cells ml-1 and – where appropriate - bacteria at a final concentration of 3 x 105 cells ml-1.
attribute NC_GLOBAL instruments_4_dataset_instrument_nid String 528201
attribute NC_GLOBAL instruments_4_description String Rolling tanks, which keep particles in suspension, thus simulating aggregate formation in situ.

Marine snow experiments are conducted in roller tanks, which turn continuously, keeping marine snow in suspension. It is important for marine snow not to touch surfaces. The rolling tanks, which keep particles in suspension, thus simulate aggregate formation in situ. Marine snow formation due to different types of oil was tested. Some treatments are easily identifiable as containing oil by their color (middle). UCSB, CA 2012.
attribute NC_GLOBAL instruments_4_instrument_name String Roller Tank
attribute NC_GLOBAL instruments_4_instrument_nid String 528200
attribute NC_GLOBAL instruments_4_supplied_name String Roller Tank
attribute NC_GLOBAL keywords String addition, average, bco, bco-dmo, biological, carbon, carbon dioxide, chemical, co2, data, dataset, density, depth, dic, dioxide, dmo, earth, Earth Science > Oceans > Salinity/Density > Salinity, erddap, fraction, hp15, HP15_addition, identifier, lab, Lab_Id, latitude, longitude, management, ocean, oceanography, oceans, office, pCO2, pH_at_25C, point, practical, preliminary, profiler, replicate, salinity, salinity-temperature-depth, sampling, sampling_point, science, sea, sea_water_practical_salinity, seawater, std, Temp, temperature, tep, TEP_Avg, TEP_Std, water
attribute NC_GLOBAL keywords_vocabulary String GCMD Science Keywords
attribute NC_GLOBAL license String The data may be used and redistributed for free but is not intended
for legal use, since it may contain inaccuracies. Neither the data
Contributor, ERD, NOAA, nor the United States Government, nor any
of their employees or contractors, makes any warranty, express or
implied, including warranties of merchantability and fitness for a
particular purpose, or assumes any legal liability for the accuracy,
completeness, or usefulness, of this information.
attribute NC_GLOBAL metadata_source String https://www.bco-dmo.org/api/dataset/528150 (external link)
attribute NC_GLOBAL Northernmost_Northing double 34.4126
attribute NC_GLOBAL param_mapping String {'528150': {'Lat': 'flag - latitude', 'Lon': 'flag - longitude'}}
attribute NC_GLOBAL parameter_source String https://www.bco-dmo.org/mapserver/dataset/528150/parameters (external link)
attribute NC_GLOBAL people_0_affiliation String University of California-Santa Barbara
attribute NC_GLOBAL people_0_affiliation_acronym String UCSB-MSI
attribute NC_GLOBAL people_0_person_name String Dr Uta Passow
attribute NC_GLOBAL people_0_person_nid String 51317
attribute NC_GLOBAL people_0_role String Principal Investigator
attribute NC_GLOBAL people_0_role_type String originator
attribute NC_GLOBAL people_1_affiliation String University of California-Santa Barbara
attribute NC_GLOBAL people_1_affiliation_acronym String UCSB-MSI
attribute NC_GLOBAL people_1_person_name String Shalin Seebah
attribute NC_GLOBAL people_1_person_nid String 528318
attribute NC_GLOBAL people_1_role String Student
attribute NC_GLOBAL people_1_role_type String related
attribute NC_GLOBAL people_2_affiliation String University of California-Santa Barbara
attribute NC_GLOBAL people_2_affiliation_acronym String UCSB-MSI
attribute NC_GLOBAL people_2_person_name String Dr Uta Passow
attribute NC_GLOBAL people_2_person_nid String 51317
attribute NC_GLOBAL people_2_role String Contact
attribute NC_GLOBAL people_2_role_type String related
attribute NC_GLOBAL people_3_affiliation String Woods Hole Oceanographic Institution
attribute NC_GLOBAL people_3_affiliation_acronym String WHOI BCO-DMO
attribute NC_GLOBAL people_3_person_name String Stephen R. Gegg
attribute NC_GLOBAL people_3_person_nid String 50910
attribute NC_GLOBAL people_3_role String BCO-DMO Data Manager
attribute NC_GLOBAL people_3_role_type String related
attribute NC_GLOBAL project String Will Ocean Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus Weakening the Biological Pump?
attribute NC_GLOBAL projects_0_acronym String OA - Ocean Acidification and Aggregation
attribute NC_GLOBAL projects_0_description String Will Ocean Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus Weakening the Biological Pump?
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
The pH of the ocean is predicted to decrease by 0.2-0.5 pH units in the next 50 to100 years as a result of increasing atmospheric CO2. To date almost all the research on impending ocean acidification has focused on the impacts to calcifying organisms and the carbonate system. However, ocean acidification will also affect other significant marine processes that are pH dependent.
In this project, researchers at the University of California at Santa Barbara will investigate the impact of ocean acidification on the organic carbon or 'soft tissue' biological pump. They predict that a decline in oceanic pH will result in an increase in the protonation of negatively charged substances, especially of Transparent Exopolymer Particles (TEP), the gel-like particles that provide the matrix of aggregates and bind particles together. A decreased polarity of these highly surface-active particles may reduce their "stickiness" resulting in decreased aggregation of organic-rich particles and a decreased ability of aggregates to scavenge and retain heavy ballast minerals. A reduction in aggregation will lower the fraction of POC enclosed in fast-sinking aggregates. Decreased scavenging of minerals by aggregates will result in reduced sinking velocities and consequently a decline in the fraction of material escaping degradation in the water column. Both processes ultimately reduce carbon flux to depth. The resulting weakening of the biological pump will alter pelagic ecology and potentially produce a positive feed-back pathway that further increases atmospheric CO2 concentrations.
The research team will experimentally investigate TEP-production, aggregation rates and aggregate characteristics, mineral scavenging and sinking velocity as a function of ocean acidification, because these parameters are susceptible to pH and central in determining sedimentation rate of organic carbon. They will determine potential changes in the abiotic formation of TEP or in the release rate of TEP or TEP-precursors by phytoplankton that have been adapted to increased CO2 regimes for multiple generations, up to 1000 doublings. Additionally, they will experimentally test potential changes in the aggregation rate of adapted phytoplankton and natural particles, and measure impacts on scavenging rates of ballast minerals by aggregates. Effects of various acidification levels on aggregate characteristics, including size, composition, density, and sinking velocity will also be determined. These results are expected to provide parameterization for a predictive model that will be used to investigate the impact of changing ballasting or aggregation on carbon flux.
Broader impact: Climate and environmental change are a global challenge to society. We need to know if possible positive feed back mechanisms to the biological pump will further increase atmospheric CO2 in order to prepare for and hopefully manage future climate changes.
These data are also available at Pangea

RELATED FILES:
Passow U (2012) The Abiotic Formation of Tep under Ocean Acidification Scenarios. Marine Chemistry 128-129:72-80

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Bathmann U, Passow U.�"Global Erwaermung. Kohlenstoffpumpen im Ozean steuern das Klima.,"�Biologie in unserer Zeit 5,�v.5,�2010.
Benner I, Passow U.�"Utilization of organic nutrients by coccolithophores,"�Marine Ecology Progress Series,�v.404,�2010,�p. 21.
Feng Y, Hare C, Leblanc K, Rose J, Zhang Y, DiTullio G, Lee P, Wilhelm S, Rowe J, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins D.�"Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response,"�Marine Ecology Progress Series,�v.388,�2009,�p. 13.
Gaerdes A, Iversen MH, Grossart H-P, Passow U, Ullrich M.�"Diatom associated bacteria are required for aggregation of Thalassiosira weissflogii.,"�ISME Journal,�2010,�p. 1.
Leblanc K, Hare CE, Feng Y, Berg GM, DiTullio GR, Neeley A, Benner I, Sprengel C, Beck A, Sanudo-Wilhelmy SA, Passow U, Klinck K, Rowe JM, Wilhelm SW, Brown CW, Hutchins DA.�"Distribution of calcifying and silicifying phytoplankton in relation to environmental and biogeochemical parameters during the late stages of the 2005 North East Atlantic Spring Bloom,"�Biogeosciences,�v.6,�2009,�p. 2155.
Ploug H, Terbruggen A, Kaufmann A, Wolf-Gladrow D, Passow U.�"A novel method to measure particle sinking velocity in vitro, and its comparison to three other in vitro methods.,"�Limnolgy and Oceanography Methods,�v.8,�2010,�p. 386.
Passow, U., Rocha, C.L.D.L., Fairfield, C., Schmidt, K., 2014. Aggregation as a function of pCO2 and mineral particles. Limnology and Oceanography 59 (2), 532-547.
De La Rocha, C.L., Passow, U., 2014. The biological pump. In: Turekian, K.K., Holland, H.D. (Eds.), Treatise on Geochemistry. Elsevier, Oxford, pp. 93-122.
Boyd, P., Rynearson, T., Armstrong, E., Fu, F., Hayashi, K., Hu, Z., Hutchins, D., Kudela, R., Litchman, E., Mulholland, M., Passow, U., Strzepek, R., Whittaker, K., Yu, E., Thomas, M., 2013. Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters - Outcome of a Scientific Community-Wide Study. PLoS ONE 8 (5), e63091.
Passow, U., Carlson, C., 2012. The Biological Pump in a High CO2 World. Marine Ecology Progress Series 470, 249-271.
attribute NC_GLOBAL projects_0_end_date String 2012-08
attribute NC_GLOBAL projects_0_geolocation String Passow Lab, Marine Science Institute, University of California Santa Barbara
attribute NC_GLOBAL projects_0_name String Will Ocean Acidification Diminish Particle Aggregation and Mineral Scavenging, Thus Weakening the Biological Pump?
attribute NC_GLOBAL projects_0_project_nid String 2201
attribute NC_GLOBAL projects_0_project_website String http://www.msi.ucsb.edu/people/research-scientists/uta-passow (external link)
attribute NC_GLOBAL projects_0_start_date String 2009-09
attribute NC_GLOBAL publisher_name String Stephen R. Gegg
attribute NC_GLOBAL publisher_role String BCO-DMO Data Manager(s)
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL Southernmost_Northing double 34.4126
attribute NC_GLOBAL standard_name_vocabulary String CF Standard Name Table v29
attribute NC_GLOBAL subsetVariables String Lab_Id, latitude, longitude
attribute NC_GLOBAL summary String Series 4: Aggregation of Thalassiosira weissflogii as a function of pCO2,
temperature and bacteria: Aggregation Phase - Carbonate System + TEP

Related Reference:
[Aggregation and Sedimentation of Thalassiosira weissflogii (diatom) in a
Warmer and More Acidified Future
Ocean](\\http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0112379\\)
attribute NC_GLOBAL title String Aggregation of Thalassiosira weissflogii as a function of pCO2, temperature, and bacteria - Aggregation Phase - Carbonate System + TEP from UCSB MSI Passow Lab from 2009 to 2010 (OA - Ocean Acidification and Aggregation project)
attribute NC_GLOBAL version String 1
attribute NC_GLOBAL Westernmost_Easting double -119.842
attribute NC_GLOBAL xml_source String osprey2erddap.update_xml() v1.0-alpha
variable Lab_Id   String  
attribute Lab_Id description String Lab Id – Lab identifier where experiments were conducted
attribute Lab_Id ioos_category String Identifier
attribute Lab_Id long_name String Lab Id
attribute Lab_Id units String text
variable latitude   double  
attribute latitude _CoordinateAxisType String Lat
attribute latitude _FillValue double NaN
attribute latitude actual_range double 34.4126, 34.4126
attribute latitude axis String Y
attribute latitude colorBarMaximum double 90.0
attribute latitude colorBarMinimum double -90.0
attribute latitude description String Approximate Latitude Position of Lab; South is negative
attribute latitude ioos_category String Location
attribute latitude long_name String Latitude
attribute latitude standard_name String latitude
attribute latitude units String degrees_north
variable longitude   double  
attribute longitude _CoordinateAxisType String Lon
attribute longitude _FillValue double NaN
attribute longitude actual_range double -119.842, -119.842
attribute longitude axis String X
attribute longitude colorBarMaximum double 180.0
attribute longitude colorBarMinimum double -180.0
attribute longitude description String Approximate Longitude Position of Lab; West is negative
attribute longitude ioos_category String Location
attribute longitude long_name String Longitude
attribute longitude standard_name String longitude
attribute longitude units String degrees_east
variable Temp   byte  
attribute Temp _FillValue byte 127
attribute Temp actual_range byte 15, 20
attribute Temp description String Treatment - Temperature
attribute Temp ioos_category String Temperature
attribute Temp long_name String Temperature
attribute Temp units String degrees C
variable pCO2   String  
attribute pCO2 description String Treatment - pCO2 conditions
attribute pCO2 ioos_category String CO2
attribute pCO2 long_name String P CO2
attribute pCO2 units String text
variable HP15_addition   String  
attribute HP15_addition description String Treatment - HP15 addition
attribute HP15_addition ioos_category String Unknown
attribute HP15_addition long_name String HP15 Addition
attribute HP15_addition units String text
variable sampling_point   byte  
attribute sampling_point _FillValue byte 127
attribute sampling_point actual_range byte 0, 96
attribute sampling_point description String Sampling point at t = x hours
attribute sampling_point ioos_category String Unknown
attribute sampling_point long_name String Sampling Point
attribute sampling_point units String hours
variable fraction   String  
attribute fraction colorBarMaximum double 1.0
attribute fraction colorBarMinimum double 0.0
attribute fraction description String Fraction
attribute fraction ioos_category String Unknown
attribute fraction long_name String Fraction
attribute fraction units String text
variable replicate   byte  
attribute replicate _FillValue byte 127
attribute replicate actual_range byte 1, 2
attribute replicate description String Replicate
attribute replicate ioos_category String Unknown
attribute replicate long_name String Replicate
attribute replicate units String dimensionless
variable pH_at_25C   float  
attribute pH_at_25C _FillValue float NaN
attribute pH_at_25C actual_range float 7.314, 7.981
attribute pH_at_25C description String Carbonate system - pH at 25degC
attribute pH_at_25C ioos_category String Salinity
attribute pH_at_25C long_name String P H At 25 C
attribute pH_at_25C units String total scale
variable DIC   short  
attribute DIC _FillValue short 32767
attribute DIC actual_range short 2000, 2325
attribute DIC description String Carbonate system - DIC
attribute DIC ioos_category String Unknown
attribute DIC long_name String DIC
attribute DIC units String umol/kgSW
variable TA   short  
attribute TA _FillValue short 32767
attribute TA actual_range short 2286, 2376
attribute TA description String Carbonate system - TA
attribute TA ioos_category String Unknown
attribute TA long_name String TA
attribute TA units String umol/kgSW
variable Salinity   float  
attribute Salinity _FillValue float NaN
attribute Salinity actual_range float 33.6, 34.3
attribute Salinity colorBarMaximum double 37.0
attribute Salinity colorBarMinimum double 32.0
attribute Salinity description String Carbonate system - Salinity
attribute Salinity ioos_category String Salinity
attribute Salinity long_name String Sea Water Practical Salinity
attribute Salinity units String ppt
variable TEP_Avg   short  
attribute TEP_Avg _FillValue short 32767
attribute TEP_Avg actual_range short 221, 1470
attribute TEP_Avg description String TEP Average in ug of Gxeq (xanthan gum equivalent) per liter.
This is an absorbance equivalence.
attribute TEP_Avg ioos_category String Unknown
attribute TEP_Avg long_name String TEP Avg
attribute TEP_Avg units String ug Gxeq/L
variable TEP_Std   short  
attribute TEP_Std _FillValue short 32767
attribute TEP_Std actual_range short 7, 311
attribute TEP_Std description String TEP StdDev in ug of Gxeq (xanthan gum equivalent) per liter.
This is an absorbance equivalence.
attribute TEP_Std ioos_category String Unknown
attribute TEP_Std long_name String TEP Std
attribute TEP_Std units String ug Gxeq/L

The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.


 
ERDDAP, Version 1.82
Disclaimers | Privacy Policy | Contact