BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Grid DAP Data | Sub- set | Table DAP Data | Make A Graph | W M S | Source Data Files | Acces- sible | Title | Sum- mary | FGDC, ISO, Metadata | Back- ground Info | RSS | E | Institution | Dataset ID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
set | data | graph | files | public | [MarBio. 2016: tank conditions] - Tank seawater conditions from Coral/Temperature/pCO2 Experiments at LTER site in Moorea, French Polynesia, 2011 (OA_Corals project) (RUI: Ocean Acidification- Category 1- The effects of ocean acidification on the organismic biology and community ecology of corals, calcified algae, and coral reefs) | F I M | background | BCO-DMO | bcodmo_dataset_641759 |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | access_formats | String | .htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson |
attribute | NC_GLOBAL | acquisition_description | String | Experimental conditions and maintenance Treatments were created in 8 tanks (Aqua Logic, San Diego), each holding 150 L of seawater and regulated independently for temperature, light, and pCO2. Temperatures were maintained at 28.0\u00b0C, which corresponded to the ambient seawater temperature in the back reef when the study was conducted, and 30.1\u00b0C which is close to the maximum temperature in this habitat (Putnam and Edmunds 2011). pCO2 treatments contrasted ambient conditions (~ 408 micro- atm) and 913 micro-atm pCO2, with the elevated value expected to occur within 100 y under the \"stabilization without overshoot\" representative concentration pathway (RCP 6.0) (van Vuuren et al. 2011). pCO2 treatments were created by bubbling ambient air or a mixture of ambient air and pure CO2 that was blended continually and monitored using an infrared gas analyzer (IRGA model S151, Qubit Systems). A solenoid-controlled, gas regulation system (Model A352, Qubit Systems, Ontario, Canada) regulated the flow of CO2 and air, with pCO2 logged on a PC running LabPro software (Vemier Software and Technology). Ambient air and the elevated pCO2 mixture were supplied at ~ 10-15 L min-1 to treatment tanks using pumps (Gast pump DOA-P704-AA, see Edmunds 2011). The temperatures and pCO2 levels created four treatments with two tanks treatment-1: ambient temperature-ambient pCO2 (AT-ACO2), ambient temperature- high pCO2 (AT-HCO2), high temperature-ambient pCO2 (HT-ACO2) and high temperature-high pCO2 (HT-HCO2). Treatment conditions were monitored daily, with temperature measured at 08:00, 12:00 and 18:00 hrs using a digital thermometer (Fisher Scientific model #150778, \u00b1 0.05 \u00b0C), and light intensities at 12:00 hrs using a Li-Cor LI-193 sensor attached t 170 o a LI-1400 meter. Seawater within each tank was replaced at 200 ml/min with filtered seawater (50 micro-m) pumped from Cook\u2019s Bay. Carbonate chemistry and pH analysis To evaluate dissolved inorganic carbon (DIC) conditions in the 8 tanks, total alkalinity (TA) and pH of the seawater were recorded every third day of the experiment. Seawater was collected between 07:00-09:00 hrs using stoppered glass bottles, equilibrated to room temperature (25.0\u00b0C), and processed within 2-3 hrs of collection. TA was determined using an open cell potentiometric titrator (Model T50, Mettler-Toledo, Columbus, OH) fitted with a DG115-SC pH probe (Mettler-Toledo, Columbus, OH) calibrated daily using NBS buffers (pH 4.00, 7.00 and 10.00, Fisher Scientific, 15-0787-8, \u00b1 0.05 \u00b0C), and used to perform gran titrations using standard operating procedure 3 (SOP) of Dickson et al. (2007). Seawater pH was determined spectrophotometrically using the dye m-cresol purple (SOP 6b of Dickson et al. 2007), where pH was expressed on the total scale. The results of the gran titrations together with seawater salinity (YSI 3100 conductivity meter) and seawater temperature were used to calculate TA, pCO2, HCO3-, CO3 2- and aragonite saturation state (Omega) using CO2SYS (Lewis and Wallace 1998), with the constants of Mehrbach et al. (1973) and pH on the total scale. To evaluate the accuracy and precision of TA analyses, certified reference materials (CRM, batch 105 from A. Dickson, Scripps Institution of Oceanography) were processed before each set of seawater samples. CRMs were evaluated with a mean error of 0.37% (~ 8 micro-mol kg-1, n = 11) relative to the certified values. The precision and accuracy of pH measurements were evaluated using standardized Tris buffers (Batch 5 from A. D 193 Dickson Laboratory, Scripps Institution of Oceanography) that were processed spectrophotometrically with m-cresol as described above. Percent average error from the known pH of the Tris buffer was 0.16% (0.01 pH units, n = 13). Incubation schedule and dependent variables On April 24th 2011, nubbins and cores were buoyant weighed (\u00b1 1 mg, Spencer-Davies 1989) and randomly placed in the mesocosm, with four taxa and two replicates per taxon in each tank. Over the following 24 h, seawater temperature and pCO2 were adjusted to target values. Corals remained in the treatments for 19 d, and were moved randomly within the tanks daily to eliminate position effects. Individual corals, along with the racks holding them, were cleaned every 5 d by wiping algal growth from walls of the tanks, racks, and PVC coral holders. On May 12th, the experiment ended and the corals were again buoyant weighed and the area of living tissue determined using aluminum foil (Marsh 1970). |
attribute | NC_GLOBAL | awards_0_award_nid | String | 54987 |
attribute | NC_GLOBAL | awards_0_award_number | String | OCE-0417412 |
attribute | NC_GLOBAL | awards_0_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0417412 |
attribute | NC_GLOBAL | awards_0_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_0_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_0_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_0_program_manager | String | David L. Garrison |
attribute | NC_GLOBAL | awards_0_program_manager_nid | String | 50534 |
attribute | NC_GLOBAL | awards_1_award_nid | String | 55110 |
attribute | NC_GLOBAL | awards_1_award_number | String | OCE-1041270 |
attribute | NC_GLOBAL | awards_1_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1041270 |
attribute | NC_GLOBAL | awards_1_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_1_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_1_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_1_program_manager | String | David L. Garrison |
attribute | NC_GLOBAL | awards_1_program_manager_nid | String | 50534 |
attribute | NC_GLOBAL | awards_2_award_nid | String | 520630 |
attribute | NC_GLOBAL | awards_2_award_number | String | OCE-1026851 |
attribute | NC_GLOBAL | awards_2_data_url | String | http://www.nsf.gov/awardsearch/showAward?AWD_ID=1026851 |
attribute | NC_GLOBAL | awards_2_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_2_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_2_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_2_program_manager | String | David L. Garrison |
attribute | NC_GLOBAL | awards_2_program_manager_nid | String | 50534 |
attribute | NC_GLOBAL | cdm_data_type | String | Other |
attribute | NC_GLOBAL | comment | String | Seawater chemistry LTER-Moorea, 2011 P. Edmunds, D. Brown (CSU-Northridge) version: 2016-04-04 These data were published in Brown & Edmunds (2016) Marine Biology, Table 1 |
attribute | NC_GLOBAL | Conventions | String | COARDS, CF-1.6, ACDD-1.3 |
attribute | NC_GLOBAL | creator_email | String | info at bco-dmo.org |
attribute | NC_GLOBAL | creator_name | String | BCO-DMO |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | creator_url | String | https://www.bco-dmo.org/ |
attribute | NC_GLOBAL | data_source | String | extract_data_as_tsv version 2.3 19 Dec 2019 |
attribute | NC_GLOBAL | date_created | String | 2016-04-04T14:46:22Z |
attribute | NC_GLOBAL | date_modified | String | 2016-04-13T23:47:03Z |
attribute | NC_GLOBAL | defaultDataQuery | String | &time<now |
attribute | NC_GLOBAL | doi | String | 10.1575/1912/bco-dmo.641942 |
attribute | NC_GLOBAL | Easternmost_Easting | double | -149.826 |
attribute | NC_GLOBAL | geospatial_lat_max | double | -17.4907 |
attribute | NC_GLOBAL | geospatial_lat_min | double | -17.4907 |
attribute | NC_GLOBAL | geospatial_lat_units | String | degrees_north |
attribute | NC_GLOBAL | geospatial_lon_max | double | -149.826 |
attribute | NC_GLOBAL | geospatial_lon_min | double | -149.826 |
attribute | NC_GLOBAL | geospatial_lon_units | String | degrees_east |
attribute | NC_GLOBAL | infoUrl | String | https://www.bco-dmo.org/dataset/641759 |
attribute | NC_GLOBAL | institution | String | BCO-DMO |
attribute | NC_GLOBAL | instruments_0_acronym | String | LI-COR LI-193 PAR |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_description | String | 4p LI-193 quantum sensor |
attribute | NC_GLOBAL | instruments_0_dataset_instrument_nid | String | 641770 |
attribute | NC_GLOBAL | instruments_0_description | String | The LI-193 Underwater Spherical Quantum Sensor uses a Silicon Photodiode and glass filters encased in a waterproof housing to measure PAR (in the 400 to 700 nm waveband) in aquatic environments. Typical output is in micromol s-1 m-2. The LI-193 Sensor gives an added dimension to underwater PAR measurements as it measures photon flux from all directions. This measurement is referred to as Photosynthetic Photon Flux Fluence Rate (PPFFR) or Quantum Scalar Irradiance. This is important, for example, when studying phytoplankton, which utilize radiation from all directions for photosynthesis. LI-COR began producing Spherical Quantum Sensors in 1979; serial numbers for the LI-193 begin with SPQA-XXXXX (licor.com). |
attribute | NC_GLOBAL | instruments_0_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L22/current/TOOL0458/ |
attribute | NC_GLOBAL | instruments_0_instrument_name | String | LI-COR LI-193 PAR Sensor |
attribute | NC_GLOBAL | instruments_0_instrument_nid | String | 432 |
attribute | NC_GLOBAL | instruments_1_acronym | String | in-situ incubator |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_description | String | 150 L tanks |
attribute | NC_GLOBAL | instruments_1_dataset_instrument_nid | String | 641771 |
attribute | NC_GLOBAL | instruments_1_description | String | A device on shipboard or in the laboratory that holds water samples under controlled conditions of temperature and possibly illumination. |
attribute | NC_GLOBAL | instruments_1_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/82/ |
attribute | NC_GLOBAL | instruments_1_instrument_name | String | In-situ incubator |
attribute | NC_GLOBAL | instruments_1_instrument_nid | String | 494 |
attribute | NC_GLOBAL | instruments_2_acronym | String | Water Temp Sensor |
attribute | NC_GLOBAL | instruments_2_dataset_instrument_nid | String | 641772 |
attribute | NC_GLOBAL | instruments_2_description | String | General term for an instrument that measures the temperature of the water with which it is in contact (thermometer). |
attribute | NC_GLOBAL | instruments_2_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/134/ |
attribute | NC_GLOBAL | instruments_2_instrument_name | String | Water Temperature Sensor |
attribute | NC_GLOBAL | instruments_2_instrument_nid | String | 647 |
attribute | NC_GLOBAL | instruments_3_acronym | String | Automatic titrator |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_description | String | Open cell potentiometric titrator (Model T50, Mettler-Toledo, Columbus, OH) fitted with a DG115-SC pH probe (Mettler-Toledo, Columbus, OH) |
attribute | NC_GLOBAL | instruments_3_dataset_instrument_nid | String | 641773 |
attribute | NC_GLOBAL | instruments_3_description | String | Instruments that incrementally add quantified aliquots of a reagent to a sample until the end-point of a chemical reaction is reached. |
attribute | NC_GLOBAL | instruments_3_instrument_external_identifier | String | https://vocab.nerc.ac.uk/collection/L05/current/LAB12/ |
attribute | NC_GLOBAL | instruments_3_instrument_name | String | Automatic titrator |
attribute | NC_GLOBAL | instruments_3_instrument_nid | String | 682 |
attribute | NC_GLOBAL | instruments_4_acronym | String | Light Meter |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_description | String | LiCor LI-1400 meter |
attribute | NC_GLOBAL | instruments_4_dataset_instrument_nid | String | 641769 |
attribute | NC_GLOBAL | instruments_4_description | String | Light meters are instruments that measure light intensity. Common units of measure for light intensity are umol/m2/s or uE/m2/s (micromoles per meter squared per second or microEinsteins per meter squared per second). (example: LI-COR 250A) |
attribute | NC_GLOBAL | instruments_4_instrument_name | String | Light Meter |
attribute | NC_GLOBAL | instruments_4_instrument_nid | String | 703 |
attribute | NC_GLOBAL | instruments_5_acronym | String | Conductivity Meter |
attribute | NC_GLOBAL | instruments_5_dataset_instrument_description | String | YSI 3100 conductivity meter |
attribute | NC_GLOBAL | instruments_5_dataset_instrument_nid | String | 641774 |
attribute | NC_GLOBAL | instruments_5_description | String | Conductivity Meter - An electrical conductivity meter (EC meter) measures the electrical conductivity in a solution. Commonly used in hydroponics, aquaculture and freshwater systems to monitor the amount of nutrients, salts or impurities in the water. |
attribute | NC_GLOBAL | instruments_5_instrument_name | String | Conductivity Meter |
attribute | NC_GLOBAL | instruments_5_instrument_nid | String | 719 |
attribute | NC_GLOBAL | instruments_6_acronym | String | sonicator |
attribute | NC_GLOBAL | instruments_6_dataset_instrument_description | String | Ultrasonic dismembrator (Fisher model 216 15-338-550; fitted with a 3.2 mm diameter probe, Fisher 15-338-67) |
attribute | NC_GLOBAL | instruments_6_dataset_instrument_nid | String | 641775 |
attribute | NC_GLOBAL | instruments_6_description | String | Instrument that applies sound energy to agitate particles in a sample. |
attribute | NC_GLOBAL | instruments_6_instrument_name | String | ultrasonic cell disrupter |
attribute | NC_GLOBAL | instruments_6_instrument_nid | String | 528691 |
attribute | NC_GLOBAL | keywords | String | bco, bco-dmo, biological, carbon, carbon dioxide, chemical, co2, data, dataset, dioxide, dmo, erddap, latitude, longitude, management, oceanography, office, pCO2, pCO2_uatm, preliminary, tank, temperature, treatment, uatm |
attribute | NC_GLOBAL | license | String | https://www.bco-dmo.org/dataset/641759/license |
attribute | NC_GLOBAL | metadata_source | String | https://www.bco-dmo.org/api/dataset/641759 |
attribute | NC_GLOBAL | Northernmost_Northing | double | -17.4907 |
attribute | NC_GLOBAL | param_mapping | String | {'641759': {'lat': 'master - latitude', 'lon': 'master - longitude'}} |
attribute | NC_GLOBAL | parameter_source | String | https://www.bco-dmo.org/mapserver/dataset/641759/parameters |
attribute | NC_GLOBAL | people_0_affiliation | String | California State University Northridge |
attribute | NC_GLOBAL | people_0_affiliation_acronym | String | CSU-Northridge |
attribute | NC_GLOBAL | people_0_person_name | String | Peter J. Edmunds |
attribute | NC_GLOBAL | people_0_person_nid | String | 51536 |
attribute | NC_GLOBAL | people_0_role | String | Principal Investigator |
attribute | NC_GLOBAL | people_0_role_type | String | originator |
attribute | NC_GLOBAL | people_1_affiliation | String | California State University Northridge |
attribute | NC_GLOBAL | people_1_affiliation_acronym | String | CSU-Northridge |
attribute | NC_GLOBAL | people_1_person_name | String | Darren J Brown |
attribute | NC_GLOBAL | people_1_person_nid | String | 523715 |
attribute | NC_GLOBAL | people_1_role | String | Student |
attribute | NC_GLOBAL | people_1_role_type | String | related |
attribute | NC_GLOBAL | people_2_affiliation | String | California State University Northridge |
attribute | NC_GLOBAL | people_2_affiliation_acronym | String | CSU-Northridge |
attribute | NC_GLOBAL | people_2_person_name | String | Darren J Brown |
attribute | NC_GLOBAL | people_2_person_nid | String | 523715 |
attribute | NC_GLOBAL | people_2_role | String | Contact |
attribute | NC_GLOBAL | people_2_role_type | String | related |
attribute | NC_GLOBAL | people_3_affiliation | String | Woods Hole Oceanographic Institution |
attribute | NC_GLOBAL | people_3_affiliation_acronym | String | WHOI BCO-DMO |
attribute | NC_GLOBAL | people_3_person_name | String | Nancy Copley |
attribute | NC_GLOBAL | people_3_person_nid | String | 50396 |
attribute | NC_GLOBAL | people_3_role | String | BCO-DMO Data Manager |
attribute | NC_GLOBAL | people_3_role_type | String | related |
attribute | NC_GLOBAL | project | String | OA_Corals |
attribute | NC_GLOBAL | projects_0_acronym | String | OA_Corals |
attribute | NC_GLOBAL | projects_0_description | String | While coral reefs have undergone unprecedented changes in community structure in the past 50 y, they now may be exposed to their gravest threat since the Triassic. This threat is increasing atmospheric CO2, which equilibrates with seawater and causes ocean acidification (OA). In the marine environment, the resulting decline in carbonate saturation state (Omega) makes it energetically less feasible for calcifying taxa to mineralize; this is a major concern for coral reefs. It is possible that the scleractinian architects of reefs will cease to exist as a mineralized taxon within a century, and that calcifying algae will be severely impaired. While there is a rush to understand these effects and make recommendations leading to their mitigation, these efforts are influenced strongly by the notion that the impacts of pCO2 (which causes Omega to change) on calcifying taxa, and the mechanisms that drive them, are well-known. The investigators believe that many of the key processes of mineralization on reefs that are potentially affected by OA are only poorly known and that current knowledge is inadequate to support the scaling of OA effects to the community level. It is vital to measure organismal-scale calcification of key taxa, elucidate the mechanistic bases of these responses, evaluate community scale calcification, and finally, to conduct focused experiments to describe the functional relationships between these scales of mineralization. This project is a 4-y effort focused on the effects of Ocean Acidification (OA) on coral reefs at multiple spatial and functional scales. The project focuses on the corals, calcified algae, and coral reefs of Moorea, French Polynesia, establishes baseline community-wide calcification data for the detection of OA effects on a decadal-scale, and builds on the research context and climate change focus of the Moorea Coral Reef LTER. This project is a hypothesis-driven approach to compare the effects of OA on reef taxa and coral reefs in Moorea. The PIs will utilize microcosms to address the impacts and mechanisms of OA on biological processes, as well as the ecological processes shaping community structure. Additionally, studies of reef-wide metabolism will be used to evaluate the impacts of OA on intact reef ecosystems, to provide a context within which the experimental investigations can be scaled to the real world, and critically, to provide a much needed reference against which future changes can be gauged. The following publications and data resulted from this project: 2016 Edmunds P.J. and 15 others. Integrating the effects of ocean acidification across functional scales on tropical coral reefs. Bioscience (in press Feb 2016) **not yet available** 2016 Comeau S, Carpenter RC, Lantz CA, Edmunds PJ. Parameterization of the response of calcification to temperature and pCO2 in the coral Acropora pulchra and the alga Lithophyllum kotschyanum. Coral Reefs (in press Feb 2016) 2016 Brown D., Edmunds P.J. Differences in the responses of three scleractinians and the hydrocoral Millepora platyphylla to ocean acidification. Marine Biology (in press Feb 2016) **available soon**MarBio. 2016: calcification and biomassMarBio. 2016: tank conditions 2016 Comeau, S., Carpenter, R.C., Edmunds, P.J. Effects of pCO2 on photosynthesis and respiration of tropical scleractinian corals and calcified algae. ICES Journal of Marine Science doi:10.1093/icesjms/fsv267 2015 Evensen NR, Edmunds PJ, Sakai K. Effects of pCO2 on the capacity for spatial competition by the corals Montipora aequituberculata and massive Porites spp. Marine Ecology Progress Series 541: 123–134. doi: 10.3354/meps11512MEPS 2015: chemistryMEPS 2015: field surveyMEPS 2015: linear extensionDownload data for this publication (Excel file) 2015 Comeau S., Lantz C. A., Edmunds P. J., Carpenter R. C. Framework of barrier reefs threatened by ocean acidification. Global Change Biology doi: 10.1111/gcb.13023 2015 Comeau, S., Carpenter, R. C., Lantz, C. A., and Edmunds, P. J. Ocean acidification accelerates dissolution of experimental coral reef communities, Biogeosciences, 12, 365-372, doi:10.5194/bg-12-365-2015.calcification rates - flume exptcarbonate chemistry - flume expt External data repository: http://doi.pangaea.de/10.1594/PANGAEA.847986 2014 Comeau S, Carpenter RC, Edmunds PJ. Effects of irradiance on the response of the coral Acropora pulchra and the calcifying alga Hydrolithon reinboldii to temperature elevation and ocean acidification. Journal of Experimental Marine Biology and Ecology (in press) 2014 Comeau S, Carpenter RC, Nojiri Y, Putnam HM, Sakai K, Edmunds PJ. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification. Royal Society of London (B) 281: doi.org/10.1098/rspb.2014.1339 External data repository: http://doi.pangaea.de/10.1594/PANGAEA.832834 2014 Comeau, S., Edmunds, P. J., Lantz, C. A., & Carpenter, R. C. Water flow modulates the response of coral reef communities to ocean acidification. Scientific Reports, 4. doi:10.1038/srep06681calcification rates - flume exptcarbonate chemistry - flume expt 2014 Comeau, S., Edmunds, P. J., Spindel, N. B., & Carpenter, R. C. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations. Limnology and Oceanography, 59(3), 1081–1091. doi:10.4319/lo.2014.59.3.1081algae_calcificationcoral_calcification External data repository: http://doi.pangaea.de/10.1594/PANGAEA.832584 2014 Comeau S, Edmunds PJ, Spindel NB, Carpenter RC. Diel pCO2 oscillations modulate the response of the coral Acropora hyacinthus to ocean acidification. Marine Ecology Progress Series 453: 28-35 2013 Comeau, S, Carpenter, RC, Edmunds PJ. Response to coral reef calcification: carbonate, bicarbonate and proton flux under conditions of increasing ocean acidification. Proceedings of the Royal Society of London 280: doi.org/10.1098/rspb.2013.1153 2013 Comeau S, Carpenter RC. Edmunds PJ. Effects of feeding and light intensity on the response of the coral Porites rus to ocean acidification. Marine Biology 160: 1127-1134 External data repository: http://doi.pangaea.de/10.1594/PANGAEA.829815 2013 Comeau, S., Edmunds, P. J., Spindel, N. B., Carpenter, R. C. The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol. Oceanogr. 58, 388–398.algae_calcificationcoral_calcification External data repository: http://doi.pangaea.de/10.1594/PANGAEA.833687 2012 Comeau, S., Carpenter, R. C., & Edmunds, P. J. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proceedings of the Royal Society B: Biological Sciences, 280(1753), 20122374. doi:10.1098/rspb.2012.2374carbonate_chemistrylight_dark_calcificationmean_calcification External data repository: http://doi.pangaea.de/10.1594/PANGAEA.832834 |
attribute | NC_GLOBAL | projects_0_end_date | String | 2014-12 |
attribute | NC_GLOBAL | projects_0_geolocation | String | Moorea, French Polynesia |
attribute | NC_GLOBAL | projects_0_name | String | The effects of ocean acidification on the organismic biology and community ecology of corals, calcified algae, and coral reefs |
attribute | NC_GLOBAL | projects_0_project_nid | String | 2242 |
attribute | NC_GLOBAL | projects_0_start_date | String | 2011-01 |
attribute | NC_GLOBAL | publisher_name | String | Biological and Chemical Oceanographic Data Management Office (BCO-DMO) |
attribute | NC_GLOBAL | publisher_type | String | institution |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | Southernmost_Northing | double | -17.4907 |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v55 |
attribute | NC_GLOBAL | subsetVariables | String | location,latitude,longitude |
attribute | NC_GLOBAL | summary | String | Summary of conditions in the eight tanks assigned randomly to create four treatments of AT-ACO2. Related Reference: Darren Brown, Peter J. Edmunds. Differences in the responses of three scleractinians and the hydrocoral Millepora platyphylla to ocean acidification. Marine Biology, 2016 (in press). Related Dataset: [MarBio. 2016: calcification and biomass](\\http://www.bco- dmo.org/dataset/641479\\) |
attribute | NC_GLOBAL | title | String | [MarBio. 2016: tank conditions] - Tank seawater conditions from Coral/Temperature/pCO2 Experiments at LTER site in Moorea, French Polynesia, 2011 (OA_Corals project) (RUI: Ocean Acidification- Category 1- The effects of ocean acidification on the organismic biology and community ecology of corals, calcified algae, and coral reefs) |
attribute | NC_GLOBAL | version | String | 1 |
attribute | NC_GLOBAL | Westernmost_Easting | double | -149.826 |
attribute | NC_GLOBAL | xml_source | String | osprey2erddap.update_xml() v1.3 |
variable | location | String | ||
attribute | location | bcodmo_name | String | site |
attribute | location | description | String | location of experiment |
attribute | location | long_name | String | Location |
attribute | location | units | String | unitless |
variable | latitude | double | ||
attribute | latitude | _CoordinateAxisType | String | Lat |
attribute | latitude | _FillValue | double | NaN |
attribute | latitude | actual_range | double | -17.4907, -17.4907 |
attribute | latitude | axis | String | Y |
attribute | latitude | bcodmo_name | String | latitude |
attribute | latitude | colorBarMaximum | double | 90.0 |
attribute | latitude | colorBarMinimum | double | -90.0 |
attribute | latitude | description | String | latitude; north is positive |
attribute | latitude | ioos_category | String | Location |
attribute | latitude | long_name | String | Latitude |
attribute | latitude | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P09/current/LATX/ |
attribute | latitude | standard_name | String | latitude |
attribute | latitude | units | String | degrees_north |
variable | longitude | double | ||
attribute | longitude | _CoordinateAxisType | String | Lon |
attribute | longitude | _FillValue | double | NaN |
attribute | longitude | actual_range | double | -149.826, -149.826 |
attribute | longitude | axis | String | X |
attribute | longitude | bcodmo_name | String | longitude |
attribute | longitude | colorBarMaximum | double | 180.0 |
attribute | longitude | colorBarMinimum | double | -180.0 |
attribute | longitude | description | String | longitude; east is positive |
attribute | longitude | ioos_category | String | Location |
attribute | longitude | long_name | String | Longitude |
attribute | longitude | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P09/current/LONX/ |
attribute | longitude | standard_name | String | longitude |
attribute | longitude | units | String | degrees_east |
variable | pCO2 | String | ||
attribute | pCO2 | bcodmo_name | String | pCO2 |
attribute | pCO2 | description | String | ambient (ACO2) and high (HCO2) CO2 concentration levels measured throughout the experiment |
attribute | pCO2 | long_name | String | P CO2 |
attribute | pCO2 | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PCO2C101/ |
attribute | pCO2 | units | String | unitless |
variable | tank | byte | ||
attribute | tank | _FillValue | byte | 127 |
attribute | tank | actual_range | byte | 1, 8 |
attribute | tank | bcodmo_name | String | tank |
attribute | tank | description | String | tank number |
attribute | tank | long_name | String | Tank |
attribute | tank | units | String | unitless |
variable | temp | String | ||
attribute | temp | bcodmo_name | String | temperature |
attribute | temp | description | String | tank temperature: AT=ambient (28.0 C); HT=high (30.1 C) |
attribute | temp | long_name | String | Temperature |
attribute | temp | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/TEMPP901/ |
attribute | temp | units | String | unitless |
variable | treatment | String | ||
attribute | treatment | bcodmo_name | String | treatment |
attribute | treatment | description | String | AT-ACO2 = ambient temperature; ambient CO2; AT-HCO2 = ambient temperature-high CO2; HT-ACO2 = high temperature-ambient CO2; HT-HCO2 = high temperature-high CO2 |
attribute | treatment | long_name | String | Treatment |
attribute | treatment | units | String | unitless |
variable | pCO2_uatm | short | ||
attribute | pCO2_uatm | _FillValue | short | 32767 |
attribute | pCO2_uatm | actual_range | short | 342, 978 |
attribute | pCO2_uatm | bcodmo_name | String | pCO2 |
attribute | pCO2_uatm | description | String | pCO2 concentration levels measured weekly throughout the experiment per tank |
attribute | pCO2_uatm | long_name | String | P CO2 Uatm |
attribute | pCO2_uatm | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PCO2C101/ |
attribute | pCO2_uatm | units | String | micro-atmospheres |
The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV1, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.