BCO-DMO ERDDAP
Accessing BCO-DMO data |
log in
Brought to you by BCO-DMO |
Grid DAP Data | Sub- set | Table DAP Data | Make A Graph | W M S | Source Data Files | Acces- sible | Title | Sum- mary | FGDC, ISO, Metadata | Back- ground Info | RSS | E | Institution | Dataset ID |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
data | graph | files | public | [pH] - Water pH during coral calcification experiments conducted on Oahu, Hawaii from November of 2014 to November of 2015 (Will corals recover from bleaching under ocean acidification conditions?) | I M | background | BCO-DMO | bcodmo_dataset_708358 |
Row Type | Variable Name | Attribute Name | Data Type | Value |
---|---|---|---|---|
attribute | NC_GLOBAL | access_formats | String | .htmlTable,.csv,.json,.mat,.nc,.tsv |
attribute | NC_GLOBAL | acquisition_description | String | About weekly, bottle samples were also collected for total alkalinity and pH. Bottles were rinsed with sample repeatedly before sample collection. Alkalinity samples were collected in borosilicate glass bottles without air space, and were analyzed via a modified Gran titration using an 877 Titrino plus, typically within 3 hr of collection, though they appeared to be stable for at least 7 days. Titrations were verified using Certified Reference Materials obtained from Andrew Dickson and precision and accuracy were typically +-10 ueq/kg or better. pH samples were collected in 50 ml centrifuge tubes without air space and analyzed spectrophotometrically with m-cresol purple, following standard protocols, and typically within 1 hr of collection, though they appeared to be stable for at least 24 hr. Precision of pH analyses was typically +-0.002 units or better, while accuracy of this method is estimated as +-0.02 units or better. Tank treatments: Below, "High" or "Low" pH refers to target pH levels. "Fed" or "Unfed" refers to whether the tank was fed zooplankton not. Tank t1: High pH, Unfed Tank t2: High pH, Fed Tank t3: Low pH, Unfed Tank t4: Low pH, Fed Tank t5: High pH, Fed Tank t6: Low pH, Unfed Tank t7: Low pH, Fed Tank t8: High pH, Unfed Location information: \u200bThe coral collection sites were the reef around HIMB and the reef adjacent to Kaiona Beach Park in Waimanalo (about 1 mile north of the Makai Pier). The lat/long for the approximate center of the sampling area at each site are as follows, and the sampling at each site was located within about +/- 200 m of that central point: Kane'ohe Bay: 21.4336 N, -157.7861 W Waimanalo Bay: 21.3272 N, -157.6811 W The tank experiments were conducted at the Point Lab on Coconut Island, which is ~18 km from the sampling area in Waimanalo Bay and adjacent to the sampling area in Kane'ohe Bay. The high pH treatment was ambient Kane'ohe Bay seawater chemistry (pH ~7.9-8.0) whereas the target for the low pH treatment was ~0.25 units below ambient. |
attribute | NC_GLOBAL | awards_0_award_nid | String | 546318 |
attribute | NC_GLOBAL | awards_0_award_number | String | OCE-1514859 |
attribute | NC_GLOBAL | awards_0_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514859 |
attribute | NC_GLOBAL | awards_0_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_0_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_0_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_0_program_manager | String | David L. Garrison |
attribute | NC_GLOBAL | awards_0_program_manager_nid | String | 50534 |
attribute | NC_GLOBAL | awards_1_award_nid | String | 546323 |
attribute | NC_GLOBAL | awards_1_award_number | String | OCE-1514861 |
attribute | NC_GLOBAL | awards_1_data_url | String | http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514861 |
attribute | NC_GLOBAL | awards_1_funder_name | String | NSF Division of Ocean Sciences |
attribute | NC_GLOBAL | awards_1_funding_acronym | String | NSF OCE |
attribute | NC_GLOBAL | awards_1_funding_source_nid | String | 355 |
attribute | NC_GLOBAL | awards_1_program_manager | String | David L. Garrison |
attribute | NC_GLOBAL | awards_1_program_manager_nid | String | 50534 |
attribute | NC_GLOBAL | cdm_data_type | String | Other |
attribute | NC_GLOBAL | comment | String | pH PI: Toonen et al. data version: 13 Jul 2017 |
attribute | NC_GLOBAL | Conventions | String | COARDS, CF-1.6, ACDD-1.3 |
attribute | NC_GLOBAL | creator_email | String | info at bco-dmo.org |
attribute | NC_GLOBAL | creator_name | String | BCO-DMO |
attribute | NC_GLOBAL | creator_type | String | institution |
attribute | NC_GLOBAL | creator_url | String | https://www.bco-dmo.org/ |
attribute | NC_GLOBAL | data_source | String | extract_data_as_tsv version 2.3 19 Dec 2019 |
attribute | NC_GLOBAL | date_created | String | 2017-07-11T20:08:57Z |
attribute | NC_GLOBAL | date_modified | String | 2019-04-26T21:47:40Z |
attribute | NC_GLOBAL | defaultDataQuery | String | &time<now |
attribute | NC_GLOBAL | doi | String | 10.1575/1912/bco-dmo.708358.1 |
attribute | NC_GLOBAL | infoUrl | String | https://www.bco-dmo.org/dataset/708358 |
attribute | NC_GLOBAL | institution | String | BCO-DMO |
attribute | NC_GLOBAL | keywords | String | bco, bco-dmo, biological, chemical, data, dataset, date, dmo, erddap, hst, management, oceanography, office, preliminary, time |
attribute | NC_GLOBAL | license | String | https://www.bco-dmo.org/dataset/708358/license |
attribute | NC_GLOBAL | metadata_source | String | https://www.bco-dmo.org/api/dataset/708358 |
attribute | NC_GLOBAL | param_mapping | String | {'708358': {}} |
attribute | NC_GLOBAL | parameter_source | String | https://www.bco-dmo.org/mapserver/dataset/708358/parameters |
attribute | NC_GLOBAL | people_0_affiliation | String | Hawaii Institute of Marine Biology |
attribute | NC_GLOBAL | people_0_person_name | String | Robert J. Toonen |
attribute | NC_GLOBAL | people_0_person_nid | String | 546326 |
attribute | NC_GLOBAL | people_0_role | String | Principal Investigator |
attribute | NC_GLOBAL | people_0_role_type | String | originator |
attribute | NC_GLOBAL | people_1_affiliation | String | Ohio State University |
attribute | NC_GLOBAL | people_1_person_name | String | Dr Andrea G. Grottoli |
attribute | NC_GLOBAL | people_1_person_nid | String | 516098 |
attribute | NC_GLOBAL | people_1_role | String | Co-Principal Investigator |
attribute | NC_GLOBAL | people_1_role_type | String | originator |
attribute | NC_GLOBAL | people_2_affiliation | String | Hawaii Institute of Marine Biology |
attribute | NC_GLOBAL | people_2_person_name | String | Dr Christopher P. Jury |
attribute | NC_GLOBAL | people_2_person_nid | String | 708284 |
attribute | NC_GLOBAL | people_2_role | String | Contact |
attribute | NC_GLOBAL | people_2_role_type | String | related |
attribute | NC_GLOBAL | people_3_affiliation | String | Hawaii Institute of Marine Biology |
attribute | NC_GLOBAL | people_3_person_name | String | Robert J. Toonen |
attribute | NC_GLOBAL | people_3_person_nid | String | 546326 |
attribute | NC_GLOBAL | people_3_role | String | Contact |
attribute | NC_GLOBAL | people_3_role_type | String | related |
attribute | NC_GLOBAL | people_4_affiliation | String | Woods Hole Oceanographic Institution |
attribute | NC_GLOBAL | people_4_affiliation_acronym | String | WHOI BCO-DMO |
attribute | NC_GLOBAL | people_4_person_name | String | Amber York |
attribute | NC_GLOBAL | people_4_person_nid | String | 643627 |
attribute | NC_GLOBAL | people_4_role | String | BCO-DMO Data Manager |
attribute | NC_GLOBAL | people_4_role_type | String | related |
attribute | NC_GLOBAL | project | String | RAPID Hawaii |
attribute | NC_GLOBAL | projects_0_acronym | String | RAPID Hawaii |
attribute | NC_GLOBAL | projects_0_description | String | Following the second hottest month on record since the 1940s, water temperatures on O'ahu reached 30 degrees C. The result of this ~2 degree C increase above summer mean temperatures has been a severe bleaching event across the entire length of the Hawaiian Archipelago, with as many as 75% of the dominant coral species in Kane'ohe Bay losing color or bleaching completely white. This event exceeds the magnitude of the only major bleaching event previously documented for Hawaii in 1996. Although tragic, this event provides a rare natural experiment to understand the impact of coral bleaching on the ability of Hawaiian corals to recovery from high temperature stress in the context of climate change and ocean acidification. The proposed will leverage previous work by the PIs to compare recovery following this event and the 1996 mass bleaching event to the recovery rates of Hawaiian corals under future climate change scenarios. Results from this work will provide data on coral resistance and recovery potential from bleaching events of the future. Coral reefs are among the most diverse ecosystems on the planet, housing an estimated 25% of marine species. But, that diversity appears particularly susceptible to the effects of global change. Massive coral bleaching poses a substantial threat to the integrity of coral reef habitat in US waters, and is predicted to be the major source of mortality for reefs under future climate scenarios. Although previous work on the recovery of corals from bleaching sets the groundwork for this project, it remains to be seen how recovery from bleaching will be impacted by climate change and ocean acidification. To address this fundamental question, we take advantage of the natural difference in baseline temperature and pCO2 conditions between Kane'ohe Bay and Waimanalo Bay, HI, both of which are currently impacted by the massive bleaching event in the Hawaiian Archipelago. This natural experiment makes possible a rare opportunity to test three basic questions about the rates of recovery of bleached and unbleached corals under future climate change scenarios: 1) Will ocean acidification slow rates of recovery from bleaching?; 2) Does zooplankton feeding minimize the impact?; and 3) Do corals acclimated to warmer, more acidic baseline conditions (Kane'ohe Bay) recover more quickly under future conditions than corals from present day mean oceanic conditions (Waimanalo Bay)? This research addresses broad scientific questions relating to the ability of corals to acclimate or adapt to both local environments and future climate conditions, and to help identify coral populations that may be resilient to the predicted impacts of climate change on the reefs of the future. |
attribute | NC_GLOBAL | projects_0_end_date | String | 2015-12 |
attribute | NC_GLOBAL | projects_0_geolocation | String | Oahu, HI; Hawaii Institute of Marine Biology |
attribute | NC_GLOBAL | projects_0_name | String | Will corals recover from bleaching under ocean acidification conditions? |
attribute | NC_GLOBAL | projects_0_project_nid | String | 546319 |
attribute | NC_GLOBAL | projects_0_start_date | String | 2015-01 |
attribute | NC_GLOBAL | publisher_name | String | Biological and Chemical Oceanographic Data Management Office (BCO-DMO) |
attribute | NC_GLOBAL | publisher_type | String | institution |
attribute | NC_GLOBAL | sourceUrl | String | (local files) |
attribute | NC_GLOBAL | standard_name_vocabulary | String | CF Standard Name Table v55 |
attribute | NC_GLOBAL | summary | String | Water pH during coral calcification experiments conducted on Oahu, Hawaii from November of 2014 to November of 2015 |
attribute | NC_GLOBAL | title | String | [pH] - Water pH during coral calcification experiments conducted on Oahu, Hawaii from November of 2014 to November of 2015 (Will corals recover from bleaching under ocean acidification conditions?) |
attribute | NC_GLOBAL | version | String | 1 |
attribute | NC_GLOBAL | xml_source | String | osprey2erddap.update_xml() v1.3 |
variable | date_HST | String | ||
attribute | date_HST | bcodmo_name | String | date |
attribute | date_HST | description | String | Local date; Hawaii Standard Time (HST;UTC-10) in format yyyy-mm-dd |
attribute | date_HST | long_name | String | Date HST |
attribute | date_HST | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/ADATAA01/ |
attribute | date_HST | source_name | String | date_HST |
attribute | date_HST | time_precision | String | 1970-01-01 |
attribute | date_HST | units | String | unitless |
variable | t1 | float | ||
attribute | t1 | _FillValue | float | NaN |
attribute | t1 | actual_range | float | 7.929, 8.027 |
attribute | t1 | bcodmo_name | String | pH |
attribute | t1 | description | String | pH in aquarium "t1" |
attribute | t1 | long_name | String | T1 |
attribute | t1 | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/ |
attribute | t1 | units | String | pH total hydrogen ion scale |
variable | t2 | float | ||
attribute | t2 | _FillValue | float | NaN |
attribute | t2 | actual_range | float | 7.93, 8.024 |
attribute | t2 | bcodmo_name | String | pH |
attribute | t2 | description | String | pH in aquarium "t2" |
attribute | t2 | long_name | String | T2 |
attribute | t2 | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/ |
attribute | t2 | units | String | pH total hydrogen ion scale |
variable | t3 | float | ||
attribute | t3 | _FillValue | float | NaN |
attribute | t3 | actual_range | float | 7.47, 8.012 |
attribute | t3 | bcodmo_name | String | pH |
attribute | t3 | description | String | pH in aquarium "t3" |
attribute | t3 | long_name | String | T3 |
attribute | t3 | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/ |
attribute | t3 | units | String | pH total hydrogen ion scale |
variable | t4 | float | ||
attribute | t4 | _FillValue | float | NaN |
attribute | t4 | actual_range | float | 7.434, 8.012 |
attribute | t4 | bcodmo_name | String | pH |
attribute | t4 | description | String | pH in aquarium "t4" |
attribute | t4 | long_name | String | T4 |
attribute | t4 | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/ |
attribute | t4 | units | String | pH total hydrogen ion scale |
variable | t5 | float | ||
attribute | t5 | _FillValue | float | NaN |
attribute | t5 | actual_range | float | 7.927, 8.046 |
attribute | t5 | bcodmo_name | String | pH |
attribute | t5 | description | String | pH in aquarium "t5" |
attribute | t5 | long_name | String | T5 |
attribute | t5 | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/ |
attribute | t5 | units | String | pH total hydrogen ion scale |
variable | t6 | float | ||
attribute | t6 | _FillValue | float | NaN |
attribute | t6 | actual_range | float | 7.351, 8.003 |
attribute | t6 | bcodmo_name | String | pH |
attribute | t6 | description | String | pH in aquarium "t6" |
attribute | t6 | long_name | String | T6 |
attribute | t6 | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/ |
attribute | t6 | units | String | pH total hydrogen ion scale |
variable | t7 | float | ||
attribute | t7 | _FillValue | float | NaN |
attribute | t7 | actual_range | float | 7.574, 8.022 |
attribute | t7 | bcodmo_name | String | pH |
attribute | t7 | description | String | pH in aquarium "t7" |
attribute | t7 | long_name | String | T7 |
attribute | t7 | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/ |
attribute | t7 | units | String | pH total hydrogen ion scale |
variable | t8 | float | ||
attribute | t8 | _FillValue | float | NaN |
attribute | t8 | actual_range | float | 7.929, 8.047 |
attribute | t8 | bcodmo_name | String | pH |
attribute | t8 | description | String | pH in aquarium "t8" |
attribute | t8 | long_name | String | T8 |
attribute | t8 | nerc_identifier | String | https://vocab.nerc.ac.uk/collection/P01/current/PHXXZZXX/ |
attribute | t8 | units | String | pH total hydrogen ion scale |
The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV1, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.