BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > info > bcodmo_dataset_712090

Grid
DAP
Data
Sub-
set
Table
DAP
Data
Make
A
Graph
W
M
S
Source
Data
Files
Acces-
sible
?
Title Sum-
mary
FGDC,
ISO,
Metadata
Back-
ground
Info
RSS E
mail
Institution Dataset ID
   set  data   graph     files  public [mol percent - HPLC Method Glu and Phe 15N values] - N isotopic composition of Phenylalanine
and Glutamic Acid from a number of organisms, demonstrating new HPLC protocol for precise
isotopic measurements (The Use of Nitrogen Isotopes of Amino Acids To Understand Marine
Sedimentary 15N Records)
   ?        I   M   background (external link) RSS Subscribe BCO-DMO bcodmo_dataset_712090

The Dataset's Variables and Attributes

Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL access_formats String .htmlTable,.csv,.json,.mat,.nc,.tsv
attribute NC_GLOBAL acquisition_description String Methodology described in Broek & McCarthy (2014):

AA standards
Standard L-AA powders were purchased from Alfa Aesar and Acros Organics and
used to prepare individual liquid standards (0.05 M), which were then combined
as an equimolar mixture of 16 individual AAs (\"16 AA Standard\") for
developing separations. The 16 AA Standard contained the proteinaceous AAs:
glycine (Gly), L-alanine (Ala), L-arginine (Arg), L-aspartic acid (Asp),
L-glutamic acid (Glu), L-histidine His), L-isoleucine (Ile), L-leucine (Leu),
L-lysine (Lys), D/L-methionine (Met), L-phenylalanine (Phe), L-proline (Pro),
L-serine (Ser), L-threonine (Thr), L-valine (Val); and nonprotein AA nor-
leucine(Nle), which ;is commonly used as an internal standard (Popp et al.
2007; McCarthy et al. 2013). The \u03b415N and \u03b413C values for dry
standards were determined by standard EA-IRMS at the University of California,
Santa Cruz Stable Isotope Laboratory (UCSC-SIL) following standard protocols
([http://es.ucsc.edu/](\\"http://es.ucsc.edu/\\") ~ silab). Average precision
of EA-IRMS \u03b415N standard values was 0.11 \u00b1 0.07 \u2030.
Additionally, a commercially available equimolar AA standard mixture \"Pierce
Amino Acid Standard H\" (Pierce H)(Thermo Scientific) containing the same AAs
as the \"16 AA Standard\" with the exception of the nonprotein AA Nle and
addition of the proteinaceous AAscysteine (Cys) and tyrosine (Tyr) was used to
construct individual calibration curves, so as to verify relative molar
abundance of individual AAs in natural samples.

Sample preparation:
The cyanobacteria sample (Spirulina Sp.) was obtained as a bulk commercial
dry powder (Spirulina Pacifica, Nutrex Hawaii, Kailua-Kona, HI). This same
sample has been used previously as a McCarthy laboratory internal quality
control standard, and its CSI-AA values have been measured repeatedly by
GC-C-IRMS, allowing an investigation of the long-term accuracy and precision
of the GC-C-IRMS instrument.

Coastal mussel (Myilitus Califorianus) sample was collected in 2012 from Santa
Cruz, CA. The mussel was previously dissected, and the adductor muscle tissue
removed and lyophilized prior to storage. We used a subsample of adductor
muscle collected for a prior study (Vokhshoori and McCarthy 2014) hydrolyzing
the bulk lyophilized adductor muscle tissue directly without lipid extraction.

The deep-sea bamboo coral (genus isidella) sample was previously collected in
2007 from Monterey Bay, CA, USA (36 44.6538N, 122 2.2329W, 870.2 m) (Hill,
pers. comm. 2011). A proteinaceous node was separated from the calcium
carbonate skeleton and oven dried (60 degrees C, 24 h).

White sea bass muscle tissue was subsampled from an incidental recreational
catch in 2007, landed from Santa Cruz Island, Channel Islands, CA (J.
Patterson, pers. comm. 2007). Fish muscle tissue was also lyophilized prior to
hydrolysis.

Harbor seal blood was collected in May-June 2007 from a wild animal in Tomales
Bay, CA (38 13.9N, 122 58.1W) under NMFS Research Permit no. 555-1565. Blood
serum was purified, lipid extracted, and lyophilized prior to hydrolysis, as
described previously (Germain et al. 2011).

For all sample types, proteinaceous material was hydrolyzed by adding 40-50 mg
of bulk dry sample to an 8 mL glass vial, followed by 5 mL of 6 N hydrochloric
acid (HCl) at room temperature. The vials were flushed with nitrogen gas,
sealed, and allowed to hydrolyze under standard conditions (110 degrees C, 20
h). Hydrolysis under acidic conditions quantitatively deaminates asparagine
(Asn) to aspartic acid, and glutamine (Gln) to glutamic acid (Barrett 1985).
Therefore, in this protocol (and all others based on acid hydrolysis),
measured Glu in fact represents Gln+Glu, and measured Asp represents Asp+Asn.
We note that while the abbreviations Glx and Asx are sometimes used to denote
these combined Gln+Glu and Asp+Asn fractions, we have elected to simply use
Asp and Glu as abbreviations, as defined above, in order to correspond better
with prior TPCSIA literature. Additionally, acid hydrolysis is known to
destroy cysteine (Cys), precluding it from analysis (Barrett 1985). Resulting
hydrolysates were dried to completion under nitrogen gas and brought up in 0.1
N HCl to a final concentration of 1 mg tissue/ 100 L HCl. Approximately 75% of
each of the resulting mixtures was reserved for HPLC/EA-IRMS analysis, and the
remaining material was dried to completion for derivatization and subsequent
GC-C-IRMS analysis.

GC-C-IRMS Analysis\u2028:
Trifluoroacetyl isopropyl ester (TFA-IP) AA derivatives were prepared using
standardized lab protocols, as described previously (McCarthy et al. 2013).
Briefly, hydrolyzed samples were esterified in 300 uL 1:5 mixture of acetyl
chloride:2-propanol (110 degrees C, 60 minutes). The resulting amino acid
isopropyl esters were then acylated in 350 uL 1:3 mixture of dichloromethane
(DCM):trifluoroacetic acid anhydride (100 degrees C, 15 minutes). Derivatized
AAs were dissolved in DCM to a final ratio of 1 mg of original proteinaceous
material to 50 uL DCM. Isotopic analysis was conducted on a Thermo Trace GC
Ultra (Thermo Fisher Scientific, West Palm Beach, FL, USA) coupled via a
Thermo GC IsoLink to a ThermoFinnigan DeltaPlus XP isotope ratio monitoring
mass spectrometer (Thermo Fisher Scientific).\u00a0Derivatives (1 L) were
injected (injector temp. 250 degrees C constant) onto an Agilent DB-5 column
(50 m x 0.32 mm ID x 0.52 um film thickness, Agilent Technologies, Inc., Santa
Clara, CA, USA), with a He carrier flow rate of 2 mL/min (constant-flow).
Separations were achieved with a four-ramp oven program: 52 deg C, 2 min hold;
ramp 1 = 15 deg C /min to 75 deg C, hold for 2 min; ramp 2 = 4 deg C /min to
185 deg C, hold for 2 min; ramp 3 = 4 deg C /min to 200 deg C; ramp 4 = 30 deg
C /min to 240 deg C, hold for 5 min. This method allows for the determination
of 11-15 AAs depending on derivatization efficiency and instrument
sensitivity. Values are typically obtained for Gly, Ala, Glu, Ile, Leu, Phe,
Pro, Ser, Thr, Val, Nle, and Lys.\u00a0Values for Met, His and Arg are
obtained only in some samples, depending on concentration and derivatization
efficiency. For \u03b415N AA values, samples were analyzed in quadruplicate
(n=4) with bracketed lab AA isotopic standard mix for subsequent standard
offset and drift corrections. Corrections based on authentic external
standards were applied using previously published protocols (McCarthy et al.
2013).\u2028

HPLC/EA-IRMS:
Liquid chromatographic separations were conducted using a Shimadzu HPLC
system (Shimadzu Scientific Instruments, Inc., Columbia, MD, USA) equipped
with: system controller (SCL-10A vp), degasser (DGU-20A5), 2 pumps (LC-20AD),
autosampler (SIL-20A) with an adjustable injection volume of 0.1-100 uL, and
coupled to a Shimadzu automated fraction collector (FRC-20A). An adjustable
flow splitter (Analytical Sales and Services, Inc., Pompton Plains, NJ, USA)
was used inline following the chromatography column to direct ~15% of the flow
to a SEDERE (Alfortville, France) evaporative light scattering detector (ELSD-
LT II, Sedex 85LT) for peak detection and quantitation. A semi-preparative
scale SiELC Primesep A column (10 x 250 mm, 100 angstrom pore size, 5 um
particle size; SiELC Technologies Ltd., Prospect Heights, IL, USA) was used
for amino acid purification. The Primesep A column used here is a reverse-
phase semi-preparative scale column embedded with strong acidic ion-pairing
groups. Such mixed phase columns have been developed specifically for the
separation of charged organic compounds as the acidic sites in the stationary
phase interact with the charged functional groups and provide additional
retention mechanisms to increase chromatographic separation potential. For a
more detailed description of the retention mechanisms of the Primesep A column
see (McCullagh et al. 2006; 2010).\u2028

Typically, 75-100 uL of sample solution was loaded onto the HPLC instrument. A
binary solvent ramp program was used consisting of 0.1% trifluoroacetic acid
(TFA) in HPLC grade water (aqueous phase) and 0.1% TFA in acetonitrile
(organic phase). The final solvent ramp program used for optimal separation
was as follows: starting with 100% aqueous / 0% organic; increased from 0 to
0.5% organic from 0-30 minutes; increased to 15% organic from 30-35 minutes;
increased to 22.5% from 35-70 minutes; increased to 30% from 70-95 minutes;
held at 30% until 140 minutes. The column was then cleaned and equilibrated by
increasing to 100% and holding for 20 minutes; then decreasing to 50% and
holding for an additional 15 minutes; then decreasing to 0% and holding until
the method ends at 180 minutes. A flow rate ramp is also employed in which the
total flow rate is held at 2.5 mL/minute for 0-30 minutes; increased to 4.5
mL/minute from 30-35 minutes; held at 4.5 mL/min from 35-170 minutes; then
decreased back to 2.5 mL/minute from 170-175 minutes and held until the
completion of the analysis.\u2028

Purified AAs were collected into 3.5 mL tubes via the automated fraction
collector using time-based collections, and then transferred to 20 mL glass
vials. The solvent was removed under vacuum using a Jouan centrifugal
evaporator (Societe Jouan, Saint-Herblain, France) at a chamber temperature of
60 degrees C. Dry AA residues were then re-dissolved into a small volume (~30
L) of 0.1 N HCl, transferred into pre-ashed tin (Sn) EA capsules, and dried to
completion in a 60 degrees C oven for 12 hours. Capsules were then pressed
into cubes and analyzed for \u03b415N and \u03b413C values by EA-IRMS. EA-IRMS
analysis was conducted in the UCSC shared Stable Isotope Laboratory facility
(UCSC-SIL), using an EA-IRMS analyzer dedicated to smaller samples. This
system uses a Carlo Erba CHNS-O EA1108-Elemental Analyzer, interfaced via a
Thermo Finnigan Gasbench II device to a Thermo Finnigan Delta Plus XP isotope
ratio mass spectrometer (Thermo Fisher Scientific), configured after Polissar
et al. (2009). For AAs in this study, we found that \u2264 100 nmol quantities
of purified AA material could be routinely measured using this instrument,
although as discussed below a standard EA configuration could also equally be
used. Raw EA-IRMS \u03b415N and \u03b413C values were corrected for instrument
drift and size effects using AA isotopic standards and standard correction
protocols used by the UCSC-SIL
([http://es.ucsc.edu/~silab](\\"http://es.ucsc.edu/~silab\\")).\u2028
attribute NC_GLOBAL awards_0_award_nid String 704683
attribute NC_GLOBAL awards_0_award_number String OCE-1131816
attribute NC_GLOBAL awards_0_data_url String http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1131816 (external link)
attribute NC_GLOBAL awards_0_funder_name String NSF Division of Ocean Sciences
attribute NC_GLOBAL awards_0_funding_acronym String NSF OCE
attribute NC_GLOBAL awards_0_funding_source_nid String 355
attribute NC_GLOBAL awards_0_program_manager String Candace O. Major
attribute NC_GLOBAL awards_0_program_manager_nid String 51690
attribute NC_GLOBAL cdm_data_type String Other
attribute NC_GLOBAL comment String Relative Amino Acid Abundance (mol %)
HPLC Method Glu and Phe 15N values
PI: Matthew McCarthy (UCSC)
Version: 02 August 2017
attribute NC_GLOBAL Conventions String COARDS, CF-1.6, ACDD-1.3
attribute NC_GLOBAL creator_email String info at bco-dmo.org
attribute NC_GLOBAL creator_name String BCO-DMO
attribute NC_GLOBAL creator_type String institution
attribute NC_GLOBAL creator_url String https://www.bco-dmo.org/ (external link)
attribute NC_GLOBAL data_source String extract_data_as_tsv version 2.3 19 Dec 2019
attribute NC_GLOBAL date_created String 2017-08-04T17:02:19Z
attribute NC_GLOBAL date_modified String 2019-08-02T15:50:09Z
attribute NC_GLOBAL defaultDataQuery String &time<now
attribute NC_GLOBAL doi String 10.1575/1912/bco-dmo.712090.1
attribute NC_GLOBAL infoUrl String https://www.bco-dmo.org/dataset/712090 (external link)
attribute NC_GLOBAL institution String BCO-DMO
attribute NC_GLOBAL instruments_0_acronym String IR Mass Spec
attribute NC_GLOBAL instruments_0_dataset_instrument_description String Isotopic analysis was conducted on a Thermo Trace GC Ultra (Thermo Fisher Scientific, West Palm Beach, FL, USA) coupled via a Thermo GC IsoLink to a ThermoFinnigan DeltaPlus XP isotope ratio monitoring mass spectrometer (Thermo Fisher Scientific).
attribute NC_GLOBAL instruments_0_dataset_instrument_nid String 712097
attribute NC_GLOBAL instruments_0_description String The Isotope-ratio Mass Spectrometer is a particular type of mass spectrometer used to measure the relative abundance of isotopes in a given sample (e.g. VG Prism II Isotope Ratio Mass-Spectrometer).
attribute NC_GLOBAL instruments_0_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB16/ (external link)
attribute NC_GLOBAL instruments_0_instrument_name String Isotope-ratio Mass Spectrometer
attribute NC_GLOBAL instruments_0_instrument_nid String 469
attribute NC_GLOBAL instruments_0_supplied_name String ThermoFinnigan DeltaPlus XP isotope ratio monitoring mass spectrometer
attribute NC_GLOBAL instruments_1_acronym String HPLC
attribute NC_GLOBAL instruments_1_dataset_instrument_description String Liquid chromatographic separations were conducted using a Shimadzu HPLC system (Shimadzu Scientific Instruments, Inc., Columbia, MD, USA) equipped with: system controller (SCL-10A vp), degasser (DGU-20A5), 2 pumps (LC-20AD), autosampler (SIL-20A) with an adjustable injection volume of 0.1-100 μL, and coupled to a Shimadzu automated fraction collector (FRC-20A).
attribute NC_GLOBAL instruments_1_dataset_instrument_nid String 712098
attribute NC_GLOBAL instruments_1_description String A High-performance liquid chromatograph (HPLC) is a type of liquid chromatography used to separate compounds that are dissolved in solution. HPLC instruments consist of a reservoir of the mobile phase, a pump, an injector, a separation column, and a detector. Compounds are separated by high pressure pumping of the sample mixture onto a column packed with microspheres coated with the stationary phase. The different components in the mixture pass through the column at different rates due to differences in their partitioning behavior between the mobile liquid phase and the stationary phase.
attribute NC_GLOBAL instruments_1_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB11/ (external link)
attribute NC_GLOBAL instruments_1_instrument_name String High Performance Liquid Chromatograph
attribute NC_GLOBAL instruments_1_instrument_nid String 506
attribute NC_GLOBAL instruments_1_supplied_name String Shimadzu HPLC
attribute NC_GLOBAL instruments_2_acronym String Gas Chromatograph
attribute NC_GLOBAL instruments_2_dataset_instrument_description String Derivatives (1 L) were injected (injector temp. 250 degrees C constant) onto an Agilent DB-5 column.
attribute NC_GLOBAL instruments_2_dataset_instrument_nid String 712099
attribute NC_GLOBAL instruments_2_description String Instrument separating gases, volatile substances, or substances dissolved in a volatile solvent by transporting an inert gas through a column packed with a sorbent to a detector for assay. (from SeaDataNet, BODC)
attribute NC_GLOBAL instruments_2_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB02/ (external link)
attribute NC_GLOBAL instruments_2_instrument_name String Gas Chromatograph
attribute NC_GLOBAL instruments_2_instrument_nid String 661
attribute NC_GLOBAL instruments_2_supplied_name String Agilent DB-5 column
attribute NC_GLOBAL instruments_3_acronym String Gas Chromatograph
attribute NC_GLOBAL instruments_3_dataset_instrument_description String Isotopic analysis was conducted on a Thermo Trace GC Ultra (Thermo Fisher Scientific, West Palm Beach, FL, USA) coupled via a Thermo GC IsoLink to a ThermoFinnigan DeltaPlus XP isotope ratio monitoring mass spectrometer (Thermo Fisher Scientific).
attribute NC_GLOBAL instruments_3_dataset_instrument_nid String 712096
attribute NC_GLOBAL instruments_3_description String Instrument separating gases, volatile substances, or substances dissolved in a volatile solvent by transporting an inert gas through a column packed with a sorbent to a detector for assay. (from SeaDataNet, BODC)
attribute NC_GLOBAL instruments_3_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB02/ (external link)
attribute NC_GLOBAL instruments_3_instrument_name String Gas Chromatograph
attribute NC_GLOBAL instruments_3_instrument_nid String 661
attribute NC_GLOBAL instruments_3_supplied_name String Thermo Trace GC Ultra
attribute NC_GLOBAL instruments_4_dataset_instrument_description String EA-IRMS analysis was conducted in the UCSC shared Stable Isotope Laboratory facility (UCSC-SIL), using an EA-IRMS analyzer dedicated to smaller samples. This system uses a Carlo Erba CHNS-O EA1108-Elemental Analyzer, interfaced via a Thermo Finnigan Gasbench II device to a Thermo Finnigan Delta Plus XP isotope ratio mass spectrometer (Thermo Fisher Scientific).
attribute NC_GLOBAL instruments_4_dataset_instrument_nid String 712095
attribute NC_GLOBAL instruments_4_description String Instruments that quantify carbon, nitrogen and sometimes other elements by combusting the sample at very high temperature and assaying the resulting gaseous oxides. Usually used for samples including organic material.
attribute NC_GLOBAL instruments_4_instrument_external_identifier String https://vocab.nerc.ac.uk/collection/L05/current/LAB01/ (external link)
attribute NC_GLOBAL instruments_4_instrument_name String Elemental Analyzer
attribute NC_GLOBAL instruments_4_instrument_nid String 546339
attribute NC_GLOBAL instruments_4_supplied_name String Carlo Erba CHNS-O EA1108-elemental analyzer
attribute NC_GLOBAL keywords String acid, amino, amino_acid, bco, bco-dmo, biological, chemical, data, dataset, deviation, dmo, erddap, gcc, hplc, management, mol, mol_pcnt_GCC, mol_pcnt_GCC_stdev, mol_pcnt_hplc, mol_pcnt_hplc_stdev, oceanography, office, pcnt, preliminary, sample, sample_type, standard, standard deviation, stdev, type
attribute NC_GLOBAL license String https://www.bco-dmo.org/dataset/712090/license (external link)
attribute NC_GLOBAL metadata_source String https://www.bco-dmo.org/api/dataset/712090 (external link)
attribute NC_GLOBAL param_mapping String {'712090': {}}
attribute NC_GLOBAL parameter_source String https://www.bco-dmo.org/mapserver/dataset/712090/parameters (external link)
attribute NC_GLOBAL people_0_affiliation String University of California-Santa Cruz
attribute NC_GLOBAL people_0_affiliation_acronym String UC Santa Cruz
attribute NC_GLOBAL people_0_person_name String Matthew D. McCarthy
attribute NC_GLOBAL people_0_person_nid String 557245
attribute NC_GLOBAL people_0_role String Principal Investigator
attribute NC_GLOBAL people_0_role_type String originator
attribute NC_GLOBAL people_1_affiliation String Woods Hole Oceanographic Institution
attribute NC_GLOBAL people_1_affiliation_acronym String WHOI BCO-DMO
attribute NC_GLOBAL people_1_person_name String Shannon Rauch
attribute NC_GLOBAL people_1_person_nid String 51498
attribute NC_GLOBAL people_1_role String BCO-DMO Data Manager
attribute NC_GLOBAL people_1_role_type String related
attribute NC_GLOBAL project String Amino Acid Sediment 15N
attribute NC_GLOBAL projects_0_acronym String Amino Acid Sediment 15N
attribute NC_GLOBAL projects_0_description String The bioavailability of nutrients plays a crucial role in oceanic biological productivity, the carbon cycle, and climate change. The global ocean inventory of nitrogen (N) is determined by the balance of N-fixation (sources) and denitrification (sinks). In this three-year project, a researcher from the University of California, Santa Cruz, will focus on developing compound-specific N isotope (d15N) analysis of amino acids as a new tool for understanding N source and transformation of organic matter in paleo-reservoirs. The offsets in the isotopic ratios of individual amino acid groups may yield information about trophic transfer, heterotrophic microbial reworking, and autotrophic versus heterotrophic sources. By measuring and comparing the bulk and amino acid d15N in size-fractioned samples from plankton tows, sediments traps, and multi-cores in oxic and suboxic depositional environments, the researcher will: (1) Provide a proxy of the d15N of average exported photoautotrophic organic matter; and (2) Provide a new level of detail into sedimentary organic N degradation and preservation.
Broader impacts:
This project will improve understanding of the fundamental underpinnings and behaviors of d15N amino acid patterns and how they behave in contrasting sedimentary environments, while also developing a potential paleoceanographic proxy. Funding will support a graduate student and undergraduate research at the institution. The researcher will also conduct community outreach in the form of a workshop/tutorial on the proxy development.
attribute NC_GLOBAL projects_0_end_date String 2016-09
attribute NC_GLOBAL projects_0_geolocation String California Margin , Santa Barbara Basin , CA current system, Eastern Tropical Pacific
attribute NC_GLOBAL projects_0_name String The Use of Nitrogen Isotopes of Amino Acids To Understand Marine Sedimentary 15N Records
attribute NC_GLOBAL projects_0_project_nid String 704684
attribute NC_GLOBAL projects_0_start_date String 2011-10
attribute NC_GLOBAL publisher_name String Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
attribute NC_GLOBAL publisher_type String institution
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL standard_name_vocabulary String CF Standard Name Table v55
attribute NC_GLOBAL subsetVariables String mol_pcnt_GCC_stdev
attribute NC_GLOBAL summary String N isotopic composition of Phenylalanine and Glutamic Acid from a number of organisms, demonstrating new HPLC protocol for precise isotopic measurements.
attribute NC_GLOBAL title String [mol percent - HPLC Method Glu and Phe 15N values] - N isotopic composition of Phenylalanine and Glutamic Acid from a number of organisms, demonstrating new HPLC protocol for precise isotopic measurements (The Use of Nitrogen Isotopes of Amino Acids To Understand Marine Sedimentary 15N Records)
attribute NC_GLOBAL version String 1
attribute NC_GLOBAL xml_source String osprey2erddap.update_xml() v1.3
variable sample_type   String  
attribute sample_type bcodmo_name String sample_type
attribute sample_type description String Description of the sample type.
attribute sample_type long_name String Sample Type
attribute sample_type units String unitless
variable amino_acid   String  
attribute amino_acid bcodmo_name String amino_acid
attribute amino_acid description String Amino acid
attribute amino_acid long_name String Amino Acid
attribute amino_acid units String unitless
variable mol_pcnt_hplc   float  
attribute mol_pcnt_hplc _FillValue float NaN
attribute mol_pcnt_hplc actual_range float 1.63, 21.66
attribute mol_pcnt_hplc bcodmo_name String amino_conc
attribute mol_pcnt_hplc description String Relative amino acid abundance; determined by HPLC-ELSD. Average precision: +/- 1
attribute mol_pcnt_hplc long_name String Mol Pcnt Hplc
attribute mol_pcnt_hplc units String percent (%)
variable mol_pcnt_hplc_stdev   float  
attribute mol_pcnt_hplc_stdev _FillValue float NaN
attribute mol_pcnt_hplc_stdev actual_range float 0.03, 0.63
attribute mol_pcnt_hplc_stdev bcodmo_name String amino_conc
attribute mol_pcnt_hplc_stdev description String Standard deviation of relative amino acid abundance determined by HPLC-ELSD.
attribute mol_pcnt_hplc_stdev long_name String Mol Pcnt Hplc Stdev
attribute mol_pcnt_hplc_stdev units String percent (%)
variable mol_pcnt_GCC   float  
attribute mol_pcnt_GCC _FillValue float NaN
attribute mol_pcnt_GCC actual_range float 1.8, 18.55
attribute mol_pcnt_GCC bcodmo_name String amino_conc
attribute mol_pcnt_GCC description String Relative amino acid abundance; determined by GC-C-IRMS. Average precision: +/- 1
attribute mol_pcnt_GCC long_name String Mol Pcnt GCC
attribute mol_pcnt_GCC units String percent (%)
variable mol_pcnt_GCC_stdev   double  
attribute mol_pcnt_GCC_stdev _FillValue double NaN
attribute mol_pcnt_GCC_stdev bcodmo_name String amino_conc
attribute mol_pcnt_GCC_stdev description String Standard deviation of relative amino acid abundance determined by GC-C-IRMS.
attribute mol_pcnt_GCC_stdev long_name String Mol Pcnt GCC Stdev
attribute mol_pcnt_GCC_stdev units String percent (%)

The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV1, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.


 
ERDDAP, Version 2.22
Disclaimers | Privacy Policy | Contact