BCO-DMO ERDDAP
Accessing BCO-DMO data
log in    
Brought to you by BCO-DMO    

ERDDAP > info > bcodmo_dataset_752953

Grid
DAP
Data
Sub-
set
Table
DAP
Data
Make
A
Graph
W
M
S
Source
Data
Files
Acces-
sible
?
Title Sum-
mary
ISO,
Metadata
Back-
ground
Info
RSS E
mail
Institution Dataset ID
     data   graph     files  public Experimental counts and locations within columns of depth-varying pH to investigate the
behavioral effects of ocean acidification on sand dollar larvae (Dendraster excentricus), July
2017
   ?     I   M   background (external link) RSS Subscribe BCO-DMO bcodmo_dataset_752953

The Dataset's Variables and Attributes

Row Type Variable Name Attribute Name Data Type Value
attribute NC_GLOBAL access_formats String .htmlTable,.csv,.json,.mat,.nc,.tsv
attribute NC_GLOBAL acquisition_description String Spawning and fertilization:

We collected adult sand dollars (D. excentricus) from Semiahmoo Bay, WA, on
July 7, 2017, and maintained them in 14\u00b0C continuous flowing seawater at
the Shannon Point Marine Center. On July 12, 2017, we induced twelve
individuals to spawn by injecting 1-mL of 0.5-M KCl into the coelom following
methods outlined by Strathmann (1987).\u00a0 We then collected and mixed
concentrated gametes of four males and four females for fertilization. We
added five drops of sperm to 500-mL of filtered seawater and 5-mL of eggs. We
placed the fertilized eggs in 12\u00b0C incubator and bubbled them with
ambient pCO2 condition for 12-hrs before dividing the embryos into pCO2
treatment conditions before gastrulation.

Larval Rearing

We reared D. excentricus larvae (2 individuals mL-1) at 12\u00b0C in eight 3-L
jars that were individually bubbled with CO2 to achieve four replicates of
ambient (400ppm) and acidic (1500ppm) pCO2 conditions. Each jar of larvae
received a water change with pre-equilibrated 0.35-m filtered ambient and
acidic seawater and fed the larvae D. tertiolecta (6,000 cells ml-1) daily.
Pre-equilibrated ambient and acidic water was held in tanks within the same
12\u00b0C incubator as the rearing jars.

Experimental Design

We conducted two behavioral experiments; one when the larvae were 4-arm
pleutei and one when the larvae were 6-armed pleutei.

To measure the effect of pH conditions on the vertical distribution of larvae
we established three experimental pycnocline treatments within clear
plexiglass water columns (2.5cm x 2.5cm x 30cm): (1) ambient water (400ppm) in
the top layer and acidic water in the bottom layer (1500ppm), (2) ambient
water (400ppm) in both top and bottom layers, and (3) acidic water (1500ppm)
in the top layer and ambient water (400ppm) in the bottom layer. Each water
layer was 60-mL of water and filled the column 10-cm high, so when each
experimental treatment was established it filled the column to 20-cm. We
established the experimental treatments by increasing the density of seawater
in the bottom layer by 0.003-0.005 g ml-1 using PercollTM GE Healthcare
(Podolsky & Emlet 1993). Experimental treatment water was kept at 12\u00b0C
and pre-equilibrated to the desired pCO2 level and density. We also included
blue food coloring (1 drop per 100-mL) to the dense bottom layer to more
easily visualize the density layers while establishing experimental
treatments. We set-up four replicate columns for each experimental treatment
making twelve columns total per experiment.

Columns were positioned in a randomized order along the table of a walk-in
incubator set to 12\u00b0C. Once columns were in position and treatments were
established, we carefully injected 150 larvae by syringe into the bottom 2-cm
of each column with no more than 2-mL of their culture water. Larvae were
given 10 minutes in darkness to acclimate before we performed the first count
of vertical positions of larvae in each water column. At 30 minutes of
acclimation, we performed a second count of vertical positions of larvae in
each column. For each larval count, we used a small hand-held flashlight and
counted by eye the number of larvae occupying each centimeter of the water
column beginning at the bottom and moving up to the top. We did these counts
in the dark, so only one column received direct light from our small
flashlight at a time to reduce the influence of light on the larvae\u2019s
behavior.
attribute NC_GLOBAL awards_0_award_nid String 684166
attribute NC_GLOBAL awards_0_award_number String OCE-1538626
attribute NC_GLOBAL awards_0_data_url String http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1538626 (external link)
attribute NC_GLOBAL awards_0_funder_name String NSF Division of Ocean Sciences
attribute NC_GLOBAL awards_0_funding_acronym String NSF OCE
attribute NC_GLOBAL awards_0_funding_source_nid String 355
attribute NC_GLOBAL awards_0_program_manager String Michael E. Sieracki
attribute NC_GLOBAL awards_0_program_manager_nid String 50446
attribute NC_GLOBAL cdm_data_type String Other
attribute NC_GLOBAL comment String Dendraster Behavior OA Expt, 2017
S. Arellano, B. Olson, S. Yang (WWU)
version: 2019-01-14
attribute NC_GLOBAL Conventions String COARDS, CF-1.6, ACDD-1.3
attribute NC_GLOBAL creator_email String info at bco-dmo.org
attribute NC_GLOBAL creator_name String BCO-DMO
attribute NC_GLOBAL creator_type String institution
attribute NC_GLOBAL creator_url String https://www.bco-dmo.org/ (external link)
attribute NC_GLOBAL data_source String extract_data_as_tsv version 2.3 19 Dec 2019
attribute NC_GLOBAL date_created String 2019-01-16T19:36:20Z
attribute NC_GLOBAL date_modified String 2019-09-25T19:31:41Z
attribute NC_GLOBAL defaultDataQuery String &time<now
attribute NC_GLOBAL doi String 10.1575/1912/bco-dmo.752953.1
attribute NC_GLOBAL infoUrl String https://www.bco-dmo.org/dataset/752953 (external link)
attribute NC_GLOBAL institution String BCO-DMO
attribute NC_GLOBAL keywords String bco, bco-dmo, biological, chemical, column, column_name, column_treatment, count, count_id, data, dataset, date, dmo, erddap, height, height_cm, larvae, larvae_count, larvae_stage, larvae_treatment, management, middepth, middepth_cm, name, oceanography, office, preliminary, proportion, proportion_larvae, stage, time, treatment
attribute NC_GLOBAL license String https://www.bco-dmo.org/dataset/752953/license (external link)
attribute NC_GLOBAL metadata_source String https://www.bco-dmo.org/api/dataset/752953 (external link)
attribute NC_GLOBAL param_mapping String {'752953': {'middepth_cm': 'master - depth'}}
attribute NC_GLOBAL parameter_source String https://www.bco-dmo.org/mapserver/dataset/752953/parameters (external link)
attribute NC_GLOBAL people_0_affiliation String Western Washington University
attribute NC_GLOBAL people_0_affiliation_acronym String WWU
attribute NC_GLOBAL people_0_person_name String Shawn M Arellano
attribute NC_GLOBAL people_0_person_nid String 684169
attribute NC_GLOBAL people_0_role String Principal Investigator
attribute NC_GLOBAL people_0_role_type String originator
attribute NC_GLOBAL people_1_affiliation String Western Washington University
attribute NC_GLOBAL people_1_affiliation_acronym String WWU
attribute NC_GLOBAL people_1_person_name String Dr Brady M. Olson
attribute NC_GLOBAL people_1_person_nid String 51528
attribute NC_GLOBAL people_1_role String Co-Principal Investigator
attribute NC_GLOBAL people_1_role_type String originator
attribute NC_GLOBAL people_2_affiliation String Western Washington University
attribute NC_GLOBAL people_2_affiliation_acronym String WWU
attribute NC_GLOBAL people_2_person_name String Dr Sylvia Yang
attribute NC_GLOBAL people_2_person_nid String 684172
attribute NC_GLOBAL people_2_role String Co-Principal Investigator
attribute NC_GLOBAL people_2_role_type String originator
attribute NC_GLOBAL people_3_affiliation String Woods Hole Oceanographic Institution
attribute NC_GLOBAL people_3_affiliation_acronym String WHOI BCO-DMO
attribute NC_GLOBAL people_3_person_name String Nancy Copley
attribute NC_GLOBAL people_3_person_nid String 50396
attribute NC_GLOBAL people_3_role String BCO-DMO Data Manager
attribute NC_GLOBAL people_3_role_type String related
attribute NC_GLOBAL project String Climate stressors on larvae
attribute NC_GLOBAL projects_0_acronym String Climate stressors on larvae
attribute NC_GLOBAL projects_0_description String In the face of climate change, future distribution of animals will depend not only on whether they adjust to new conditions in their current habitat, but also on whether a species can spread to suitable locations in a changing habitat landscape. In the ocean, where most species have tiny drifting larval stages, dispersal between habitats is impacted by more than just ocean currents alone; the swimming behavior of larvae, the flow environment the larvae encounter, and the length of time the larvae spend in the water column all interact to impact the distance and direction of larval dispersal. The effects of climate change, especially ocean acidification, are already evident in shellfish species along the Pacific coast, where hatchery managers have noticed shellfish cultures with 'lazy larvae syndrome.' Under conditions of increased acidification, these 'lazy larvae' simply stop swimming; yet, larval swimming behavior is rarely incorporated into studies of ocean acidification. Furthermore, how ocean warming interacts with the effects of acidification on larvae and their swimming behaviors remains unexplored; indeed, warming could reverse 'lazy larvae syndrome.' This project uses a combination of manipulative laboratory experiments, computer modeling, and a real case study to examine whether the impacts of ocean warming and acidification on individual larvae may affect the distribution and restoration of populations of native oysters in the Salish Sea. The project will tightly couple research with undergraduate education at Western Washington University, a primarily undergraduate university, by employing student researchers, incorporating materials into undergraduate courses, and pairing marine science student interns with art student interns to develop art projects aimed at communicating the effects of climate change to public audiences
As studies of the effects of climate stress in the marine environment progress, impacts on individual-level performance must be placed in a larger ecological context. While future climate-induced circulation changes certainly will affect larval dispersal, the effects of climate-change stressors on individual larval traits alone may have equally important impacts, significantly altering larval transport and, ultimately, species distribution. This study will experimentally examine the relationship between combined climate stressors (warming and acidification) on planktonic larval duration, morphology, and swimming behavior; create models to generate testable hypotheses about the effects of these factors on larval dispersal that can be applied across systems; and, finally, use a bio-physically coupled larval transport model to examine whether climate-impacted larvae may affect the distribution and restoration of populations of native oysters in the Salish Sea.
attribute NC_GLOBAL projects_0_end_date String 2018-08
attribute NC_GLOBAL projects_0_geolocation String Coastal Pacific, USA
attribute NC_GLOBAL projects_0_name String RUI: Will climate change cause 'lazy larvae'? Effects of climate stressors on larval behavior and dispersal
attribute NC_GLOBAL projects_0_project_nid String 684167
attribute NC_GLOBAL projects_0_start_date String 2015-09
attribute NC_GLOBAL publisher_name String Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
attribute NC_GLOBAL publisher_type String institution
attribute NC_GLOBAL sourceUrl String (local files)
attribute NC_GLOBAL standard_name_vocabulary String CF Standard Name Table v55
attribute NC_GLOBAL summary String Data collected from a laboratory water column experiment to investigate the behavioral effects of ocean acidification on sand dollar larvae (Dendraster excentricus).
attribute NC_GLOBAL title String Experimental counts and locations within columns of depth-varying pH to investigate the behavioral effects of ocean acidification on sand dollar larvae (Dendraster excentricus), July 2017
attribute NC_GLOBAL version String 1
attribute NC_GLOBAL xml_source String osprey2erddap.update_xml() v1.3
variable date   String  
attribute date bcodmo_name String date_local
attribute date description String Date of experiment formatted as yyyy-mm-dd
attribute date long_name String Date
attribute date source_name String date
attribute date time_precision String 1970-01-01
attribute date units String unitless
variable larvae_stage   String  
attribute larvae_stage bcodmo_name String stage
attribute larvae_stage description String Stage of Dendraster excentricus larvae used in the experiment: 4-arm or 6-arm stage plutei
attribute larvae_stage long_name String Larvae Stage
attribute larvae_stage units String unitless
variable larvae_treatment   String  
attribute larvae_treatment bcodmo_name String treatment
attribute larvae_treatment description String Indicates the pCO2 treatment condition larvae were reared in from the time of spawning to the time of the experiment. "acidic" condition was treatment water maintained at 1500ppm and "neutral" condition was treatment water maintained at 400ppm.
attribute larvae_treatment long_name String Larvae Treatment
attribute larvae_treatment units String unitless
variable column_treatment   String  
attribute column_treatment bcodmo_name String treatment
attribute column_treatment description String Identifies the experimental treatment of the water column that larvae were placed into. The first word indicates the pCO2 condition of the water layer at the top of the column and the second word indicates the pCO2 condition of the water layer at the bottom of the column. "Acidic" water was bubbled to be 1500ppm and the "neutral" water was bubbled to be 400ppm.
attribute column_treatment long_name String Column Treatment
attribute column_treatment units String unitless
variable column_name   String  
attribute column_name bcodmo_name String sample
attribute column_name description String code for: (1) the pCO2 treatment of the water in the top of the column (A or N); (2) the pCO2 treatment the larvae were reared within (A or N); (3) the pCO2 treatment of the water in the bottom of the column (A or N); and (4) the replicate number. "A"= acidic water that was bubbled to be 1500 pCO2; "N" = neutral water that was bubbled to be 400 pCO2
attribute column_name long_name String Column Name
attribute column_name nerc_identifier String https://vocab.nerc.ac.uk/collection/P02/current/ACYC/ (external link)
attribute column_name units String unitless
variable count_id   String  
attribute count_id bcodmo_name String replicate
attribute count_id description String Identifies the count number (1 or 2) per experimental date. The vertical positions of larvae in the columns were counted twice for each experiment; the first count at 10 minutes post larval introduction into the column and the second count at 30 minutes post larval introduction into the column.
attribute count_id long_name String Count Id
attribute count_id units String unitless
variable height_cm   byte  
attribute height_cm _FillValue byte 127
attribute height_cm actual_range byte 1, 20
attribute height_cm bcodmo_name String height
attribute height_cm description String The height above the bottom of the water column where larvae were counted
attribute height_cm long_name String Height Cm
attribute height_cm units String centimeters
variable middepth_cm   double  
attribute middepth_cm _FillValue double NaN
attribute middepth_cm actual_range double 0.5, 19.5
attribute middepth_cm bcodmo_name String depth
attribute middepth_cm description String Middepth of the section of the water column in which larvae were counted
attribute middepth_cm long_name String Middepth Cm
attribute middepth_cm nerc_identifier String https://vocab.nerc.ac.uk/collection/P09/current/DEPH/ (external link)
attribute middepth_cm units String centimeters
variable larvae_count   byte  
attribute larvae_count _FillValue byte 127
attribute larvae_count actual_range byte 0, 108
attribute larvae_count bcodmo_name String count
attribute larvae_count colorBarMaximum double 100.0
attribute larvae_count colorBarMinimum double 0.0
attribute larvae_count description String The number of larvae occupying that area of the water column during the count
attribute larvae_count long_name String Larvae Count
attribute larvae_count units String # of larvae
variable proportion_larvae   float  
attribute proportion_larvae _FillValue float NaN
attribute proportion_larvae actual_range float 0.0, 0.912
attribute proportion_larvae bcodmo_name String relative_abund
attribute proportion_larvae description String Proportion of total larvae occupying that area of the water column during the count
attribute proportion_larvae long_name String Proportion Larvae
attribute proportion_larvae units String unitless

The information in the table above is also available in other file formats (.csv, .htmlTable, .itx, .json, .jsonlCSV1, .jsonlCSV, .jsonlKVP, .mat, .nc, .nccsv, .tsv, .xhtml) via a RESTful web service.


 
ERDDAP, Version 2.02
Disclaimers | Privacy Policy | Contact